AN58-EDB430 与点阵图形液晶 (ST7565/S1D15301)并行接口实现(9) (版本 1. 0)

www.430DIY.com

2006.11

EDB430 与点阵图形液晶(ST7565/S1D15301)并行接口实现	(9)	1.0
---------------------------------------	-----	-----

版本	草案
最后更新	2005. 8. 11
页号	2 of 10
文档号	

申明

为了方便设计和使用EDB430及MSP430混合信号处理器,编写了这个应用笔记。由于水平有限,难免有错漏之处,希望读者能够指点,以期不断完善。如果你要使用其中的文字,非经本人同意,不得转载等类似行为。同时,本文作者不承担因用户在使用过程中造成各种错误的损失,也不提供其他任何承诺,这个文档仅供参考,不做为商业用途。

http://www. 430diy.com 2005-12

版本	草案
最后更新	2005. 8. 11
页号	3 of 10
文档号	

目录

1		摘星	要		4
2		游点	<i>見模</i> :	块 (LCM)	_
				。 は は は に に に に に に に に に に に に に	
	۷.				
	2	2		ā模块硬件接口	
		2. 2.		液晶模块引脚定义	
		2. 2.	2	硬件连接	
		2. 2.	3	MSP430 资源使用	. (
	2.	. 3	应用	月层软件编程	. (
		2. 3.		LCM 初始化	
		2. 3.		清除屏幕	
	2.	4	LCM	硬件层编程	,
		2. 4.		写 LCN 命令	
		2. 4.		写 LCM 数据	
		2. 4.	3	读 LCM 状态字	. :
		2. 4.	4	读 LCM 数据	. :
	2.	. 5	升主	尺码	. :
3		总统	结		•
		_			
4		参	考文:	<i>章1</i>	1

版本	草案
最后更新	2005. 8. 11
页号	4 of 10
文档号	

1 摘要

本文以 EDB430 实验开发板为平台,实现 MSP430 对基于 ST7565 液晶控制器的 128×64 图形点阵液晶模块(以下简称 LCM)的控制。本文对液晶原理不做深入的介绍,仅描述了与 MSP430 单片机通过并行接口连接,并实现编程控制方法,最后实现写一行 8x16 英文字符。

2 液晶模块 (LCM)

本文所使用的液晶模块,是由深圳市华创信电子有限公司生产的(www.A-TOPS.COM)AT-GG12864A,AT-GG12864A 系列液晶模块,它采用了由台湾砂创公司生产的中文图形控制芯片 ST7565(无内置中西文字库)作为液晶控制芯片,具有极高的性价比,最少的线路连接,轻巧的重量,完全低压操作,内置可编程控制的负压发生实现软件控制亮度等。该控制器作电压为 2.7 到 5.5V,故与 430 可以直接连接,而无需电平转换。为了实现对液晶模块的编程,对涉及到的硬件部分进行必要的介绍:

- 液晶的显示方法
- 硬件接口

2.1 液晶与显示

液晶显示文字或者图形,是通过在液晶屏上,对于像素显示或者不显示的控制所构成的图形来实现的。不论是文字还是图形,通常用户都是预先确定好所显示的文字或者图形的点阵图,通过控制 LCM 的硬件接口,将这些数据输送到 LCM 内部相应位置的显示 RAM(DDRAM 或者 GDRAM)中,在 LCM 内部的液晶控制芯片的控制下,我们就可以从屏幕上看到所期望的字符或图形了。因此,准确控制芯片的行为,是实现本文的目的。

2.1.1 点阵与屏幕的关系

图 2-2 是在屏幕左上角的局部放大图,表示了页,行和列的对应关系。详细的有关液晶的显示原理请看器件的数据手册。每个 DDRAM 地址对应每页中的某一列,例如,在 0 页 0 列地址写入 0x55,将在图 2-2 中显示红色的图形。对于 AT-GG12864A 而言,水平方向的总列数为 128 列,而垂直方向的页数 64/8=8 页。此外,还有更细致的行定位命令,可以将绘图确定从 64 行中的任何一行开始。

