c ha er

Number Systems and Codes

igital systems are built from circuits that process binary digits—

Os and 1s—yet very few real-life problems are based on binary

numbers or any numbers at all. Thereforedigital system

designer must establish some correspondence between the bina-

ry digits processed by digital circuits and real-life numbers,
events, and conditions. The purpose of this chapter is to show you how
familiar numeric quantities can be represented and manipulated in a digital
system, and how nonnumeric data, events, and conditions also can be
represented.

The first nine sections describe binary number systems and show how
addition, subtraction, multiplication, and division are performed in these
systems. Sections 2.10-2.13 show how other things, such as decimal num-
bers, text characters, mechanical positions, and arbitrary conditions, can be
encoded using strings of binary digits.

Section 2.14 introduces*cubes,” which provide a way to visualize
the relationship between diffent bit strings. Tha&-cubes are especially
useful in the study of error-detecting codes in Section 2.15. We conclude the
chapter with an introduction to codes for transmitting and storing data one
bit at a time.

Copyright © 1999 by John F. Wakerly Copying Prohibited 21

22 Chapter 2 Number Systems and Codes

positional number
system

weight

base
radix

radix point

high-order digit
most significant digit
low-order digit

least significant digit

binary digit
bit
binary radix

2.1 Positional Number Systems

The traditional number system that we learned in school and use every day in
business is called@ositional number systern such a system, a number is rep-
resented by a string of digits aite eachigit position has an associatedight

The value of a number is a weighted sum of the digits, for example:

1734 = 11000+ 7-100 + 3:10+4-1

Each weight is a power of 10 corresponding to the digit's position. A decimal
point allows negative as well as positive powers of 10 to be used:

5185.68 = 5-1000 +1-100+8-10+5-1+6-0.1+8-0.01
In general, a numbé of the formd;d,.d_;d_, has the value
D = d;-10' +dy- 1P +d_;-10% + d_,- 1072

Here, 10 is called thigaseor radix of the number system. In a gaal pogional
number system, the radix may be any intege, and a digit in positionhas
weightr'. The general form of a number in such a system is

dy-10po- - dydy. dyd o - 0,

where there are digits to the left of the point amd digits to the right of the
point, called theadix point If the radix point is missing, it is assumed to be to
the right of the rightmost digit. The value of the number is the sum of each digit
multiplied by the corresponding power of the radix:

D = Ffol.cr

i=—n

Except for possible leading and trailizgroes, the representation of a
number in a positional number system is unique. (Obviously, 0185.6300 equals
185.63, and so on.) The leftmost digit in such a number is callddgherder
or most significant digjtthe rightmost is theow-orderor least significant digit

As we’'ll learn in Chapter 3, digital circuits have signals that are normally
in one of only two conditions—Ilow or high, charged or discharged, off or on.
The signals in these circuits are interpreted to reprdseaty digits (or bits)
that have one of two values, 0 and 1. Thushihary radixis normally used to
represent numbers in a digital system. The general form of a binary number is

Bp-1Dp-2- - D1bo. byb_p- - by

B = Dzbimz‘
i £

Copyright © 1999 by John F. Wakerly Copying Prohibited

and its value is

Section 2.2 Octal and Hexadecimal Numbers 23

In a binary number, the radix point is called tieary point When dealing with binary point
binary and other nondecimal numbers, we use a subscript to indicate the radix

of each number, unless the radix is clear from the context. Exampérsaoy

numbers and their decimal equivalents are given below.

1001% = 1-16+0-8+0-4+1-2+1-1 =39
10001 = 1-32+0-16+0-8+0-4+1.2+0-1 =34
101.00% = 1-4+0-2+1-1+0:0.5+0-0.25 + 1-0.125 = 5425

The leftmost bit of a binary number is called ttigh-orderor most significant MSB
bit (MSB) the rightmost is theow-orderor least significant bit (LSB) LSB

2.2 Octal and Hexadecimal Numbers

Radix 10 is important because we use it in everyday business, and radix 2 is
important because binary numbers can be processed directly by digital circuits.
Numbers in other radices are not often processed directly, but may be important
for documentation or other purposes. In particular, the radices 8 and 16 provide
convenienshorthand representations for multibit numbers in a digital system.

Theoctal number systemses radix 8, while theexadecimal number sys-octal number system
temuses radix 16. Table 2-1 shows the binary integers from 0 to 1111 and tleeitdecimal number
octal, decimal, and hexadecimal equivalents. The octal system needs 8 digitSysem
it uses digits 0—7 of the decimal system. The hexadecimal system needs 16 dig-
its, so it supplements decimal digits 0-9 with the lettess hexadecimal digits

The octal and hexadecimal number systems are useful for representings
multibit numbers because their radices are powers of 2. Since a string of three
bits can take on eightffiirent combindbns, it follows thatach 3-bit string can
be uniquely represented by one octal digit, according to the third and fourth col-
umns of Table 2-1. Likewise, a 4-bit string can be represented by one
hexadecimal digit according to the fifth and sixth columns of the table.

Thus, it is very easy to convert a binary number to octal. Starting atttinary to octal
binary point and working left, we simply separate the bits into groups of threenversion
and replace each group with theresponding octal digit:

100011001119 = 100 011 001 110= 4316
111011011101010Q1= 011 101 101 110 101 09 35565}

The procedure for binary to hexadecimal conversion is similar, except webirsgy to hexadecimal
groups of four bits: conversion

100011001119 = 1000 1100 1110= 8CE;q
111011011101010Q1= 00011101 1011 1010 109 1DBA9,

In these examples we have freely added zeroes on the left to make the total num-
ber of bits a multiple of 3 or 4 as required.

Copyright © 1999 by John F. Wakerly Copying Prohibited

24 Chapter 2 Number Systems and Codes

Table 2-1
Binary, decimal,
octal, and
hexadecimal
numbers.

octal or hexadecimal to
binary conversion

byte

3-Bit 4-Bit

Binary Decimal Octal String Hexadecimal String
0 0 0 000 0 0000
1 1 1 001 1 0001
10 2 2 010 2 0010
11 3 3 011 3 0011
100 4 4 100 4 0100
101 5 5 101 5 0101
110 6 6 110 6 0110
111 7 7 111 7 0111
1000 8 10 — 8 1000
1001 9 11 — 9 1001
1010 10 12 — A 1010
1011 11 13 — B 1011
1100 12 14 — C 1100
1101 13 15 — D 1101
1110 14 16 — E 1110
1111 15 17 — F 1111

If a binary number contains digits to the right of the binary point, we can
convert them to octal or hexadecimal by starting at the binary point and working
right. Both the left-hand and right-hand sides can be paddedzernties to get
multiples of three or four bits, as shown in the example below:

10.1011001014 = 010 . 101 100 101 1Q0= 2.5454
0010 . 1011 0010 1190= 2.B2C4

Converting in the reverse direction, from octal or hexadecimal to binary, is
very easy. We simply replace each octal or hexadecimal digit with the corre-
sponding 3- or 4-bit string, as shown below:

1357 = 001 011 101 111

2046.1% = 010 000 100 110.001 141
BEAD;g = 1011 1110 1010 1191
9F.46Gg = 1001 111.0100 0110 1180

The octal number system was quite popular 25 years ago because of certain
minicomputers that had their front-panel lights and switches arranged in groups
of three. However, the octal number system is not used much today, because of
the preponderance of machines that process IBytst It is difficult to extract
individual byte values in multibyte quantities in the octal representation; for

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.3 General Positional Number System Conversions 25

WHEN I'M 64 As you grow older, you'll find that the hexadecimal humber system is useful for

more than just computers. When | turned 40, | told friends that | had just turped 28
The “;¢” was whispered under my breath, of course. At age 50, I'll be only 32

People get all excited about decennial birthdays like 20, 30, 40, 50, ..., but you
should be able to convince your friends that the decimal system is of no fundamental
significance. More significant life changes occur around birthdays 2, 4, 8, 16, 32, and
64, when you add a most significant bit to your age. Why do you think the Beatles
sang “When I’'m sixtyfour?

example, what are the octal values of the fobit&ytes in the 32-bit number
with octal representation 12345670423

In the hexadecimal system, two digits represent an 8-bit byte redidis
represent am-byte word; each pair of digits constitutes exactly one byte. For
example, the 32-bit hexadecimal number 5678ABgEbnsists of four bytes
with values 564, 78,5, AB1¢, and CQg. In this context, a 4-bit hexadecimal digit
is sometimes calledrEbble; a 32-bit (4-byte) number has eight nibbles. Hexaibble
decimal numbers are often used to describe a computer’'s memory address space.
For example, a computer with 16-bit addresses might be described as having
read/write memory installed at addresses O-EEFdnd read-only memory at
addresses FOOO-FFRFMany computer programming languages use taéxp
“0x” to denote a hexadecimal number, for exam@ie&8FC0000. 0x prefix

2.3 General Positional Number System Conversions

In general, conversion between two radices cannot be done by simple substitu-
tions; arithmetic operations are required. In this section, we show how to convert
a number in any radix to radix 10 and vice versa, using radix-10 arithmetic.
In Section 2.1, we indicated that the value of a number in any radix is gixeiix-r to decimal
by the formula conversion

D = ‘fdiﬂi
i &=n

wherer is the radix of the number and there prdigits to the left of the radix
point andn to the right. Thus, the value of the nhumber can be found by convert-
ing each digit of the number to its radix-10 equivalent and expanding the
formula using radix-10 arithmetic. Some examples are given below:

ICE86 = 116+ 12-16 + 14-16 + 8-16 = 740Q,
F1A3;6 = 15.16 + 1-16 + 10-16 + 3-168 = 61859,
436. = 4.8+3.8+6-8+5-8 = 286.625,
132.3 = 1.#+3.4+2.#+3.41 = 30.75,

Copyright © 1999 by John F. Wakerly Copying Prohibited

26 Chapter 2 Number Systems and Codes

A shortcut for converting whole numbers to radix 10 is obtained by rewrit-
ing the expansion formula as follows:

D = ((((jp_1)r+dp_2)r+) ..F+d1).r+d0

That is, we start with a sum of 0; beginning with the leftmost digit, we multiply
the sum by and add the next digit to the sum, repeating until all digits have been
processed. For example, we can write

F1AC;s = (((15)-16 + 1-16 + 10)-16 + 12

decimal to radix-r Although this formula is not too exciting in itself, it forms the basis for a
conversion very convenient method of converting a decimal nunib&r a radix. Consider
what happens if we divide the formula bysince the parenthesized part of the
formula is evenly divisible by, the quotient will be

Q = (. (dp—l)r +dp_2).r + .. .)r +dl
and the remainder will be,. Thus,d, can be computed as the remainder of the
long division ofD by r. Furthermore, the quotie@ has the same form as the
original formula. Tlerefore, successive divasns byr will yield successive dig-

its of D from right to left, until all the digits db have been derived. Examples
are given below:

179+ 2=89remainder1 (LSB)

+2 =44 remainder 1
+2 =22 remainder 0
+2=11remainder O
+2=5remainder 1
+2 =2 remainder 1
+2=1remainder 0
+2=0remainder 1 (MSB)
179,,=1011001%

467+ 8=58 remainder 3 (least significant digit)
+8=7 remainder 2
+8=0remainder 7 (most significant digit)
467,0= 723

3417+ 16=213 remainder 9 (least significant digit)
+16= 13 remainder 5
+16=0remainder 13 (most significant digit)
341710 = D5916

Table 2-2 summarizes methods for converting among the most common radices.

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.3 General Positional Number System Conversions 27

l Table 2-2 Conversion methods for common radices.

Conversion Method Example
Binary to
Octal Substitution 1011101109% 10 111 011 004 = 273%
Hexadecimal Substitution 1011101190% 101 1101 1004 = 5D94
Decimal Summation 1011101100F 111024+ 0[b12+ 1 [P56+ 11128+ 154
+0[B2+1MM6+1B+0H+0@R+10 = 1497,
Octal to
Binary Substitution 1234 = 001 010 011 109
Hexadecimal Substitution 1234= 001 010 011 109= 0010 1001 1100= 29Cy
Decimal Summation 1234= 1[612+2[B4+3[B+40 = 668§,
Hexadecimal to
Binary Substitution CODE; = 1100 0000 1101 1110
Octal Substitution CODE; = 1100 0000 1101 1110= 1 100 000 011 011 130= 140334
Decimal Summation CODf = 124096+ 0 [(256+ 1316+ 1411 = 49374,
Decimal to
Binary Division 108,+ 2 = 54 remainder 0 (LSB)

+2 = 27 remainder 0
+2 = 13 remainder 1
+2 = 6 remainder 1
+2 = 3 remainder 0
+2 =1 remainder 1
+2 =0remainder1 (MSB)
108,,= 11011009

Octal Division 108,+ 8 = 13 remainder 4 (least significant digit)
+8 = 1 remainder 5
+8 = 0 remainder 1 (most significant digit)
108, = 154
Hexadecimal Division 108+ 16 = 6 remainder 12 (least significant digit)
+16 = 0 remainder 6 (most significant digit)

1089 = 6Cye

Copyright © 1999 by John F. Wakerly Copying Prohibited

28 Chapter 2 Number Systems and Codes

binary addition

binary subtraction

minuend
subtrahend

;ia;lg:; ailt-jiion and Cin or byy XY Gu S Bout d
subtraction table. 0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 0 1 0 1
0 1 1 1 0 0 0
1 0O O 0 1 1 1
1 0 1 1 0 1 0
1 1 0 1 0 0 0
1 1 1 1 1 1 1

2.4 Addition and Subtraction of Nondecimal Numbers

Addition and subtraction of nondecimal numbers by hand uses the same tech-
nique that we learned in grammar school for decimal numbers; the only catch is
that the addition and subtraction tables are different.

Table 2-3 is the addition and subtraction table for binary digits. To add two
binary numberX andY, we add together the least significant bits with an initial
carry ;) of 0, producing carrycg,,) and sums) bits according to the table. We
continue processing bits from right to left, adding the carry out of each column
into the next column’s sum.

Two examples of decimal additions and the corresponding binary additions
are shown in Figure 2-1, using a coloextbw to ndicate a carry of 1. The same
examples are repeated below along with two more, with the carries shown as a
bit stringC:

C 101111000 c 001011000
X 190 10111110 X 173 10101101
Y +141 + 10001101 Y + 44 + 00101100
X+Y 331 101001011 X+Y 217 11011001
C 011111110 C 000000000
X 127 01111111 X 170 10101010
Y +63 + 00111111 Y +85 + 01010101
X+Y 190 10111110 X+Y 255 11111111

Binary subtraction is performed similarly, using borrows, é@nd b,,)
instead of carries between steps, and producing a differerctelbit examples
of decimal subtractions and the corresponding binary subtractions are shown in
Figure 2-2. As in decimal sutatction, the binary minuend values in the columns
are modified when borrows occur, as shown by the colored arrows and bits. The

Copyright © 1999 by John F. Wakerly

Copying Prohibited

Section 2.4 Addition and Subtraction of Nondecimal Numbers 29
111 1 1 11
X 190 1 0[1]1]1]12 1 0 X 173 1 0|/10|1|1 0 1
Y +141 + 1 0/0/0/2|1 0 1 Y + 44 + 0 01 0/1/2 00
X+Y 33 101001011 X+Y 217 1101'100 1

Figure 2-1 Examples of decimal and corresponding binary additions.

examples from the figure are repeated below along with two more, this time
showing the borrows as a bit striBg

B 001111100 B 011011010
X 229 11100101 X 210 11010010
Y - 46 - 00101110 Y -109 - 01101101
X-Y 183 10110111 X-Y 101 01100101
B 010101010 B 000000000
X 170 10101010 X 221 11011101
Y - 85 - 01010101 Y - 76 - 01001100
X-Y 85 01010101 X-Y 145 10010001

A very common use of subtraction in computers is to compare two numberscéaparing numbers
example, if the operatiod — Y produces a borrow out of the most significant bit
position, therK is less thary; otherwise X is greater than or equalYoThe rela-
tionship between carries and borrow in adders and subtractors will be explored
in Section 5.10.
Addition and subtraction tables can be developed for octal and hexadeci-
mal digits, or any other desired radix. However, few computer engineers bother
to memorize these tables. If yoarely need to mapulate nondecimal numbers,

Must borrow 1, yielding ————
the new subtraction 10-1 =1 Ei gure 2.2
Examples of decimal
and corresponding

binary subtractions.

After the first borrow, the new
subtraction for this column is
0-1, so we must borrow again.

The borrow ripples through three columns
to reach a borrowable 1, i.e.,
100 = 011 (the modified bits)

+ 1 (the borrow)

010 l)llOlO

01010 0 110 010

minuend X 229 1 1/1/9/9/1/0 1 X 210 1/1/0 /Q/O 1/0

subtrahend Y - 46 - 00101110 Y -109 - 01101101
difference X-Y 183 10110111 X-Y 101 01100101

Copyright © 1999 by John F. Wakerly Copying Prohibited

30 Chapter 2 Number Systems and Codes

hexadecimal addition

signed-magnitude
system

sign bit

then it's easy enough on those occasions to convert them to decimal, calculate
results, and convert back. On the other hand, if you must perform calculations in

binary, octal, or hexadecimal frequently, then you should ask Santa for a pro-

grammer’s “hex calculator” from Texas Instruments or Casio.

If the calculator’s battery wears out, some mental shortcuts can be used to
facilitate nondecimal arithmetic. In general, each column addition (or subtrac-
tion) can be done by converting the column digits to decimal, adding in decimal,
and converting the result to corresponding sum @y digits in the nondeci-
mal radix. (A carry is produced whenever the column sum equals or exceeds the
radix.) Since the addition is done in decimal, we rely on our knowledge of the
decimal addition table; the only new thing that we need to learn is the conversion
from decimal to nondecimal digits and vice versa. The sequence of steps for
mentally adding two hexadecimal numbers is shown below:

C 1100 1 1 0 0
X 1 9B 916 1 9 11 9
Y +C7E®61 +12 7 14 6

X+Y E 19 F16 14 17 25 15

14 16+1 16+9 15
E 1 9 F

2.5 Representation of Negative Numbers

So far, we have dealt only with positive numbers, but there are many ways to rep-
resent negative numbers. In everyday business, we use the signed-magnitude
system, discussed next. However, most computers use one of the complement
number systems that we introduce later.

2.5.1 Signed-Magnitude Representation

In thesigned-magnitude systemnumber consists of a magnitude and a symbol
indicating whether the magnitude is positive or negative. Thus, we interpret dec-
imal numbers+98,-57,+123.5, and-13 in the usual way, and we also assume
that the sign is+" if no sign symbol is written. There are two possible represen-
tations of zero, +0” and “-0", but both have the same value.

The signed-magnitude system is applied to binary numbers by using an
extra bit position to represent the sign (sign bi). Traditionally, the most sig-
nificant bit (MSB) of a bit string is used as the sign bit (flus, 1= minus), and
the lower-order bits contain the nmamde. Thus, we can write several 8-bit
signed-magnitude integers and their decimal equivalents:

01010103 = +85;, 11010103 = -85,
01111113 = +127, 11111113 = —127,
00000009 = +0y, 10000009 = 0,

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.5 Representation of Negative Numbers 31

The signed-magnitude system has an equal number of positive and nega-
tive integers. Am-bit signed-magnitude integer lies within the ran¢2"™1-1)
through+(2"1-1), and there are two possible representations of zero.

Now suppose that we wanted to build a digital logic circuit that adds
signed-magnitude numbers. The circuit must examine the signs of the addeégidsi-magnitude
to determine what to do with the magnitudes. If the signs are the same, it nRgster
add the magnitudes and give the result the same sign. If the signs are different, it
must compare the magnitudes, subtract the smaller from the largegiyarhbe
result the sign of the larger. All of these “ifs,” “adds,” “subtracts,” and “com-
pares” translate into a lot of logic-circuit complexity. Adders for complement
number systems are much simpler, as we’'ll show next. Perhaps the one redeem-
ing feature of a signed-magnitude system is that, once we know how to build a
signed-magnitude adder, a signed-magnitude subtractor is almost trivialigiced-magnitude
build—it need only change the sign of the subtrahend and pass it along with $hetractor
minuend to an adder.

2.5.2 Complement Number Systems
While the signed-magnitude system negates a number by changing its sign, a
complement number systamegates a number by taking its complement asmplement number
defined by the system. Taking the complement is more difficult than changigigstem
the sign, but two numbers in a complement nhumber system can be added or sub-
tracted directly without the sign and magnitude checks required by the signed-
maghnitude system. We shall describe two complement number systems, called
the “radix complement” and the “diminished radix-complement.”

In any complement number system, we normally deal with a fixed number
of digits, sayn. (However, we can increase the number of digits by “sign exten-
sion” as shown in Exercise 2.23, anccdmse the number by truticey high-
order digits as shown in Exercise 2.24.) We further assume that the nadirds
that numbers have the form

D = dp g0y o - didp .

The radix point is on the right and so the number is an integer. If an operation
produces a result that requires more thaligits, we throw away the extra high-
order digit(s). If a numbdb is complemented twice, the resulOs

2.5.3 Radix-Complement Representation
In aradix-complement systeitne complement of amdigit number is obtained radix-complement
by subtacting it fromr". In the decimal number system, the radix complemeritystem
is called thel0’s complementSome examples using 4-digit decimal numbets’s complement
(and subtraction from 10,000) are shown in Table 2-4.

By definition, the radix complement of ardigit numberD is obtained by
subtacting it fromr". If D is between 1 and" - 1, this subtraction produces

Copyright © 1999 by John F. Wakerly Copying Prohibited

32 Chapter 2 Number Systems and Codes

Table 2-4 10’s 95’
Examples of 10’s and Number complement complement
9s’ complements.
1849 8151 8150
2067 7933 7932
100 9900 9899
7 9993 9992
8151 1849 1848
0 10000 (= 0) 9999

another number between 1 arid- 1. If D is 0, the result of the sulttion isr",

which has the form 100100, where there are a totalmf 1 digits. We throw

away the extra high-order digit and get the result 0. Thus, there is only one rep-

resentation of zero in a radix-complement system.

It seems from the definition that a subtraction operation is needed to com-
computing the radix pute the radix complement &f. However, this subtraction can be avoided by

complement rewritingr"as ("-1)+1andr"-D as (("-1)- D) + 1. The number" -1

has the forrmm O 1Omm wherem =r — 1 and there area m's. For example,

10,000 equals 9,9991. If we define the complement of a didito ber — 1 —d,

then ¢" - 1) - D is obtained by complementing the digitstnfTherefore, the

radix complement of a numbe@ris obtained by complementing the individual

Table 2-5

“n Complement
Digit complements.

Digit Binary Octal Decimal Hexadecimal

0 1 7 9 F
1 0 6 8 E
2 - 5 7 D
3 - 4 6 C
4 - 3 5 B
5 - 2 4 A
6 - 1 3 9
7 - 0 2 8
8 - - 1 7
9 - " 0 6
A - - - 5
B _ - - 4
C - > A 3
D - - L 2
E - r - 1
F - - - 0

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.5 Representation of Negative Numbers 33

digits of D and adding 1. For example, the 10’s complement of 1849 is8150

or 8151. You should confirm that this trick also works for the other 10's-comple-
ment examples above. Table 2-5 lists the digit complements for binary, octal,
decimal, and hexadecimal numbers.

2.5.4 Two’s-Complement Representation

For binary numbers, the radix complement is calledwhes complementThe two’s complement
MSB of a number in this system serves as the sign bit; a number is negative if

and only if its MSB is 1. The decimal equivalent for a two’s-complement binary

number is computed the same way as for an unsigned number, except that the

weight of the MSB is-2"! instead of+2". The range of representable numweight of MSB
bers is—(2"1) through+(2" -1). Some 8-bit examples are shown below:

17,0 = 00010002 -99,, = 1001110%
O complement bits O complement bits
11101110 01100010
+1 +1
11101112 = -17; 01100012 = 99,,
119, = 01110111 -127;0 = 10000001
O complement bits O complement bits
10001000 01111110
+1 +1
10001002 = -119, 01111112 = 127,
0,0 = 00000008@ -128,5 = 10000000
O complement bits O complement bits
11111111 01111111
+1 +1
1 00000008 = 04 10000000 = -128;,

A carryout of the MSB position occurs in one case, as shown in color above. As
in all two’s-complement operations, this bit is ignored and only the low-order
bits of the result are used.
In the two’s-complement number system, zero is considered positive
because its sign bit is 0. Since two’s complement has only one representation of
zero, we end up with one extra negative numi@f1), that doesn’t have a pos-extra negative number
itive counterpart.
We can convert an-bit two's-complement numbetinto anm-bit one, but
some care is needed nif> n, we must appenih— n copies ofX’s sign bit to the
left of X (see Exercise 2.23). That is, we pad a positive number with Os and a
negative onavith 1s; this is callegdign extensionlf m<n, we discardX’s n—m sign extension

Copyright © 1999 by John F. Wakerly Copying Prohibited

34 Chapter 2 Number Systems and Codes

diminished radix-
complement system

9s’ complement

ones’ complement

leftmost bits; however, the result is valid only if all of the discarded bits are the
same as the sign bit of the result (see Exercise 2.24).

Most computers and other digital systems use the two’'s-complement sys-
tem to represent negative numbers. However, for completeness, we’ll also
describe the diminished radix-complement and ones’-complement systems.

*2.5.5 Diminished Radix-Complement Representation

In adiminished radix-complement systahe complement of amdigit number

D is obtained by subtracting it froni-1. This can be accomplished by comple-
menting the individual digits dp, withoutadding 1 as in the radix-complement
system. In decimal, this is called tBg’ complementsome examples are given
in the last column of Table 2-4 on page 32.

*2.5.6 Ones’-Complement Representation

The diminished radix-complement system for binary numbers is calletése
complementAs in two’s complement, the most significant bit is the sign, 0 if
postive and 1 if negativeThus tlere are two represetians of zero, positive

zero (OOIIDO) and negative zero (III11). Positive number representations
are the same for both ones’ and two’s complements. However, negative number
representations differ by 1. A weight 62" - 1), rather thar2"1, is given

to the most significant bit when computing the decimal equivalent of a ones’-
complement number. The range of representable numbe(&'is — 1) through

+(2"1 - 1). Some 8-bit numbers and their ones’ complements are shown below:

17,0 = 0001000% -99,, = 10011109
O O
11101119 = —17y9 01100013 = 9910
1190 = 01110113 -127,, = 10000009
O O
10001009 = —119 01111113 = 1273

010 = 00000009 (positive zerc)

0
11111113% = 049(negative zero)

The main advantages of the ones’-complement system are its symmetry
and the ease of complementation. However, the adder design for ones’-
complement numbers is somewhat trickier than a two’s-complement adder (see
Exercise 7.67). Also, zero-detecting circuits in a ones’-complement system

* Throughout this bookoptional sectionsire marked with an asterisk.

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.6 Two’s-Complement Addition and Subtraction 35

either must check for both representations of zero, or must always convert
1101711 to OQIIDO.

*2.5.7 Excess Representations
Yes, the number of different systems for representingtivegaumberss exces-
sive, but there’s just one more for us to coverexoess-B representatipan excessB representation
m-bit string whose unsigned integer valueMs(0 < M < 2™ represents the
signed integeM - B, whereB is called thébias of the number system. bias
For example, aexcess2™ ! systenrepresents any numbXin the range exces2™ ! system
-2m1 through+2™1 - 1 by them-bit binary representation o+ 2™ (which
is always nonnegative and less thd¥).2T'he range of this representation is
exactly the same as thatrofbit two’s-complement numbers. In fact, the repre-
sentations of any number in the two systems are identical except for the sign bits,
which are always opposite. (Note that this is true only when the bi&sli§ 2
The most common use of excess representations is in floating-point num-
ber systems (see References).