版本	草案
最后更新	2005. 8. 11
页号	5 of 10
文档号	

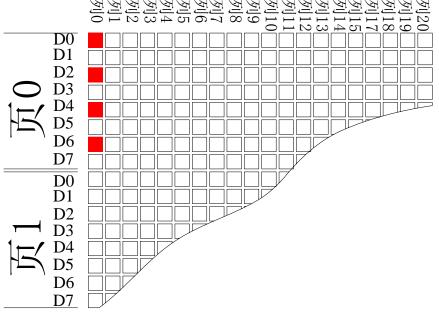


图2-2 点阵的显示

2.2 液晶模块硬件接口

2.2.1 液晶模块引脚定义

本文使用的液晶接口串行8080模式下引脚定义,表2-1所以。

引脚序号	符号	功能描述	引脚序号	符号	功能描述
1	Vss	液晶模块电源地	15	CS	芯片允许信号
2	Vdd	液晶模块电源正极	16	DIR	高写数据/低读数据
3	ı	未使用	17	RES/	复位信号
4	A0	命令/数据控制输入	18	ı	
5	RW/	读信号	19	LEDA	背光 LED 供电正极
6	RD/	读信号	20	LEDK	背光 LED 供电正极
7-14	DBO-DB7	双向数据总线			

表 2-1 AT-GG12864A 液晶模块引脚定义

2.2.2 硬件连接

图 2-2 为使用液晶模块与 MSP430 的连线原理图,由于 ST7565 在并行模式下,需要写入/读出,因此,只需考虑 ST7565 的供电范围选择与 MSP430 的供电电压一致即可,故采用可直接与液晶模块连接方式,从而线路相对比较简单。

此外,改进传统的外部调节亮度的方式,而改为程序控制的方式,极大地简化了连接线路,便于实现数字控制。

版本	草案
最后更新	2005. 8. 11
页号	6 of 10
文档号	

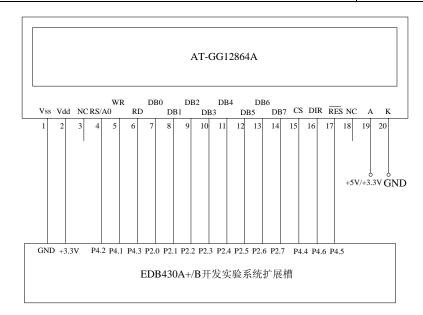


图 2-2 ST7565 并行模式 (LCM 在 8080 模式) 与 EDB430 试验板的连接

2.2.3 MSP430 资源使用

实现对 ST7565 的并口软件仿真通信,使用 MSP430 资源如表 2-2 所示,注意,板上蜂鸣器的跳线应当被断开,以便利用 P4.2 作为液晶模块的某个控制信号。

表 2-2 仿真 SPI 时, MSP430F135 资源使用状况表

MSP430 资源	功能说明	MSP430 设置引脚方向
P4.1 (端口功能)	液晶模块的 WR 控制信号	输出
P4.2(端口功能)	液晶模块的 A0 控制信号	输出
P4.3(端口功能)	液晶模块的 RD 控制信号	输出
P4.4(端口功能)	液晶模块的 CS 控制信号	输出
P4.5(端口功能)	液晶模块的 RST 控制信号	输出
P4.6(端口功能	液晶模块的 DIR 控制信号	输出
P2.0-P2.7(双向端口功能)	液晶模块的 DB0-DB7	输入/输出

2.3 应用层软件编程

对于 LCM 的控制命令集,请参考控制芯片的技术规范,本文不再赘述。以下 是部分主要的子程序演示代码。

2.3.1 LCM 初始化

初始化 LCM 实现如下设置:

- 初始化 LCM 硬件,设置数据端口,命令端口,初始化控制线状态,硬件复位。
- 设置 LCM 工作模式
- 设置初始亮度参数
- 清除显示存储器内容

版本	草案
最后更新	2005. 8. 11
页号	7 of 10
文档号	

● 开显示

```
void InitLCM() {
 InitLCMDPhy();
                                                 //初始化 LCM 硬件
                                                 //液晶模块复位信号低
 LCDM_RST_LOW;
 LCDMdelay(4000);
                                                 //延迟 1ms
 LCDM_RST_HIGH;
                                                 //释放液晶模块复位信号
 LCDMdelay(1000);
                                                 //延迟等待复位信号稳定
 DisplayOff();
                                                 //关闭屏幕显示
 WrLCMComd (SCRN_NORMAL);
                                                 //正常显示模式,即不是反显字
 WrLCMComd(BIAS SET1);
                                                 //设置液晶模块偏压
 WrLCMComd (ADC_NORMAL) ;
                                                 //设置正常段驱动模式
 WrLCMComd(COM REVERS);
                                                //设置 COM 扫描方向从 COM63-COM0
 WrLCMComd(BOOST REG | BOOST ON | VREG ON | VFOL ON);
                                                //使用内部升压,稳压发生器
 LCDMdelay (4000);
                                                 //等待电路稳定
 WrLCMComd(0);
                                                 //配置升压参数比率为 2x, 3x, 4x
 WrLCMComd (EVOL MODE | 0x00):
                                                 //液晶模块亮度设置
 WrLCMComd(BRIGHTNESS);
                                                 //清除 DDRAM
 ClrScr();
 DisplayOn();
                                                 //开屏幕显示
```

2.3.2 清除屏幕

写整个 LCD 内部显示存储器的内容为 0x00,这样整个 LCD 显示空白的屏幕。这是一个通用程序,当 c=0x00 时,就是清屏共能。

2.4 LCM 硬件层编程

通过并行方式与 ST75650 通信时,需要判断 ST7565 状态标志。每次写 LCM 时,必须先读取 LCM 状态,如果 LCM 空闲则可以写入命令或者数据,否则需要等待,以便用户指令能够正确操控 LCM 的行为或者模式。

2.4.1 写 LCM 命令

根据 ST7565 内置指令集的规定,用户使用这个子程序写入相应的命令字到 ST7565 内部命令寄存器,以控制 LCM 的工作行为或者工作模式等。

版本	草案
最后更新	2005. 8. 11
页号	8 of 10
文档号	

```
void WrLCMComd(unsigned char cmd) {
  while(RdLCMStatus() & BUSY STAT);
                                 //读取 LCM 状态标志
                                 //选择 LCM 内部命令寄存器
  LCDM_COMD;
  CS ENABLE;
                                 //LCM 片选 (CS 信号线) 允许
  LCDM DIR WR;
                                 //DB0-DB7 内部总线缓冲器输入方式
                                 //LCM 写信号 (WR) 线低电平
  WR LOW;
                                 //切换 P2 端口为输出功能
  LCDM DPORT OUT;
  LCDM DAT OUT=cmd;
                                 //输出8位命令字到数据总线
                                 //LCM 写信号 (WR) 高电平
  WR HIGH:
  LCDM INIT STAT;
                                 //LCM 控制总线恢复到空闲状态
                                 //P2 口切换回输入功能
  LCDM_DPORT_IN
  2.4.2 写 LCM 数据
这个函数写数据到 ST7565 内部的 DDRAM, 即显示数据。
 void WrLCMData(unsigned char cdata) {
  while(RdLCMStatus() & BUSY STAT);
                                 //读取 LCM 状态标志
  LCDM DATA;
                                 //选择 LCM 内部 DDRAM
  CS ENABLE:
                                 //LCM 片选 (CS 信号线) 允许
                                 //DB0-DB7 内部总线缓冲器输入方式
  LCDM DIR WR;
                                 //LCM 写信号 (WR) 线低电平
  WR LOW;
  LCDM DPORT OUT;
                                 //切换 P2 端口为输出功能
                                 //输出8位命令字到数据总线
  LCDM DAT OUT=cmd;
                                 //LCM 写信号(WR)高电平
  WR HIGH;
  LCDM INIT STAT;
                                 //LCM 控制总线恢复到空闲状态
                                 //P2 口切换回输入功能
  LCDM DPORT IN
   2.4.3 读 LCM 状态字
   将一个命令字写到指定的控制芯片的命令寄存器中。
 unsigned char RdLCMStatus() {
 unsigned char lcmstatus;
                                   //LCM 片选 (CS) 允许
  CS ENABLE;
                                   //LCM 片选 (CS 信号线) 允许
  LCDM DIR RD;
                                   //DB0-DB7 内部总线缓冲器输出方式
  RD LOW:
                                   //LCM 读信号线 (RD) 低电平
  lcmstatus=LCDM_DAT_IN;
                                   //读出 LCM 状态字
                                   //LCM 读信号线 (RD) 高电平
  RD HIGH;
```