2.6 Two’'s-Complement Addition and Subtraction

2.6.1 Addition Rules

A table of decimal numbers and their equivalents in different number systems,
Table 2-6, reveals why the two’s complement is prefi for arithmetic opera-

tions. If we start with 1000(-8,¢) and count up, we see that each successive
two’'s-complement number all the way to 03117, can be obtained by add-

ing 1 to the previous one, ignoring acgrries beyond the fourthit position.

The same cannot be said of signed-magnitude and ones’-complement numbers.
Because ordinary addition is just an extension of counting, two’s-compleme&at-complement
numbers can thus be added by ordinary binary addition, ignoringaarigsc ~ addition
beyond the MSB. The result will always be the correct sum as long as the range

of the number system is not exceeded. Some examples of decimal addition and
the corresponding 4-bit two’s-complement additions confirm this:

+3 0011 -2 1110
+ +4 + 0100 + -6 + 1010
+7 0111 -8 11000
+6 0110 +4 0100
+ -3 + 1101 + -7 + 1001
+3 10011 -3 1101

Copyright © 1999 by John F. Wakerly Copying Prohibited

36 Chapter 2 Number Systems and Codes

l Table 2-6 Decimal and 4-bit numbers.

Two's Ones’ Signed Excess
Decimal Complement Complement Magnitude an-1
-8 1000 — — 0000
-7 1001 1000 1111 0001
-6 1010 1001 1110 0010
-5 1011 1010 1101 0011
-4 1100 1011 1100 0100
-3 1101 1100 1011 0101
-2 1110 1101 1010 0110
-1 1111 1110 1001 0111
0 0000 1111 or 0000 1000 or 0000 1000
1 0001 0001 0001 1001
2 0010 0010 0010 1010
3 0011 0011 0011 1011
4 0100 0100 0100 1100
5 0101 0101 0101 1101
6 0110 0110 0110 1110
7 0111 0111 0111 1111

2.6.2 A Graphical View

Another way to view the two’s-complement system uses the 4-bit “counter”
shown in Figure 2-3. Here we have shown the numbers in a circular or
“modular” representation. The operation of this counter very closely mimics that
of a real up/down counter circuit, which we’ll study in Section 8.4. Starting

0000

Figure 2-3

A modular counting
representation of 4-bit
two’s-complement 1101
numbers.

Addition of
positive numbers

Subtraction of

positive numbers 1100

1011

1001 1000 0111

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.6 Two’s-Complement Addition and Subtraction

with the arrow pointing to any number, we can agdudto that number by
counting um times, that is, by moving the arrawpositions clockwise. Itis also
evident that we can subtratfrom a number by counting dowrtimes, that is,
by moving thearrown positions counterclockwise. Of course, these operations
give correct results only ifis small enough that we don'’t cross the discontinuity
between-8 and+7.

What is most interesting is that we can also subtrést add—-n) by mov-
ing the arrow 16- n positions clockwise. Notice that the quantity-18is what
we defined to be the 4-bit two's complemennpthat is, the two’s-complement
representation ofn. This graphically supports our earlier claim that a negative
number in two’s-complement representation may be added to another number
simply by adding the 4-bit representations using ordinary binary addition. Add-
ing a number in Figure 2-3 is equivalent to moving the arrowreesponding
number of positions clockwise.

2.6.3 Overflow

If an addition operation produces a result that exceeds the range of the number
system,overflow is said to occur. In the modular counting representation aekrflow
Figure 2-3, overflow occurs during addition of positive numbers when we count
past+7. Addition of two numbers with different signs can never produce over-
flow, but addition of two numbers of like sign can, as shown by the following
examples:

-3 1101 +5 0101

+ -6 + 1010 + +6 + 0110
-9 10111 = +7 +11 1011= -5
-8 1000 +7 0111

+ -8 + 1000 + +7 + 0111

-16 10000 = +0 +14 1110= -2

Fortunately, there is a simple rule for detecting overflow in addition: Awverflow rules
addition overflows if the signs of the addends are the same and the sign of the
sum is different from the addends’ sign. The overflow rule is sometimes stated in
terms of carries generated during the addition operation: An addition overflows
if the carry bits;, into andc,,;out of the sign position are different. Close exam-
ination of Table 2-3 on page 28 shows that the two rules are equivalent—there
are only two cases wheeg, # c,,,, and these are the only two caseerel =y
and the sum bit is different.

2.6.4 Subtraction Rules

Two’'s-complement numbers may be subtracted as if they were ordimans-complement
unsigned binary numbers, and appropriate rules for detecting overflow maysbétraction
formulated. However, most subtraction circuits for two’'s-complement numbers

Copyright © 1999 by John F. Wakerly Copying Prohibited

38

Chapter 2 Number Systems and Codes

do not perform subtraction directly. Rather, they negate the subtrahend by taking
its two’s complement, and then add it to the minuend using the normal rules for
addition.

Negating the subtrahend and adding the minuend can be accomplished
with only one addition operation as follows: Perform a bit-by-bit complement of
the subtrahend and add the complemented subtrahend to the minuend with an
initial carry ;) of 1 instead of 0. Examples are given below:

1—c, 1—c,
+4 0100 0100 +3 0011 0011
- +3 -0011 + 1100 - +4 - 0100 + 1011
+3 10001 -1 1111
1— ¢, 1— ¢,
+3 0011 0011 -3 1101 1101
- -4 -1100 + 0011 - -4 -1100 + 0011
+7 0111 +1 10001

Overflow in subtraction can be detected by exangjthe signs of the min-
uend and theomplementedubtrahend, using the same rule as in addition. Or,
using the technique in the preceding examples, the carries into and out of the
sign position can be observed and overflow detected irrespective of the signs of
inputs and output, again using the same rule as in addition.

An attempt to negate the “extra” negative number results in overflow
according to the rules above, when we add 1 in the complementation process:

-(-8) =-1000= 0111
+ 0001
1000 =-8

However, this number can still be used in additions and subtractions as long as
the final result does not exceed the number range:

1 I Cin
+4 0100 -3 1101 1101
+ -8 + 1000 - -8 -1000 + 0111
-4 1100 +5 10101

2.6.5 Two’'s-Complement and Unsigned Binary Numbers

Since two’s-complement numbers are added and subtracted by the same basic
binary addition and subtraction algorithms as unsigned numbers of the same

length, a computer or other digital system can use the same adder circuit to han-
dle numbers of both types. However, the results must be interpreted differently

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.6 Two’s-Complement Addition and Subtraction 39

depending on whether the system is dealing with signed numbers—&.gsigned vs. unsigned
through+7) or unsigned numbers (e.g., 0 through 15). numbers

We introduced a graphical representation of the 4-bit two’s-complement
system in Figure 2-3. We can relabel this figure as shown in Figure 2-4 to obtain
a representation of the 4-bit unsigned numbers. The binary combinations occupy
the same positions on the wheel, and a number is still added by moving the arrow
a corresponding number of positions clockwise, andraatetd by mwing the
arrow counterclockwise.

An addition operation can be seen to exceed the range of the 4-bit unsigned
number system in Figure 2-4 if therow moves cldawise through the disconti-
nuity between 0 and 15. In this caseary out of the most significant bit carry
position is said to occur.

Likewise a subtraction operation exceeds the range of the number system if
the arrow moves counterclockwise through the discontinuity. In this dase a
row out of the most significant bit position is said to occur. borrow

From Figure 2-4 it is also evident that we may subtract an unsigned num-
ber n by countingclockwisel6 — n positions. This is equivalent sdding the
4-bit two’s-complement oh. The subtraction produces a borrow if the corre-
sponding addition of the two’s complemeiates noproduce aarry.

In summary, in unsigned addition the carry or borrow in the most signifi-
cant bit position indicates an out-of-range result. In signed, two’s-complement
addition the overflow condition defined earlier indicates an out-of-range result.
The carry from the wst significant bit position is irrelevant in signed addition in
the sense that overflow may or nragt occur independently of whether or not a
carry occurs.

1111 0001

1101 0011 Figure 2-4 _
A modular counting
. N representation of 4-bit
Subtraction 1100 0100 Addition unsigned numbers.
1011 0101

Copyright © 1999 by John F. Wakerly Copying Prohibited

40 Chapter 2 Number Systems and Codes

ones’-complement
addition

end-around carry

ones’-complement
subtraction

*2.7 Ones’-Complement Addition and Subtraction

Another look at Table 2-6 helps to explain the rule for adding' eroesplement
numbers. If we start at 1090Q-7,¢ and count up, we obtain each successive
ones’-complement number by adding 1 to the previousexoeptat the transi-
tion from 1113 (negative 0) to 00Q1(+1,,). To maintain the proper count, we
must add 2 instead of 1 whenever we count past,1 This suggests a technique
for adding ones’-complement numbers: Perform a standard binary addition, but
add an extra 1 whenever we count past 3111

Counting past 11%l1during an addition can be detected by observing the
carry out of the sigposition. Thus, the rule for adding oireemplement num-
bers can be stated quite simply:

» Perform a standard binary addition; if there is a carry out of the sign posi-
tion, add 1 to the result.

This rule is often callednd-around carryExamples of ones’-complement addi-
tion are given below; the lastrde include an end-around carry:

+3 0011 +4 0100 +5 0101
+ +4 + 0100 + -7 + 1000 + -5 + 1010
+7 0111 -3 1100 -0 1111
-2 1101 +6 0110 -0 1111
+ -5 + 1010 + -3 + 1100 + -0 + 1111
-7 10111 +3 10010 -0 11110
+ 1 + 1 + 1

1000 0011 1111

Following the two-step addition rule above, the addition of a number and
its ones’ complement produces negative 0. In fact, an addition operation using
this rule can never produce positive 0 unless both addends are positive 0.

As with two’s complement, the easiest way to do ones’-complement sub-
traction is to complement the subtrahend and add. Overflow rules for ones’-
complement addition and subtraction are the same as for two’s complement.

Table 2-7 summarizes the rules that we presented in this and previous sec-
tions for negation, addition, and subtraction in binary number systems.

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.8 Binary Multiplication 41

l Table 2-7 Summary of addition and subtraction rules for binary numbers.

Number System Addition Rules Negation Rules Subtraction Rules
Unsigned Add the numbers. Result is outbt applicable Subtract the subtrahend
range if a carry out of the MSB from the minuend. Resultis
occurs. out of range if a borrow out

Signed magnitude

Two’s complement

Ones’ complement

of the MSB occurs.
(same sign) Add the magnitudebange the number’s Change the sign bit of the

overflow occurs if a carry out ofsign bit. subtrahend and proceed as
MSB occurs; result has the same in addition.
sign.

(opposite sign) Subtract the
smaller magnitude from the larg-
er; overflow is impossible; result
has the sign of the larger.

Add, ignoring any carry out of Complement all bits of Complement all bits of the
the MSB. Overflow occurs if thethe number; add 1 to theubtrahend and add to the

carries into and out of MSB areresult. minuend with an initial
different. carry of 1.

Add; if there is a carry out of t@®@mplement all bits of Complement all bits of the
MSB, add 1 to the result. Over-the number. subtrahend and proceed as
flow if carries into and out of in addition.

MSB are different.

*2.8 Binary Multiplication

In grammar school we learned to multiply by adding a list of shifted multipliift-and-add
cands computed according to the digits of the multiplier. The same method g&itiplication
be used to obtain the product of two unsigned binary numbers. Formingutis@ned binary
shifted multiplicands is trivial in binary multiplication, since the only possibléultiplication
values of the multiplier digits are 0 and 1. An example is shown below:

11

x 13

33
11

143

1011 multiplicand
x 1101 multiplier

1011
000C
1011
1011

10001111 product

shifted multiplicands

Copyright © 1999 by John F. Wakerly Copying Prohibited

42 Chapter 2

partial product

Number Systems and Codes

Instead of listing all the shifted multiplicands and then adding, in a digital
system it is more convenient to add each shifted multiplicand as it is created to a
partial product Applying this technique to the previous example, four additions

and partial products are used to multiply 4-bit numbers:

11 1011 multiplicand
x 13 x 1101 multiplier
0000 partial product

1011
01011
0000

001011

shifted multiplicand
partial product
shifted multiplicand
partial product

signed multiplication

two’s-complement
multiplication

1011 shifted multiplicand

0110111 partial product
10111 shifted multiplicand
10001111 product

In general, when we multiply arbit number by am-bit number, the resulting
product requires at most + m bits to express. The shift-and-add algorithm
requiresm partial products and additions to obtain the result, but the first addi-
tion is trivial, since the first partial product is zero. Although the first partial
product has only significant bits, after each addition step the partial product
gains one more significant bit, since each addition may produce a carry. At the
same time, each step yields one more partial product bit, starting with the right-
most and working toward the left, that does not change. The shift-and-add
algorithm can be gxrformed by aligital circuit that includes a shift register, an
adder, and control logic, as shown in Section 8.7.2.

Multiplication of signed numbers can be accomplished using unsigned
multiplication and the usual grammar school rules: Perform an unsigned multi-
plication of the magnitudes and make the product positive if the operands had
the same sign, negative if they haffatent $gns. This is very convenient in
signed-magnitude systems, since the sign and magratedsparate.

In the two’s-complement system, obtaining the magnitude of a negative
number and negating the unsigned produenontrivial operations. This leads
us to seek a more efficient way of performing two’s-complement multiplication,
described next.

Conceptually, unsigned multiplication is accomplished by a sequence of
unsigned additions of the shifted multiplicands; at each step, the shift of the mul-
tiplicand corresponds to the weight of the multiplier bit. The bits in a two’s-
complement number have the same weights as in an unsigned number, except
for the MSB, which has a neijge weight (see Section 2.5.4). Thus, we can per-
form two’'s-complement multiplication by a sequence of two’s-complement
additions of shifted multiplicands, except for the last step, in which the shifted

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.9 Binary Division

multiplicand corresponding to the MSB of the multiplier must be negated before
it is added to the partial product. Our previous example is repeated below, this
time interpreting the multiplier and multiplicand as two’s-complement numbers:

-5 1011
x =3 X 1101
00000
11011
111011
00000
1111011
11011
11100111
0010111
00001111

multiplicand
multiplier

partial product
shifted multiplicand

partial product
shifted multiplicand

partial product
shifted multiplicand

partial product
shifted and negated multiplicand

product

Handling the MSBs is a little tricky because we gain one significant bit at each
step and we are working with signed numbers. Therefore, beddiagaeach

shifted multiplicand an&-bit partial

product, we change themkite- 1 signifi-

cant bits by sign extension, as shown in color above. Each resulting sum has
k + 1 bits; any carry out of the MSB of tlker 1-bit sum is ignored.

*2.9 Binary Division

The simplest binary division algorithm is based on the shift-andeatbhethod shift-and-subtract

that we learned in grammar school. Table 2-8 gives examples of this methoddigision

unsigned decimal and binary numbers. In both cases, we mentally companentfigned division

19 10011
11)217 1011)11011001
11 1011
107 0101
99 000C
8 1010
000C
10100
1011
10011
1011
1000

guotient Table 2-8
dividend Example of
long division.

shifted divisor

reduced dividend
shifted divisor

reduced dividend
shifted divisor

reduced dividend
shifted divisor

reduced dividend
shifted divisor

remainder

Copyright © 1999 by John F. Wakerly

Copying Prohibited

43

44 Chapter 2 Number Systems and Codes

division overflow

signed division

code
code word

binary-coded decimal
(BCD)

reduced dividend with multiples of the divisor to determine which multiple of
the shifted divisor to subtract. In the decimal case, we first pick 11 as the greatest
multiple of 11 less than 21, and then pick 99 as the greatest multiple less than
107. In the binary case, the choice is somewhat simpler, since the only two
choices are zero and the divisor itself.

Division methods for binary numbers are somewhat complementary to
binary multiplication methods. A typical division algorithm accepts-em-bit
dividend and am-bit divisor, and produces am-bit quotient and am-bit
remainder. A divisioroverflowsif the divisor is zero or the quotient would take
more tharm bits to express. In most computer division circuits,m.

Division of signed numbers can be accomplished using unsigned division
and the usual grammar school rules: Perform an unsigned division of the magni-
tudes and make the quotient fivs if the operads had the same sign, negative
if they had different signs. The remainder should be given the same sign as the
dividend. As in multiplication, there are special techniques for performing divi-
sion directly on two's-complement numbers; these techniques are often
implemented in computer division circuits (see References).

2.10 Binary Codes for Decimal Numbers

Even though binary numbers are the most appropriate for the internal computa-
tions of a digital system, most people still prefer to deal with decimal numbers.
As a result, the external interfaces of a digital system may read or display deci-
mal numbers, and some digital devices actually process decimal numbers
directly.

The human need to represent decimal humbers doesn’t change the basic
nature of digital electronic circuits—they still process signals that take on one of
only two states that we call 0 and 1.eféfore, a decimal number is represented
in a digital system by a string of bits, wher#fatient combintions of bit values
in the string represent different decimal numbers. For example, if we use a 4-bit
string to represent a decimal number, we might assign bit combination 0000 to
decimal digit 0, 0001 to 1, 0010 to 2, and so on.

A set ofn-bit strings in which dferent bit stngs represent fferent num-
bers or other things is calleccade A particular combination af bit-values is
called acode word As we’'ll see in the examples of decimal codes in this section,
there may or may not be an arithmetic relationship between the bit values in a
code word and the thing that it represents. Furthermore, a code thathises
strings need not contaiff 2alid code words.

At least four bits are needed to represent the ten decimal digéee @le
billions and billions of different ways to choose ten 4-bit code words, but some
of the more common decimal codes are listed in Table 2-9.

Perhaps the most “natural” decimal codéirsary-coded decimal (BCD)
which encodes the digits 0 through 9 by their 4-bit unsigned binary representa-

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.10 Binary Codes for Decimal Numbers
l Table 2-9 Decimal codes.
Decimal digit BCD (8421) 2421 Excess-3 Biquinary 1-out-of-10
0 0000 0000 0011 0100001 1000000000
1 0001 0001 0100 0100010 0100000000
2 0010 0010 0101 0100100 0010000000
3 0011 0011 0110 0101000 0001000000
4 0100 0100 0111 0110000 0000100000
5 0101 1011 1000 1000001 0000010000
6 0110 1100 1001 1000010 0000001000
7 0111 1101 1010 1000100 0000000100
8 1000 1110 1011 1001000 0000000010
9 1001 1111 1100 1010000 0000000001
Unused code words
1010 0101 0000 0000000 0000000000
1011 0110 0001 0000001 0000000011
1100 0111 0010 0000010 0000000101
1101 1000 1101 0000011 0000000110
1110 1001 1110 0000101 0000000111
1111 1010 1111 11 11

tions, 0000 through 1001. The code words 1010 through 1111 are not used.
Conversions between BCD and decimal representations are trivial, a direct sub-
stitution of four bits for each decimal digit. Some computer programs place two
BCD digits in one 8-bit byte ipacked-BCD representatipthus, one byte may packed-BCD
represent the values from 0 to 99 as opposed to 0 to 255 for a normal unsignéei@esentation
bit binary number. BCD numbers with any desired number of digits may be
obtained by using one byte for each two digits.

As with binary numbers, there are many possible representations of nega-
tive BCD numbers. Signed BCD numbers have one extra digit position for the

BINOMIAL
COEFFICIENTS

45

The number of different ways to choasetems from a set 011 items is given by

a binomial coefﬂmentdenoted[n% whose value +s—————-———
different ways to cﬁnoose 1(5“c?ut of 16 4-bit ¢

decimal code, there a

words and 10! ways to assign each different choice to the 10 digits. So ther
(10! or 29,059,430,400 different 4-bit decimal codes.

10! EB'

. For a 4-b

t
ode
e are

Copyright © 1999 by John F. Wakerly

Copying Prohibited

46 Chapter 2 Number Systems and Codes

BCD addition

weighted code

8421 code
2421 code

self-complementing
code

excess-3 code

biquinary code

sign. Both the signed-magnitude and 10’s-complement representations are pop-
ular. In signed-magnitude BCD, the encoding of the sign bit string is arbitrary; in
10’s-complement, 0000 indicates plus and 1001 indicates minus.

Addition of BCD digits is similar to adding 4-bit unsigned binary numbers,
except that a correction must be made if a result exceeds 1001. The result is cor-
rected by adding 6; examples are shown below:

5 0101 4 0100
+ 9 + 1001 + 5 + 0101
14 1110 9 1001
+ 0110 — correction
10+44 10100
8 1000 9 1001
+ 8 + 1000 +9 + 1001
-16 10000 18 10010
+ 0110 — correction + 0110 — correction
10+6 10110 168 11000

Notice that the addition of two BCD digits produces a carry into the next digit
position if either the initial binary addition or the pection factor addition pro-
duces a carry. Many cqmters perform packed-BCD arithmetic using special
instructions that handle thary corretion automatically.

Binary-coded decimal iswaeighted codéecause each decimal digit can
be obtained from its code word by assigning a fixed weight to each code-word
bit. The weights for the BCD bits are 8, 4, 2, and 1, and for this reason the code
is sometimes called tH#421 code Another set of weights results in tB421
code shown in Table 2-9. This code has the advantage that #elfs
complementingthat is, the code word for the 9s’ complement of any digit may
be obtained by complementing the individual bits of the digit's code word.

Another self-complementing code shown in Table 2-9 ie)oess-3 code
Although this code is not weighted, it has an arithmetic relationship with the
BCD code—the code word for each decimal digit is the corresponding BCD
code word plus 0031 Because the code words follow a standard binary count-
ing sequence, standard binary counters can easily be made to count in excess-3
code, as we'll show in Figure 8-37 on page 600.

Decimal codes can have more than four bits; for exampleithenary
codein Table 2-9 uses seven. The first two bits in a code word indicate whether
the number is in the range 0—4 or 5-9, and the last five bits indicate which of the
five numbers in the selected range is represented.

One potential advantage of using more than the minimum number of bits in
a code is an error-detecting property. In the biquinary code, if any one bit in a
code word is accidentally changed to the opposite value, the resulting code word

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.11 Gray Code a7

does not represent a decimal digit and canettore be flagged as an error. Out
of 128 possible 7-bit code words, only 10 are valid and recognized as decimal
digits; the rest can be flagged as errors if they appeatr.
A 1-out-of-10 codsuch as the one shown in the last column of Table 2-9.isut-of-10 code
the sparsest encoding for decimal digits, using 10 out of 1024 possible 10-bit
code words.

2.11 Gray Code

In electromechanical applications of digital systems—such as machine tools,
automotive brakingsystems, and copiers—it is sometimes necessary for an
input sensor to produce a digital value that indicates a mechanical position. For
example, Figure 2-5 is a conceptual sketch of an encoding disk and a set of con-
tacts that produce one of eight 3-bit binary-coded values depending on the
rotational position of the disk. The dark areas of the disk are connected to a sig-
nal source corgponding to logic 1, and the lighteas are umnnected, which

the contacts interpret as logic O.

The encoder in Figure 2-5 has a problem when the disk is positioned at cer-
tain boundaries between the regions. For example, consider the boundary
between the 001 and 010 regions of the disk; two of the encoded bits change
here. What value will the encoder produce if the disk is positioned right on the
theoretical boundary? Since we're on the border, both 001 and 010 are accept-
able. However, because the mechanical assembly isenfetich thetwo right-
hand contacts may both touch a “1” region, giving an incorrect reading of 011.
Likewise, a reading of 000 is possible. In general, this sort of problem can occur
at any boundary wdre more than onkit changes. The worst problems occur
when all three bits are changing, as at the 000-111 and 011-100 boundaries.

The encoding-disk problem can be solved by devising a digital code in
which only one bit changes between each pair of successive code words. Such a
code is called &ray code a 3-bit Gray code is listed in Table 2-10. We've red&ray code

111 000 .
Figure 2-5
A mechanical encoding
disk using a 3-bit binary
110 001 code.
N o
]! olo]1
101 010
100 011

Copyright © 1999 by John F. Wakerly Copying Prohibited

48 Chapter 2 Number Systems and Codes

Table 2 i 10 \ Decimal Binary Gray

A comparison of 3-bit number code code

binary code and

Gray code. 0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

signed the encoding disk using this code as shown in Figure 2-6. Only one bit of
the new disk changes at each border, so borderline readings give us a value on
one side or the other of the border.
There are two convenient ways to construct a Gray code with any desired
number of bits. The first method is based onfétoe that Gray code israflected
reflected code code it can be defined (and constructed) recursively using the following rules:

1. A 1-bit Gray code has two code words, 0 and 1.

2. The first 2' code words of an+1-bit Gray code equal the code words of
ann-bit Gray code, written in order with a leading 0 appended.

3. The last 2 code words of an+1-bit Gray code equal the code words of an
n-bit Gray code, but written in reverse order with a leading 1 appended.

If we draw a line between rows 3 and 4 of Table 2-10, we can see that rules 2
and 3 are true for the 3-bit Gray code. Of course, to construebdrGray code

for an arbitrary value af with this method, we must also construct a Gray code
of each length smaller tham

Figure 2-6 100 000
A mechanical encoding
disk using a 3-bit Gray
code. 101 001
AR =—
! olo|1
111 011
110 010

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.12 Character Codes

The second method allows us to deriverabit Gray-code code word
directly from the correspondingbit binary code word:

1. The bits of am-bit binary or Gray-code code word are numbered from
right to left, from O tan - 1.

2. Biti of a Gray-code code word is O if bitandi + 1 of the corresponding
binary code word are the same, elsd Etl. (When + 1 =n, bit n of the
binary code word is considered to be 0.)

Again, inspection of Table 2-10 shows that this is true for the 3-bit Gray code.

*2.12 Character Codes

As we showed in the preceding section, a string of bits need not represent a num-
ber, and in fact mst of the information processed by computers is nonnumeric.
The most common type of nonnumeric datéeis; strings of characters fromtext
some character set. Each character is represented in the computer by a bit string
according to an established convention.

The most commonly used character codeS€I11 (pronounceddASS key ASCII
the American Standard Code for Information Interchange. ASCII represents
each charactewith a 7-bit string, yielding a total of 128 different characters
shown in Table 2-11. The code contains the uppercase and lowercase alphabet,
numerals, punctuation, and various nonprinting contraratters.Thus, the
text string “Yeccch!” is represented by a rather innocuous-looking list of seven
7-bit numbers:

1011001 1100101 1100011 1100011 1100011 1101000 0100001

2.13 Codes for Actions, Conditions, and States

The codes that we've described so far are generally used to represent things that
we would probably consider to be “data”—things like numbers, positions, and
characters. Programmers know that dozens of different data types can be used in
a single computer program.

In digital system design, we often encounter nondata applications where a
string of bits must be used to control an action, to flag a condition, or to represent
the current state of the hardware. Probably the most commonly used type of code
for such an application is a simple binary code. If thersalifferent actons,
conditions, or states, we can represent them withb#& binary code with
b = og, nbits. (The bracket&l1denote theceiling function—the smallest 0
integer greater than or equal to the bracketed quantity. Bhiasghe smallest ceiling function
integer such that®2 n.)