2.4.4 读 LCM 数据

LCDM INIT STAT;

return lcmstatus;

}

从 ST7565 内部的 DDRAM 的指定地址上读取一个字节数据(即读出显示内

//LCM 控制总线恢复到空闲状态

//返回 LCM 状态字

网页: http://www.430diy.com/ 电子邮件: xz y2k@sohu.com 电话: 0512-51621677

QQ:373506171 技术支持 QQ 群: 13872234

版本	草案
最后更新	2005. 8. 11
页号	9 of 10
文档号	

```
容)。注意: 在使用这个程序前,必须先好设置好读取地址。
```

```
unsigned char RdLCMData() {
 unsigned char backdata;
   LCDM_DATA;
                                        //选择 LCM 内部 DDRAM
   CS_ENABLE;
                                        //LCM 片选 (CS 信号线) 允许
   LCDM_DIR_RD;
                                        //DB0-DB7 内部总线缓冲器输出方式
   RD LOW;
                                        //LCM 读信号线(RD)高电平
 backdata=LCDM_DAT_IN;
                                        //读出 LCM DDRAM 数据
                                        //LCM 读信号线(RD)高电平
 RD_HIGH;
 LCDM_INIT_STAT;
                                        //LCM 控制总线恢复到空闲状态
 return backdata;
                                         //返回读出的 LCM 数据
 }
2.5 主代码
void main()
unsigned char row, column;
 WDTCTL=WDTPW+WDTHOLD;
 InitClock();
 InitLCM();
 WrLCMComd(SET_PAGE); //设置 0 页
 WrLCMComd(SET_COLUMN); //设置 0 列
 WrLCMData('w');
                        //在第 0 页第 0 列显示 "www.430diy.com"
 WrLCMData('w');
 WrLCMData('w');
 WrLCMData('.');
 WrLCMData('4');
 WrLCMData('3');
 WrLCMData('0');
 WrLCMData('d);
 WrLCMData('i');
 WrLCMData('y');
 WrLCMData('.');
 WrLCMData('c');
 WrLCMData('o');
 WrLCMData('m);
 while(1);
}
```

3 总结

ST7565 采用并行模式时,时序控制方式与传统的其他液晶模块基本类似,硬件方面由于 ST7565 可以 3.3v 供电,因此,省却了通常使用 5V 液晶模块所需的电平移位线路,加之,程控的亮度控制,使得系统更加方便简洁。ST7565 不失为一款性价比优良的 LCD 控制器。

版本	草案
最后更新	2005. 8. 11
页号	10 of 10
文档号	

4 参考文章

- 1. MSP430x13x, MSP430x14x, MSP430x141x MIXED SIGNAL MICROCONTROLLER, SLAS272F JULY 2000 REVISED JUNE 2004, TEXAS INSTRUMENT INC.
- 2. MSP430x1xx FAMILY USER'S GUIDE, SLAU049E, TEXAS INSTRUMENT INC.
- 3. EDB430A+, B 型用户手册 版本B
- 4. ST7565 65x132 Dot Matrix LCD Controller/Driver,
- 5. AT-GG12863A产品说明,深圳市华创信电子有限公司

WWW.430DIY.COM

2006-11-21