For example, consider a simple traffic-light controller. The signals at the
intersection of a north-south (N-S) and an east-west (E-W) street might be in any

Copyright © 1999 by John F. Wakerly Copying Prohibited

49

50 Chapter 2 Number Systems and Codes

| Table 2-11 American Standard Code for Information Interchange (ASCII), Standard No.
X3.4-1968 of the American National Standards Institute.

bgbsb, (column)

Row 000 001 010 011 100 101 110 111
bsbsb.b, (hex) 0 1 2 3 4 5 6 7
0000 0 NUL DLE SP 0 @ P ‘ p
0001 1 SOH DC1 ! 1 A Q a q
0010 2 STX DC2 " 2 B R b r
0011 3 ETX DC3 # 3 C S c S
0100 4 EOT DC4 $ 4 D T d t
0101 5 ENQ NAK % 5 E U e u
0110 6 ACK SYN & 6 F \% f v
0111 7 BEL ETB ' 7 G W o] w
1000 8 BS CAN (8 H X h X
1001 9 HT EM) 9 I Y i y
1010 A LF SUB * : J 4 i z
1011 B VT ESC + ; K [k {
1100 c FF FS , < L \ |
1101 D CR GS - = M] m }
1110 E SO RS . > N " n ~
1111 F SI us / ? o _ o] DEL

Control codes

NUL Null DLE Data link escape
SOH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronize
BEL Bell ETB End transmitted block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage return GS Group separator
SO Shift out RS Record separator
Sl Shift in us Unit separator
SP Space DEL Delete or rubout

Copyright © 1999 by John F. Wakerly

Copying Prohibited

Section 2.13 Codes for Actions, Conditions, and States 51

l Table 2-12 States in a traffic-light controller.

Lights

N-S N-S N-S E-W E-W E-W Code

State green yellow red green yellow red word
N-S go ON off off off off ON 000
N-S wait off ON off off off ON 001
N-S delay off off ON off off ON 010
E-W go off off ON ON off off 100
E-W wait off off ON off ON off 101
E-W delay off off ON off off ON 110

of the six states listed in Table 2-12. These states can be encoded in three bits, as
shown in the last column of the table. Only six of the eight possible 3-bit code
words are used, and thesiggnment of the six chosen code words to states is arbi-
trary, so many other encodings are possible. An experienced digital designer
chooses a particular encoding to minimize circuit cost or to optimize some other
parameter (like design time—there’s no need to try billions and billions of pos-
sible encodings).

Another application of a binary code is illustrated in Figurd&-™Mere,
we have a system with devices, each of which can perform a certain action.
The characteristics of the devices are such that they may be enabled to operate
only one at a time. The control unit produces a binary-coded “device select”
word with og, nClbits to indicate which device is enabled at any time. The
“device select” code word is applied to each device, which compares it with its
own “device ID” to determine whether it is enabled.Although its code words
have the minimum number of bits, a binary code isn’t always the best choice for
encoding actions, conditions, or states. Figure 2-7(b) shows how to control
devices with d-out-of-n codeann-bit code in which valid code words have ong-out-of-n code
bit equal to 1 and the rest of the bits equal to 0. Each bit of the 1-outexfe
word is connected directly to the enable input of a corresponding device. This
simplifies the design of the devices, since they no longer have device IDs; they
need only a single “enable” input bit.

The code words of a 1-out-of-10 code were listed in Table 2-9. Sometimes
an all-Os word may also be included in a 1-outrafede, to indicate that no
device is selected. Another common code israerted 1-out-of-n coden inverted 1-out-of-n code
which valid code words have one 0~bit and the rest of the bits equal to 1.

In complex systems, a combination of coding techniques may be used. For
example, consider a system similar to Figure 2-7(b), in which each af the
devices contains up t®subdevices. The control unit could produce a device

Copyright © 1999 by John F. Wakerly Copying Prohibited

52 Chapter 2 Number Systems and Codes

binary-coded device select
Control
Unit
device device device
@ compare |[K— ™ compare |K— ™ compare |[K— ™
|_, device |_, device |_, device
enable enable enable
Device Device Device
1-out-of-n coded device select
Control :
Unit °
device device device
(b) enable enable enable
Device Device Device

m-out-of-n code

8B10B code

Figure 2-7 Control structure for a digital system with n devices: (a) using
a binary code; (b) using a 1-out-of-n code.

select code word with a 1-out-ofeoded field to select a device, andag, s
bit binary-coded field to select one of theubdevices of the selected device.

An m-out-of-n codds a generalization of the 1l-out-ofeode in which
valid code words have bits equal to 1 and the rest of the bits equal to 0. A valid
m-out-of-n code word can be detected withratinput AND gate, which produc-
es a 1 output if all of its inputs are 1. This is fairly simple and inexpensive to do,
yet for most values af, anm-out-of-n code typically hagar more valid code
words than a 1-out-af-code. The total number of code words is given by the

binomial coeﬁicient%nng , which has the value— Nt . Thus, a 2-out-of-4

m! O n—m)!
code has 6 valid code words, and a 3-out-of-10 code has 120.
An important variation of am-out-of-n code is thé&8B10B codeised in the
802.3z Gigabit Ethernet standard. This code uses 10 bits to represent 256 valid

code words, or 8 bits worth of data. Most code words use a 5-out-of-10 coding.
However, sinc 50% is only 252, some 4- and 6-out-of-10 words are also used to

complete the code in a very interesting way; more on this in Section 2.16.2.

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.14 n-Cubes and Distance 53

10 11 i
o— o Figure 2-8
n-cubes forn=1, 2,
3, and 4.
[] [) [[)
0 1 00 01
1-cube
110 111

. —_—
010 / 011 / 0010 /
[] [] []

000 001 0000

3-cube 4-cube

*2.14 n-Cubes and Distance

An n-bit string can be visualized geometrically, as a vertex of an object called-anbe
n-cube Figure 2-8 shows-cubes fom =1, 2, 3, 4. Am-cube has Rvertices,
each of which is labeled with arbit string. Edges are drawn so that each vertex
is adjacent ta other vertices whose labels differ from the given vertex in only
one bit. Beyonah = 4, n-cubes are really tough to draw.

For reasonable valuesmfn-cubes make it easy to visualize certain coding
and logic minimization problems. For example, the problem of designing an
n-bit Gray code is equivalent to finding a path along the edges ofcabe, a
path that visits each vertex exactly once. The paths for 3- and 4-bit Gray codes
are shown in Figure 2-9.

1110 1111 _—
Figure 2-9
110 111 Traversing N-cubes
¢ in Gray-code order:
010/ 011 - (@) 3-cube;
R (b) 4-cube.

@) (b)

Copyright © 1999 by John F. Wakerly Copying Prohibited

54 Chapter 2 Number Systems and Codes

distance
Hamming distance

m-subcube

don’t-care

error
failure

temporary failure
permanent failure

error model

independent error
model

single error
multiple error

error-detecting code

noncode word

Cubes also provide a geometrical interpretation for the concegisof
tance also calledHamming distanceThe distance between twebit strings is
the number of bit positions in which they differ. In terms ohasube, the dis-
tance is the minimum length of a path between the two corresponding vertices.
Two adjacent vertices have distance 1; vertices 001 and 100 in the 3-cube have
distance 2. The concept of distance is crucial in the design and understanding of
error-detecting codes, discussed in the next section.

An m-subcubef ann-cube is a set of"2vertices in whictn — m of the bits
have the same value at each vertex, and the remairtiitg take on all 2 com-
binations. For example, the vertices (000, 010, 100, 110) form a 2-subcube of the
3-cube. This subcube can also be denoted by a single string, xx0, where “X”
denotes that a particular bit islan’t-care any vertex whose bits match in the
non-x positions belongs to this subcube. The concept of subcubes is particularly
useful in visualizing algorithms that minimize the cost of combinational logic
functions, as we’ll show in Section 4.4.

*2.15 Codes for Detecting and Correcting Errors

An error in a digital system is the corruption of data from its correct value to
some other value. An error is caused by a phyfadlake. Failures can be either
temporary or permanent. For example, a cosmic ray or alpha particle can cause
a temporary failure of a memory circuit, changing the value of a bit stored in it.
Letting a circuit get too hot or zapping it with static electricity can cause a per-
manent failure, so that it never works correctly again.

The effects of failures on data are predicte@&bygr models The simplest
error model, which we consider here, is calledittieependent error modeln
this model, a single physical failure is assumed to affect only a single bit of data;
the corrupted data is said to contaisirzgle error Multiple failures may cause
multiple errors—two or more bits inerror—but nultiple errors are normally
assumed to be less likely than singteors.

2.15.1 Error-Detecting Codes
Recall from our definitions in Section 2.10 that a code that od®t strings
need not containvalid code words; this is certainly the case for the codes that
we now consider. Arerror-detecting codédias the property that corrupting or
garbling a code word will likely produce a bit string that is not a code word (a
noncode worjl

A system that uses an error-detecting code generates, transmits, and stores
only code words. Thus, errors in a bit string can be detected by a simple rule—if
the bit string is a code word, it is assumed to be correct; if it is a noncode word,
it contains an error.

An n-bit code and its error-detecting properties under the independent
error model are easily explained in terms oharube. A code is simply a subset

Copyright © 1999 by John F. Wakerly Copying Prohibited

® = code word
= noncode word

110

-

010 / 011 /
[]

/ 100 / 101

°
000 001

@

Section *2.15

111
°

Codes for Detecting and Correcting Errors 55

Figure 2-10

/ Code words in two
010 011 different 3-bit codes:
(a) minimum distance
100 /

=1, does not detect
101 all single errors;
(b) minimum distance
ooo 001 = 2, detects all single
) errors.

of the vertices of the-cube. In order for the code to detect all single errors, no
code-word vertex can be immediately adjacent to another code-word vertex.

For example, Figure 2-10(a) shows a 3-bit code with five code words.
Code word 111 is immediately adjacent to code words 110, 011 and 101. Since
a single failure could change 111 to 110, 011 or 101 this code does not detect all
singleerrors. If we makd 11 a noncode word, we obtain a code that does have
the single-error-deteicty property, as shown in (b). No single error can change
one code word into another.

The ability of a code to detect single errors can be stated in terms of the
concept of distance introduced in the preceding section;

» A code detects all single errors if tenimum distancbetween all possi- minimum distance
ble pairs of code words is 2.

In general, we need + 1 bits to construct a singkrror-deteting code
with 2n code words. The first bits of a code word, callédformation bits may information bit
be any of the @n-bit strings. To obtain a minimum-distaa2 code, we add one
more bit, called garity bit, that is set to O if there are an even number of ity bit
among the information bits, and to 1 otherwise. This is illustrated in the first two
columns of Table 2-13 for a code with three information bits. A vahtl-bit
code word has an even number of 1s, and this code is cakegparity code even-parity code

Information Even-parity Odd-parity
Bits Code Code
000 0000 0001
001 0011 0010
010 0101 0100
011 0110 0111
100 1001 1000
101 1010 1011
110 1100 1101
111 1111 1110

Copyright © 1999 by John F. Wakerly

Table 2-13
Distance-2 codes with
three information bits.

Copying Prohibited

56 Chapter 2 Number Systems and Codes

odd-parity code
1-bit parity code

check bits

Figure 2-11

Some code words
and noncode words in
a 7-bit, distance-3
code.

We can also construct a code in which the total number of 1s in anvdlidit
code word is odd; this is called add-parity codeand is shown in the third col-
umn of the table. These codes are also sometimes gatligharity codessince
they each use a single parity bit.

The 1-bit parity codes do not detect 2-bit errors, since changing two bits
does not affect the parity. However, the codes can detexs in anyodd num-
ber of bits. For example, if three bits in a code word are changed, then the
resulting word has the wrong parity and is a noncode word. This doesn't help us
much, though. Under the independent error model, 3-bit errors are much less
likely than 2-bit errors, which are not detectable. Thus, practically speaking, the
1-bit parity codeserror detection capality stops after 1-bierrors. Other codes,
with minimum distance rgater than 2, can be used to detedtipla errors.

2.15.2 Error-Correcting and Multiple-Error-Detecting Codes
By using more than one parity bit, creck bitsaccording to some well-chosen
rules, we can create a code whose minimum distance is greater than 2. Before
showing how this can be done, let’s look at how such a code can be used to cor-
rect single errors or detect multiple errors.

Suppose that a code has a minimum distance of 3. Figure 2-11 shows a
fragment of then-cube for such a code. As shown, there are at least two noncode
words between each pair of code words. Now suppose we transmit code words

0001010 1011000
[] []
1001011 0001001 1011011 0011001
[] [] [] []
0001011 © = e (0001111 1011001 © -~ e 1111001
[] [) [) [)
0101011 0000011 1011101 1001001
[] []
0011011 1010011 1010001
[]
0010010 ° ° 1010000

1010010 e =—————— e 1010110

° °
code word 1110010 1011010
noncode word ¢

1000010

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 57

and assume that failures affect at most one bit of each received code word. Then

a received noncode wowdth a 1-bit error will be closer to the originally trans-

mitted code word than to any other code word. Therefore, when we receive a
noncode word, we catorrectthe error by changing the received noncode woedor correction
to the nearest code word, as indicated byatrews in the ifjure. Deciding

which code word was originally transmitted to produce a received word is calletbding
decoding and the hardware that does this is an error-ctngedecoder decoder

A code that is used to correct errors is calle@mor-correcting codeln error-correcting code
general, if a code has minimum distancet2, it can be used to correct errors
that affect up te bits € = 1 in the preceding example). If a code’s minimum dis-
tance is 2 +d + 1, it can be used to correct errors in up tuits and to detect
errors in up tal additional bits.

For example, Figure 2-12(a) shows a fragment ofrtleeibe for a code
with minimum distance 4c(= 1,d = 1). Single-biterrors that psduce noncode
words 00101010 and 11010011 can beexied. However, an error thabpluc-
es 10100011 cannot be oected, because nongie-bit error can produce this
noncode word, and either of two 2-bit errors could have produced it. So the code
can detect a 2-bit error, but it cannot correct it.

When a noncode word received, wadon't know which code word was
originally transmitted; we only know which code word is closest to what we've
received. Thus, as shown in Figure 2-12(b), a 3-bit error may be “corrected” to
the wrong value. The possibility of making this kind of mistake may be accept-
able if 3-bit errors are very unlikely to occur. On the other hand, if we are
concerned about 3-b#rrors, we can change the dding policy for the code.

Instead of trying to correct errors, we just flag all noncode words as uncorrect-
able errorsThus, as shown in (c), we can use the same distance-4 code to detect
up to 3-bit errors but correct no erroes50,d = 3).

2.15.3 Hamming Codes
In 1950, R. W. Hamming described a general method for constructing codes
with a minimum distance of 3, now callethmming coded~or any value of, Hamming code
his method yields a'21-bit code withi check bits and 2~ 1 - i information
bits. Distance-3 codes with a smaller number of informatiorabésbtained by
deleting information bits from a Hamming code with a larger number of bits.
The bit positions in a Hamming code word can be numbered from 1
through 2-1. In this case, any position whose number is a power of 2 is a check
bit, and the remaining positioase information bits. Each check bit iogped
with a subset of the information bits, as specified Ipaity-check matrixAs parity-check matrix

DECISIONS, The nameslecodinganddecodemake sense, since they are just distance-1 pertur-
DECISIONS bations ofdecidinganddecider

Copyright © 1999 by John F. Wakerly Copying Prohibited

58 Chapter 2 Number Systems and Codes

detectable 2-bit errors
@ / \
e [) [)
Figure 2-12
Some code words and
noncode words in an 8-bit, e 00101010 11010011 e
distance-4 code:

(a) correcting 1-bit and 1010.0011
detecting 2-bit errors; 00101011 @ =———— @ — ————e — = e 11000011
(b) incorrectly “correcting” 00100011 11100011
a 3-bit error;
(c) correcting no errors but ' ‘
detecting up to 3-bit errors.
L detectable 2- blt errors J
correctable 1-bit errors
(b)
e 00101010 11010011 o
10100011

[]
00101011 € =— e ——_ ———e— =e 11000011

\ 00100011 11100011

° 3-bit error °
looks like a
1-bit error
(© ° °
[)
00101011 ¢ ——— @ ————e ——e 11000011

. °
>~ all 1- to 3-bit errors "
are detectable

shown in Figure 2-13(a), each cheuk is grouped with the information posi-
tions whose numbers have a 1 in the same bit when expressed in binary. For
example, check bit 2 (010) is grouped with information bits 3 (011), 6 (110), and
7 (111). For a given combination of information-bit values, each check bit is
chosen to produce even parity, that is, so the total number of 1s in its group is
even.

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 59

@ Bit position
7 6 5 4 3 2 1
c
ﬁ;?#g B Groups Figure 2-13
Parity-check matrices
A for 7-bit Hamming
codes: (a) with bit
i i A Check bits POSItiONS N
numerical order;
(b) Bit position (b) with check bits
7 6 5 3 4 2 1 and information bits
separated.
c
Group B Groups
name
A
\ \ / NV, /
Information bits Check bits

Traditionally, the bit positions of a parity-check matrix and the resulting
code words are rearranged so that all of the check bits are on the right, as in
Figure 2-13(b). The first two columns of Table 2-14 list the resulting code words.

We can prove that the minimum distance of a Hamming code is 3 by prov-
ing that at least a 3-bit change must be made to a code word to obtain another
code word. That is, we’'ll prove that a 1-bit or 2-bit change in a code word yields
a noncode word.

If we change one bit of a code word, in posifiotmnen we change the parity
of every group that contains positiprSince every information bit is contained
in at least one group, at least one group has incorrect parity, and the result is a
noncode word.

What happens if we change two bits, in positioasdk? Parity groups that
contain both positionsandk will still have correct parity, since parity is unaf-
fected when an even number of bits are changed. However, jsamtE are
different, their binary representations differ in at least one bit, corresponding to
one of the parity groups. This group has only one bit changed, resulting in incor-
rect parity and a noncode word.

If you understand this proof, you should also see how the position number-
ing rules for constructing a Hamming code are a simple consequence of the
proof. For the first part of the proof (1-bit errors), we required that the position
numbers be nonzero. And for the second part (2-bit errors), we required that no

Copyright © 1999 by John F. Wakerly Copying Prohibited

60 Chapter 2 Number Systems and Codes

| Table 2-14 Code wordsin distance-3 and distance-4 Hamming
codes with four information bits.

Minimum-distance-3 code Minimum-distance-4 code

Information Information
Bits Parity Bits Bits Parity Bits
0000 000 0000 0000
0001 011 0001 0111
0010 101 0010 1011
0011 110 0011 1100
0100 110 0100 1101
0101 101 0101 1010
0110 011 0110 0110
0111 000 0111 0001
1000 111 1000 1110
1001 100 1001 1001
1010 010 1010 0101
1011 001 1011 0010
1100 001 1100 0011
1101 010 1101 0100
1110 100 1110 1000
1111 111 1111 1111

two positions have the same number. Thus, wititlaih position number, you
can construct a Hamming code with up te-2 bit positions.
error-correcting The proof also suggests how we can desigerem-correcting decodefor
decoder a received Hamming code word. First, we check all of the parity groups; if all
have even parity, then the received word is assumed to be correct. If one or more
groups have odd parity, then a singteor is assumed to have occurred. The pat-
syndrome tern of groups that have odd parftalled thesyndromg must match one of the
columns in the parity-check matrix; thermspmnding bit position is assumed to
contain the wrong value and is compiented. For example, using the code
defined by Figure 2-13(b), suppose keeeive the word101011. Groups B and
C have odd parity, corresponding to position 6 of the parity-check matrix (the

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors

syndrome is 110, or 6). By complementing the bit in position 6 of the received
word, we determine that the correct word is DODL.

A distance-3 Hamming code can easily be modified to increase its mini-
mum distance to 4. We simply add one more check bit, chosen so that the parity
of all the bits, including the new one, is even. As in the 1-bit even-parity code,
this bit ensures that atrrors affedhg an odd number of bits are detectable. In
particular, any 3-bit error is detectable. We already showed that 1- and 2-bit
errors are detected by the other parity bits, so the minimum distance of the mod-
ified code must be 4.

Distance-3 and distance-4 Hamming codes are commonly used to detect
and correct errors in computer memory systems, especially in largéamaen
computers where memory circuits account for thi bf the system’s failures.
These codes are especially attractive for very wide memory words, since the
required number of parity bits grows slowly with the width of the memory word,
as shown in Table 2-15.

l Table 2-15 Word sizes of distance-3 and distance-4 Hamming codes.

Minimum-distance-3 Codes Minimum-distance-4 Codes
Information Bits Parity Bits Total Bits Parity Bits Total Bits
1 2 3 3 4
<4 3 <7 4 <8
<11 4 <15 5 <16
<26 5 <31 6 <32
<57 6 <63 7 <64
<120 7 <127 8 <128

2.15.4 CRC Codes
Beyond Hamming codes, many other error-detecting and -correcting codes have
been developed. The most important codes, which happen to include Hamming
codes, are theyclic redundancy @tk (CRC) codedA rich set of knowledge cyclic redundancy
has been developed for these codes, focused both on their error detectingcgiek (CRC) code
correctng properties and on the design of inexpensive encoders and decoders
for them (see References).
Two important applications cZRC codes are in disk drives and in data
networks. In a disk drive, each block of data (typically 512 bytes) is protected
by a CRC code, so that errorghvn a block can be detected and, in some drives,
corrected. In a data network, each packet of data ends with check bits in a CRC

Copyright © 1999 by John F. Wakerly Copying Prohibited

61

62 Chapter 2 Number Systems and Codes

code. The CRC codes for both applications were selected because of their burst-
error detecting properties. In addition to single-bit errors, they can detect multi-
bit errors that are clustered together within the disk block or packet.cuch

are more likely than errors of randomly distributed bits, because of the likely
physical causes datrrors in the two gplications—stface defects ilisc drives

and noise bursts in communication links.

2.15.5 Two-Dimensional Codes

Another way to obtain a code with large minimum distance is to constiwot a
dimensional codeas illustrated in Figure 2-14(a). The infaation bits are con-
ceptually arranged in a two-dimensional array, and parity bits arédpd to
check both the rows and the columns. A cGgg, with minimum distance,,, is
used for the rows, and a possibly different cGdg with minimum distancel.,

is used for the columns. That is, the row-parity bits are selected sattiatow

is a code word i€, and the column-parity bits are selected so that each column
is a code word it€C.,. (The “corner” parity bits can be chosen according to either
code.) The minimum distance of the two-dimensional code is the prodigt,of
andd,; in fact, two-dimensional codes are sometimes calfeduct codes

two-dimensional code

product code

Figure 2-14 B T T
Two-dimensional codes:

(a) general structure;

(b) using even parity for
both the row and column
codes to obtain
minimum distance 4;
(c) typical pattern of an
undetectable error.

(b)

Columns are code words
in 1-bit even-parity code

©

information bits

checks |

on rows

Rows are
code words

T i Crow

checks on columns

T on checks

checks

Columns are code words in Cg,

Rows are T

information bits podebyvords]
in 1-bit _ | { No effecton
even-parity row parity
code I

No effect on column parity

Copyright © 1999 by John F. Wakerly

Copying Prohibited

Section *2.15

As shown in Figure 2-14(b), the simplest two-dimensional code uses 1-bit
even-parity codes for the rows and columns, and has a minimum distance of
2 [2, or 4. You can easily prove that the minimum distance is 4 by convincing
yourself that any pattern of one, two, or three bitsrior causes incorrect parity
of a row or a column or both. In order to obtain an undetectable error, at least
four bits must be changed in a rewjalar pattern as in (c).

The error detding and correcting procedures for this code are straightfor-
ward. Assume we are reading information one row at a time. As we read each
row, we check its row code. If an error is detected in a row, we camittieh bit
is wrong from the row check alone. However, assuming only one row is bad, we
can reconstruct it by forming the bit-by-itclusive OR of the columns, omit-
ting the bad row, but including the column-check row.

To obtain an even larger minimum distance, a distance-3 or -4 Hamming
code can be used for the row or column code or both. It is also possible to con-
struct a code in three or more dimensions, with minimum distance equal to the
product of the minimum distanceseaach dimasion.

An important application of two-dimensional codes is in RAID storage
systems.RAID stands for “redundant array of inexpensive disks.” In tHR&ID
schemen+1 identical disk drives are used to stordisks worth of data. For
example, eight 8-Gigabyte drives could be use to store 64 Gigabytes of non-
redundant data, and a ninth 8-gigabyte drive would be used to store checking
information.

Figure 2-15 shows the general scheme of a two-dimensional code for a
RAID system; each disk drive is considered to be a row in the code. Each drive
storean blocks of data, where a block typically contains 512 bytes. For example,
an 8-gigabyte drive would store about 16 million blocks. As shown in the figure,
each block includes its own check bits in a CRC code, to detect errors within that
block. The firstn drives store the nonredundant data. Each block in drite

Codes for Detecting and Correcting Errors

Block number

123456 7 8 9101112 ... m

Figure 2-15

Structure of error-
correcting code for

63

Disk1 | | a RAID system.
Disk 2 | i
D?5k3 L . Data bytes
Disk4 | information blocks oo 1 2 3 4 5 6 7 512 CRC
Disk 5 | 4 LI T T T T T 7 [I |
Disk 6 | 4
L E_/_ One block
Disk n , L
Disk n+1 AN N N TN T N W SN N N 1

check blocks

Copyright © 1999 by John F. Wakerly

Copying Prohibited

64 Chapter 2 Number Systems and Codes

checksum
checksum code

ones’-complement
checksum code

unidirectional error

stores parity bits for the corresponding blocks in the flidtives. That is, each
biti in driven+1 blockb is chosen so thatéhe are an even number of 1sin block
b bit positioni across all the drives.

In operation, errors in the information blocks are detected by the CRC
code. Whenever an error is detected in a block on one of the drives, the correct
contents of that block can be constructed simply by computing the parity of the
corresponding blocks in all the other drives, including dnivé. Although this
requiresn extra disk read operations, it's better than losing your data! Write
operations require extra disk accesses as well, to update the corresponding check
block when an information block is written (see Exercise 2.46). Since disk
writes are much less frequent than readtyjical applications, this overhead
usually is not a problem.

2.15.6 Checksum Codes

The parity-checking operation that we've used in the previous subsections is
essentially modulo-2 addition of bits—the sum modulo 2 of a group of bits is 0
if the number of 1s in the group is even, and 1 if it is odd. The technique of mod-
ular addition can be extended to other bases besides 2 to form check digits.

For example, a computer stores information as a set of 8-bit bytes. Each
byte may be considered to have a decimal value from 0 to 255. Therefore, we can
use modulo-256 addition to check the bytes. We form a single check byte, called
achecksumthat is the sum modulo 256 of all the information bytes. The result-
ing checksum codean detect any singlg/teerror, since such an error will cause
a recomputed sum of bytes to disagree with the checksum.

Checksum codes can also use a different modulus of addition. In particular,
checksum codes using modulo-255, ones’-complement addition are important
because of their special computational and error detecting properties, and
because they are used to check packet headersuhbithétous Internet Protocol
(IP) (see References).

2.15.7 m-out-of- n Codes

The 1-out-ofn andm-out-of-n codes that we introduced in Section 2.13 have a
minimum distance of 2, since changing only one bit changes the total number of
1s in a code word and therefore producesr@code word.

These codes have another useful error-detecting property—they detect uni-
directional multiple errors. In anidirectional error, all of the erroneous bits
change in the same direction (Os change to 1s, or vice versa). This property is
very useful in systems where the predominant error mechanism tends to change
all bits in the same direction.

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.16 Codes for Serial Data Transmission and Storage

time ——

cock || [L[L L L L L L L
bit time
SERDATA bit cell bit cell bit cell bit cell bit cell bit cell bit cell bit cell bit cell bit cell
SYNC
bit number 1 2 3 4 5 6 7 8 1 2

Figure 2-16 Basic concepts for serial data transmission.

2.16 Codes for Serial Data Transmission and Storage

2.16.1 Parallel and Serial Data
Most computers and other digital systems transmit and store dafzanaléel parallel data
format. In parallel data transmission, aaepe gnal line is provided for each
bit of a data word. In grallel data storage, all of the bits of a data word can be
written or read simultaneously.

Parallel formats are not cost-effective for some applications. For example,
parallel transmission of data bytes over the telephone network would require
eight phone lines, andapallel storage of data bytes on a magnetic disk would
require a disk drive with eight separate read/write he@edal formats allow serial data
data to be transmitted or stored one bit at a time, reducing system cost in many
applications.

Figure 2-16 illustrates some of the basic ideas in serial data transmission.
A repetitive clock signal, namefl.OCK in the figure, defines the rate at which
bits are transmitted, one bit per clock cycle. Thuspihete in bits per second bit rate, bps
(bps) numerically equals the clock frequency in cycles per second (hertz, or Hz).

The reciprocal of the bit rate is called thietime and numerically equals bit time
the clock period in seconds (s). This amount of time is reserved on the serial data
line (namedSERDATA in the figure) for each bit that is transmitted. The time
occupied by each bit is sometimes callddtaell. The format of the actual sig-bit cell
nal that appears on the line during each bit cell depends d¢ingheode In the line code

65

simplest line code, calleddon-Return-to-Zero (NRZa 1 is transmitted by plac-Non-Return-to-Zero

ing a 1 on the line for the entire bit cell, and a 0 is transmitted as a 0. Howe{&RZ)
more complex line codes have other rules, as discussed in the next subsection.

Copyright © 1999 by John F. Wakerly Copying Prohibited

66 Chapter 2 Number Systems and Codes

synchronization signal

Figure 2-17
Commonly used line
codes for serial data.

Regardless of the line code, a serial data transmission or storage system
needs some way of identifying the significance of each bit in the serial stream. For
example, suppose that 8-bit bytes are transmitted serially. How can we tell which
is the first bit of each byte? Aynchronization sighalnamedSYNC in
Figure 2-16, provides the necessary information; it is 1 for the first bit of each byte.

Evidently, we need a minimum of three signals to recover a serial data
stream: a clock to define the bit cells, a synchronization signal to define the word
boundaries, and the serial data itself. In some applications, like the interconnec-
tion of modules in a computer or telecommunications system, a separate wire is
used for each of these signals, since reducing the number of wires per connec-
tion fromn to three is savings enough. We’ll give an example of a 3-wire serial
data system in Section 8.5.4.

In many applications, the cost of having three separate signals is still too
high (e.g., three phone lines, three read/write heads). Such systems typically
combine all thee signals into airsgle serial data stream and use sophisticated
analog and digital circuits to recover the clock and synchronization information
from the data stream.

*2.16.2 Serial Line Codes

The most commonly used line codes for serial datdlas¢érated in Figure 2-17.

In the NRZ code, each bit value is sent on the line for the dmitioell. This is

the simplest and most reliable coding scheme for short distance transmission.
However, it generally requires a clock signal to be sent along with the data to
define the bit cells. Otherwise, it is not possible for the receiver to determine how
many 0s or 1s are represented by ainoous O or 1 level. For example, without

a clock to define the bit cells, the NRZ waveform in Figure 2-17 might be erro-
neously interpreted as 01010.

time ——=

bit value 0 1 1 1 0 0 1 0

NRZ

NRZI

Rz _l
BPRZ _l _l
L L
Manchester J | |__|_

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.16 Codes for Serial Data Transmission and Storage 67

A digital phase-locked loop (DPLL3 an analog/digital circuit that can beiligital phase-locked
used to recover a clock signal from a serial data stream. The DPLL works onlipifp (DPLL)
the serial data stream contains enough 0-to-1 and 1-to-0 transitions to give the
DPLL “hints” about when the original clock transitions took place. With NRZ-
coded data, the DPLL works only if the data does not contain any long, continu-
ous streams of 1s or 0s.
Some serial transmission and storage medidransition sensitivethey transition-sensitive
cannot transmit or store absolute 0 or 1 levels, only transitions between two disdia
crete levels. For example, a magnetic disk or tape stores information by
changing the polarity of the medium’s magnetization in regiongesponding
to the stored bits. When the information is recovered, it is not feasible to deter-
mine the absolute magnetization polarity of a region, only that the polarity
changes between one region and the next.
Data stored in NRZ format on transition-sensitive media cannot be recov-
ered unambiguously; the data in Figure 2-17 might be interpreted as 01110010
or 10001101. Th&lon-Return-to-Zero Invert-on-1s (NRZde overcomes thisNon-Return-to-Zero
limitation by sending a 1 as the opposite of the level that was sent during the pireert-on-1s (NRZI)
vious bit cell, and a 0 as the same level. A DPLL can recover the clock from
NRZI-coded data as long as the data does not contain any long, continuous
streams of 0s.
The Return-to-Zero (RZ) code is similar to NRZ except that, for a 1 bit, teeurn-to-Zero (RZ)
1 level is transmitted only for a fraction of the bit time, usually 1/2. With this code,
data patterns that contain a lot of 1s create lots of transitions for a DPLL to use to
recover the clock. However, as in the other line codes, a string of 0s has no transi-
tions, and a long string of 0s makes clock recovery impossible.
Another requirement of some transmission media, such as high-speed
fiber-optic links, is that the serial data streanTlie balanced That is, it must DC balance
have an equal number of 1s and 0s; any long-term DC component in the stream
(created by have a lot more 1s than Os or vice versa) creates a bias at the receiver
that reduces its ability to distinguish reliably between 1s and Os.
Ordinarily, NRZ, NRZI or RZ data has no guarantee of DC balance; there’s
nothing to prevent a user data stream from having a long string of words with
more than 1s than Os or vice versa. However, DC balance can still be achieved
using a few extra bits to code the user datalialanced codgin which each balanced code
code word has an equal number of 1s and 0s, and then sending these code words
in NRZ format.
For example, in Section 2.13 we introduced the 8B10B code, which codes
8 bits of user data into 10 bits in a mostly 5-out-of-10 code. Recall that there are
only 252 5-out-of-10 code words, but there are ano%;4 =210 4-out-of-10
code words and an equal number of 6-out-of-10 codé words. Of course, these
code words aren't quite DC balanced. The 8B10B code solves this problem by
associating with each 8-bit value to be encodgalieof unbalanced code words,
one 4-out-of-10 (“light”) and the other 6-out-of-10 (“heavy”). The coder also

Copyright © 1999 by John F. Wakerly Copying Prohibited

68 Chapter 2 Number Systems and Codes

KILO-, MEGA-,
GIGA-, TERA-

The prefixes K (kilo-), M (mega-), G (giga-), and T (tera-) meah 1, 1¢°, and
102, respectively, when referring to bps, hertz, ohms, watts, and most other engi-
neering quantities. However, when referring to memory sizes, the prefixes Mgan 2
220 280 and 20 Historically, the prefixes were co-opted for this purpose because
memory sizes are normally powers of 2, ah®l(2024) is very close to 1000,

Now, when somebody offers you 50 kilobucks a year for your first engineering
job, it's up to you to negotiate what the prefix means!

running disparity

Bipolar Return-to-Zero
(BPRZ)

Alternate Mark
Inversion (AMI)

zero-code suppression

Manchester
diphase

keeps track of theunning disparity a single bit of information indicating
whether the last unbalanced code word that it transmitted was heavy or light.
When it comes time to transmit another unbalanced code word, the coder selects
the one of the pair with the opposite weight. This simple trick makes available
252 + 210 = 462 code words for the 8B10B to encode 8 bits of user data. Some
of the “extra” code words are used to conveniently encode non-data conditions
on the serial line, such &3LE, SYNC, andERROR. Not all the unbalanced code
words are used. Also, some of the balanced code words, such as 0000011111,
are not used either, in favor of unbalanced pairs that contain more transitions.

All of the preceding codes transmit or store only two signal levels. The
Bipolar Return-to-Zero (BPRZ)ode transmits three signal levetd; 0, and-1.

The code is like RZ except that 1s are alternately transmittetl asd-1; for
this reason, the code is also knowrAlternate Mark Inversion (AMI)

The big advantage of BPRZ over RZ is that it's DC balanced. This makes it
possible to send BPRZ streams over transmission media that cannot tolerate a
DC component, such as transformer-coupled phone lines. In fact, the BPRZ
code has been used in T1 digital telephone links for decades, where analog
speech signalare carried as streams 800 8-bit digital samples per second
that are transmitted in BPRZ format on 64 Kbps serial channels.

As with RZ, it is possible to recover a clock signal from a BPRZ stream as
long as tlere aren’t too many Os in a row.tAbugh TPC (The Phone Company)
has no control over what you say (at least, not yet), they still have a simple way
of limiting runs of 0s. If one of the 8-bit bytes that results from sampling your
analog speech pattern is all 0s, they@inthange second-least significant bit
to 1! This is calleczero-code suppressi@nd I'll bet you never noticed it. And
this is also why, in many data applications of T1 links, you get only 56 Kbps of
usable data per 64 Kbps channel; the LSB of each byte is always set to 1 to pre-
vent zero-code suppression from changing the other bits.

The last code in Figure 2-17 is calldthnchesteror diphasecode. The
major strength of this code is that, regardless of the transmitted data pattern, it
provides at least one transition per bit cell, making it very easy to recover the
clock. As shown in the figure, a 0 is encoded as a 0-to-1 transition in the middle

Copyright © 1999 by John F. Wakerly Copying Prohibited

References 69

ABOUT TPC Watch the 1967 James Coburn movike President’s Analysfor an amusing view
of TPC. With the growing pervasiveness of digital technology and cheap wireless
communications, the concept of univergmrsonalconnectivity to the phone net-
work presented in the movie’s conclusion has become much less far-fetched.

of the bit cell, and a 1 is encoded as a 1-to-0 transition. The Manchester code’s
major strength is also its major weakness. Since it has more transitions per bit
cell than other codes, it also requires more media bandwidth to transmit a given
bit rate. Bandwidth is not a problem in coaxial cable, however, which was used
in the original Ethernet locarea networks to carry Manchester-coded serial
data at the rate of 10 Mbps (megabits per second).

References

The presentation in the first nine sections of this chapter is based on Chapter 4
of Microcomputer Architecture and Programmirgy John F. Wakerly (Wiley,
1981). Precise, thorough, and entertaining discussions of these topics can also
be found in Donald E. Knuth’'Seminumerical Algorithmsrd edition (Addi-
son-Wesley, 1997). Mathematically inclinezhderswill find Knuth’s analysis

of the properties of number systems and arithmetic to be excellent, and all read-
ers should enjoy the insights and history sprinkled throughout the text.

Descriptions of digital logic circuits for arithmetic operations, as well as an
introduction to properties of various number systems, app&arirputer Arith-
meticby Kai Hwang (Wiley, 1979Decimal Computatioly Hermann Schmid
(Wiley, 1974) contains a thorough description of techniques for BCD arithmetic.

An introduction to algorithms for binary multiplication and division and to
floating-point arithmetic appears Microcomputer Architecture and Program-
ming: The 68000 Familpy John F. Wakerly (Wiley, 1989). A more thorough
discussion of arithmetic techniques and floating-point number systems can be
found inIntroduction to Arithmetic for Digital Systems DesignegsShlomo
Waser and Michael J. Flynn (Holt, Rinehart and Winston, 1982).

CRC codes are based on the theorfynite fields,which was developed by finite fields
French mathematician Evariste Galois (1811-1832) shortly before he was killed
in a duel with a political opponent. The classic book on error-detecting and
error-correcting codes Brror-Correcting Codesy W. W. Peterson and E. J.
Weldon, Jr. (MIT Press, 1972, 2nd ed.); however, this book is recommended
only for mathematically sophisticated readers. A more accessible introduction
can be found irError Control Coding: Fundamentals and Applicatiohg S.

Lin and D. J. Costello, J(Prentice Hall, 1983). Another recent, communica-
tion-oriented introduction to coding theory can be foundEmor-Control

Copyright © 1999 by John F. Wakerly Copying Prohibited

70

Chapter 2 Number Systems and Codes

Techniques for Digital Communicatidny A. M. Michelson and A. H. Levesque
(Wiley-Interscience, 1985). Hardware applications of codes in computer sys-
tems are discussed iBrror-Detecting Codes, Self-Checking Circuits, and
Applicationsby John F. Wakerly (Elsevier/North-Holland, 1978).

As shown in the above reference by Wakerly, ones’-complemeritsimac
codes have the ability to detect long bursts of unidirectiemats;this is useful
in communication channels whergors all tend to be in the same direct The
special computational properties of these codes also make them quite amenable
to efficient checksum calculation by software programs, important for their use
in the Internet Protocol; see RFC-1071 and RFC-1141.

An introduction to coding techniques for serial data transmission, includ-
ing mathematical analysis of the performance and bandwidth requirements of
several codes, appeardittroduction to Communications Engineering R. M.
Gagliardi (Wiley-Interscience, 1988, 2nd ed.). A nice introduction to the serial
codes used in magnetic disks and tapegvisn in Computer Storage Systems
and Technologyy Richard Matick (Wiley-Interscience, 1977).

The structure of the 8B10B code and the rationale behind it is explained
nicely in the original IBM patent by Peter Franaszek and Albert Widmer, U.S.
patent number 4,486,739 (1984). This and almost all U.S. patents issued after
1971 can be found on the webwats . patents.ibm.com. When you're done
reading Franaszek, for a good time do a boolean search for invesketr1y”.

Drill Problems

2.1 Perform the following number system conversions:

(a) 1101013= 24 (b) 174003 =2,
() 10110113= 7?4 (d) 67.24="2
(e) 10100.1104= 74 (f) F3A5,5=2
() 11011003= % (h) AB3Dig= "2,
() 101111.0113=7% () 15C.384="7

2.2 Convert the following octal numbers into binary and hexadecimal:

(a) 1023="?="45 (b) 761303=2%= "
(c) 16341%="2="4 (d) 552273=72,=?5
(e) 5436.15="2 =" (f) 13705.20%=2%="54

2.3 Convert the following hexadecimal numbers into binary and octal:

(@) 10236=7%=% (b) 7E6A="="%
(C) ABCD]_G = ?2 = ')8 (d) C35q6 = ?2 = 98
(e) 9E36.7Ag=2%="7% () DEAD.BEEFg=%="%

Copyright © 1999 by John F. Wakerly Copying Prohibited

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13
2.14

Drill Problems

What are the octal values of the four 8-bit bytes in the 32-bit number with octal
representation 12345670123

Convert the following numbers into decimal:

(a) 1101013 =7 (b) 174003 =2
(c) 10110113 =7 (d) 67.24="2,

(e) 10100.1104= 2, (f) F3A55="2
(9) 1201Q =7y (h) AB3Dys= 7
(i) 71563="?, () 15C.385="9
Perform the following number system conversions:
(@) 1250=" (b) 3489,="

(c) 20945=" (d) 9714,="7

(e) 132p="2 (f) 238515= 25
(9) 7275=" (h) 5719Q0= 76

(1) 1435,="7 () 651135="7¢

Add the following pairs of binary numbers, showing all carries:

(@ 110101 (b) 101110 (c) 11011101 (d) 1110010
+ 11001 + 100101 + 1100011 + 1101101

Repeat Drill 2.7 using subtraction instead of addition, and showing borrows
instead of carries.

Add the following pairs of octal numbers:

(a) 1372 (b) 47135 (c) 175214 (d) 110321
+ 4631 + 5125 + 152405 + 56573

Add the following pairs of hexadecimal numbers:

@) 1372 (b) 4F1A5 (¢) F35B (d) 1B9OF
+ 4631 + B8D5 + 27E6 + C44E

Write the 8-bit signed-magnitude, two’s-complement, and ones’-complement
representations for each of these decimal numigss:+115,+79,-49,-3,-100.

Indicate whether or not overflow occurs when adding the following 8-bit two's-
complement numbers:

(@) 11010100 (b) 10111001 (c) 01011101 (d) 00100110
+ 10101011 + 11010110 + 00100001 + 01011010

How many errors can be detected by a code with minimum disi@nce

What is the minimum number of parity bits required to obtain a distance-4, two-
dimensional code with information bits?

Copyright © 1999 by John F. Wakerly Copying Prohibited

71

72

Chapter 2 Number Systems and Codes

Exercises

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

Here’s a problem to whet your appetite. What is the hexadecimal equivalent of
61453 ?

Each of the following arithmetic operations is correct in at least one number sys-
tem. Determine possible radices of the numbers in each operation.

(8) 1234+5432=6666 (b) 41/3 =13
(c) 33/3=11 (d) 23+44+14+32 = 223
(e) 302/20 =12.1 (f 14=5

The first expedition to Mars found only the ruins of a civilization. From the arti-
facts and pictures, the explorers deduced that the creatures who produced this
civilization were four-legged beings with a tentacle that branched out at the end
with a number of grasping “fingers.” After much study, the explorers were able
to translate Martian mathematics. They found the following equation:

5x2 — 50X + 125=0

with the indicated solutiong = 5 andX = 8. The valueX = 5 seemed legitimate
enough, bux = 8 required some explanation. Then the explorers reflected on the way
in which Earth’s number system developed, and found evidence that the Martian sys-
tem had a similar history. How many fingers would you say the Martians had? (From
The Bent of Tau Beta Prebruary, 1956.)

Suppose andbit numbeB is represented by andigit hexadecimal numbeé.

Prove that the two’s complementBfis represented by the 16's complement of
H. Make and prove true a similar statement for octal representation.

Repeat Exercise 2.18 using the ones’ complemdhtinfl the 15s’ complement

of H.

Given an integecin the range-2n"t < x < 2n™1 - 1, we define X] to be the two’s-
complement representation xyfexpressed as a positive numbei: x if x= 0

and K] = 2n - |x| if x< 0, where] x| is the absolute value af Lety be another
integer in the same range xasProve that the two’'s-complement addition rules
given in Section 2.6 are correct by proving that the following equation is always
true:

[x+y] = ([x] + [y]) modulo 2

(Hints: Consider four cases based on the signsasfdy. Without loss of generality,

you may assume thgx| = |yl|.)

Repeat Exercise 2.20 using appropriate expressions and rules for ones’-comple-
ment addition.

State an overflow rule for addition of two’'s-complement numbers in terms of
counting operations in the modular representation of Figure 2-3.

Show that a two's-complement number can be converted to a representation with
more bits bysign extensionThat is, given an-bit two’s-complement numbex,

show that them-bit two’s-complement representation Xfwherem > n, can be

Copyright © 1999 by John F. Wakerly Copying Prohibited

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36
2.37

Exercises

obtained by appending — n copies ofX’s sign bit to the left of the-bit repre-
sentation oiX.

Show that a two’s-complement number can be converted to a representation with
fewer bits by removing higher-order bits. That is, givemdnit two's-comple-

ment numbeliX, show that then-bit two’s-complement numbeY obtained by
discarding thel leftmost bits ofX represents the same numbeiXasand only if

the discarded bits all equal the sign bitrof

Why is the punctuation of “two’s complement” and “ones’ complement” incon-
sistent? (See the first two citations in the References.)

An-bit binary adder can be used to perforrmebit unsigned subtraction opera-
tion X =Y, by performing the operatioX + Y + 1, whereX andY are n-bit
unsigned numbers andrepresents the bit-by-bit complementyoDemonstrate
this fact as follows. First, prove that € Y) = (X + Y + 1) — 2", Second, prove that
the carry out of the-bit adder is the opposite of the borrow from thleit sub-
traction. That is, show that the operat¥n Y produces a borrow out of the MSB
position if and only if the operatiod+ Y + 1 does noproduce a carry out of the
MSB position.

In most cases, the product of twbit two’s-complement numbers requires fewer
than 2 bits to represent it. In fact, there is only one case in whichit® are
needed—find it.

Prove that a two's-complement number can be multiplied by 2 by shifting it one
bit position to the left, with a carry of 0 into the least significant bit position and
disregarding any carry out of the most significant bit position, assuming no over-
flow. State the rule for detecting overflow.

State and prove correct a technique similar to the one described in Exercise 2.28,
for multiplying a ones’-complement number by 2.

Show how to subtract BCD numbers, by stating the rules for generating borrows
and applying a correction factor. Show how your rules apply to each of the fol-
lowing subtractions: 9 3, 5-7,4-9, 1- 8.

How many different 3-bit binary state encodings are possible for the traffic-light
controller of Table 2-12?

List all of the “bad” boundaries in the mechanical encoding disc of Figure 2-5,
where an incorrect position may be sensed.

As a function ofi, how many “bad” boundaries are there in a mechanical encod-
ing disc that uses ambit binary code?

On-board altitude transponders on commercial and private aircraft use Gray code
to encode the altitude readings that are transmitted to air traffic controllers. Why?
An incandescent light bulb is stressed every time it is turned on, so in some appli-
cations the lifetime of the bulb is limited by the number of on/off cycles rather
than the total time it is illuminated. Use your knowledge of codes to suggest a way
to double the lifetime of 3-way bulbs in such applications.

As a function oh, how many different distinct subcubes ofraaube are there?

Find a way to draw a 3-cube on a sheet of paper (or other two-dimensional object)
so that none of the lines cross, or prove that it's impossible.

Copyright © 1999 by John F. Wakerly Copying Prohibited

73

74

Chapter 2 Number Systems and Codes

2.38
2.39

2.40
2.41
2.42

2.43

2.44

2.45

2.46

2.47

Repeat Exercise 2.37 for a 4-cube.

Write a formula that gives the numberme$ubcubes of an-cube for a specific
value ofm. (Your answer should be a functionroandm.)

Define parity groups for a distance-3 Hamming code with 11 information bits.
Write the code words of a Hamming code with one information bit.

Exhibit the pattern for a 3-bit error that is not detected if the “corner” parity bits
are not included in the two-dimensional codes of Figure 2-14.

Therate of a codes the ratio of the number of information bits to the total num-
ber of bits in a code word. High rates, approaching 1, are desirable for efficient
transmission of information. Construct a graph comparing the rates of distance-2
parity codes and distance-3 and -4 Hamming codes for up to 100 information bits.
Which type of distance-4 code has a higher rate—a two-dimensional code or a
Hamming code? Support your answer with a table in the style of Table 2-15,
including the rate as well as the number of parity and information bits of each
code for up to 100 information bits.

Show how to construct a distance-6 code with four information bits. Write a list
of its code words.

Describe the operations that must be performed in a RAID system to write new
data into information block in drived, so the data can be recovered in the event
of an error in blockb in any drive. Minimize the number of disk accesses
required.

In the style of Figure 2-17, draw the waveforms for the bit pattern 10101110
when sent serially using the NRZ, NRZI, RZ, BPRZ, and Manchester codes,
assuming that the bits are transmitted in order from left to right.

Copyright © 1999 by John F. Wakerly Copying Prohibited

	Number Systems and Codes
	2.1� Positional Number Systems
	2.2� Octal and Hexadecimal Numbers
	Table 2�1 Binary, decimal, octal, and hexadecimal numbers.
	When I’m 64

	2.3� General Positional Number System Conversions
	Table 2�2� Conversion methods for common radices.
	Table 2�3 Binary addition and subtraction table.

	2.4� Addition and Subtraction of Nondecimal Numbers
	Figure 2�1� Examples of decimal and corresponding binary additions.
	Figure 2�2 Examples of decimal and corresponding binary subtractions.

	2.5� Representation of Negative Numbers
	2.5.1� Signed-Magnitude Representation
	2.5.2� Complement Number Systems
	2.5.3� Radix-Complement Representation
	Table 2�4 Examples of 10’s and 9s’ complements.
	Table 2�5 Digit complements.

	2.5.4� Two’s-Complement Representation
	*2.5.5� Diminished Radix-Complement Representation
	*2.5.6� Ones’-Complement Representation
	*2.5.7� Excess Representations

	2.6� Two’s-Complement Addition and Subtraction
	2.6.1� Addition Rules
	Table 2�6� Decimal and 4-bit numbers.

	2.6.2� A Graphical View
	Figure 2�3 A modular counting representation of 4-bit two’s-complement numbers.

	2.6.3� Overflow
	2.6.4� Subtraction Rules
	2.6.5� Two’s-Complement and Unsigned Binary Numbers
	Figure 2�4 A modular counting representation of 4-bit unsigned numbers.

	*2.7� Ones’-Complement Addition and Subtraction
	Table 2�7� Summary of addition and subtraction rules for �binary numbers.

	*2.8� Binary Multiplication
	*2.9� Binary Division
	Table 2�8 Example of long division.

	2.10� Binary Codes for Decimal Numbers
	Table 2�9� Decimal codes.
	Binomial Coefficients

	2.11� Gray Code
	Figure 2�5 A mechanical encoding disk using a 3-bit binary code.
	Table 2�10 A comparison of 3-bit binary code and Gray code.
	Figure 2�6 A mechanical encoding disk using a 3-bit Gray code.

	*2.12� Character Codes
	Table 2�11� American Standard Code for Information Interchange (ASCII), Standard No. X3.4�1968 of...

	2.13� Codes for Actions, Conditions, and States
	Table 2�12� �States in a traffic-light controller.
	Figure 2�7� Control structure for a digital system with n devices: (a) using a binary code; (b) u...

	*2.14� n-Cubes and Distance
	Figure 2�8 n-cubes for n�=�1, 2, 3, and 4.
	Figure 2�9 Traversing n�cubes in Gray-code order: (a) 3�cube; (b) 4�cube.

	*2.15� Codes for Detecting and Correcting Errors
	2.15.1� Error-Detecting Codes
	Figure 2�10 Code words in two different 3�bit codes: (a) minimum distance = 1, does not detect al...
	Table 2�13 Distance-2 codes with three information bits.

	2.15.2� Error-Correcting and Multiple-Error-Detecting Codes
	Figure 2�11 Some code words and noncode words in a 7�bit, distance-3 code.
	Decisions, Decisions
	Figure 2�12 Some code words and noncode words in an 8�bit, distance-4 code: (a)�correcting 1�bit ...

	2.15.3� Hamming Codes
	Figure 2�13 Parity-check matrices for 7-bit Hamming codes: (a)�with bit positions in numerical or...
	Table 2�14� Code words in distance-3 and distance-4 �Hamming codes with four information bits.
	Table 2�15� �Word sizes of distance-3 and distance-4 Hamming codes.

	2.15.4� CRC Codes
	2.15.5� Two-Dimensional Codes
	Figure 2�14 Two-dimensional codes: (a)�general structure; (b)�using even parity for both the row ...
	Figure 2�15 Structure of error- correcting code for a RAID system.

	2.15.6� Checksum Codes
	2.15.7� m-out-of-n Codes

	2.16� Codes for Serial Data Transmission and Storage
	2.16.1� Parallel and Serial Data
	Figure 2�16� Basic concepts for serial data transmission.

	*2.16.2� Serial Line Codes
	Figure 2�17 Commonly used line codes for serial data.
	Kilo-, Mega-, Giga-, Tera-
	About TPC

	References
	Drill Problems
	Exercises

