
DO
CO

DO NOT
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
 •

 •
 •

 •
 •

Copyright © 1999 by John F. Wakerly Copyi
 c h a p t e r2
NOT
PY

COPY

•
•

•

Number Systems and Codes
—
ary

bina-
rs,
how
igital
n be

 how
ese
 num-
an be

e

e the
 one
DO NOT
COPY

DO NOT
COPY

DO NOT

igital systems are built from circuits that process binary digits
0s and 1s—yet very few real-life problems are based on bin
numbers or any numbers at all. Therefore, a digital system
designer must establish some correspondence between the
ry digits processed by digital circuits and real-life numbe

events, and conditions. The purpose of this chapter is to show you
familiar numeric quantities can be represented and manipulated in a d
system, and how nonnumeric data, events, and conditions also ca
represented.

The first nine sections describe binary number systems and show
addition, subtraction, multiplication, and division are performed in th
systems. Sections 2.10–2.13 show how other things, such as decimal
bers, text characters, mechanical positions, and arbitrary conditions, c
encoded using strings of binary digits.

Section 2.14 introduces “n-cubes,” which provide a way to visualiz
the relationship between different bit strings. The n-cubes are especially
useful in the study of error-detecting codes in Section 2.15. We conclud
chapter with an introduction to codes for transmitting and storing data
bit at a time.

D

21ng Prohibited

22 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

ay in
p-

mal

to
digit

a
uals

ally
on.

r is

positional number
system

weight

base
radix

radix point

high-order digit
most significant digit
low-order digit
least significant digit

binary digit
bit
binary radix
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

2.1 Positional Number Systems
The traditional number system that we learned in school and use every d
business is called a positional number system. In such a system, a number is re
resented by a string of digits where each digit position has an associated weight.
The value of a number is a weighted sum of the digits, for example:

1734 = 1·1000 + 7·100 + 3·10 + 4·1

Each weight is a power of 10 corresponding to the digit’s position. A deci
point allows negative as well as positive powers of 10 to be used:

5185.68 = 5·1000 + 1·100 + 8·10 + 5·1 + 6·0.1 + 8·0.01

In general, a number D of the form d1d0.d−1d−2 has the value

D = d1·101 + d0·100 + d–1·10–1 + d–2·10–2

Here, 10 is called the base or radix of the number system. In a general positional
number system, the radix may be any integer r ≥ 2, and a digit in position i has
weight r i. The general form of a number in such a system is

dp–1dp–2· · ·d1d0 . d–1d–2· · ·d–n

where there are p digits to the left of the point and n digits to the right of the
point, called the radix point. If the radix point is missing, it is assumed to be
the right of the rightmost digit. The value of the number is the sum of each
multiplied by the corresponding power of the radix:

Except for possible leading and trailing zeroes, the representation of
number in a positional number system is unique. (Obviously, 0185.6300 eq
185.63, and so on.) The leftmost digit in such a number is called the high-order
or most significant digit; the rightmost is the low-order or least significant digit.

As we’ll learn in Chapter 3, digital circuits have signals that are norm
in one of only two conditions—low or high, charged or discharged, off or
The signals in these circuits are interpreted to represent binary digits (or bits)
that have one of two values, 0 and 1. Thus, the binary radix is normally used to
represent numbers in a digital system. The general form of a binary numbe

bp–1bp–2· · ·b1b0 . b–1b–2· · ·b–n

and its value is

D di r
i⋅

i n–=

p 1–

∑=

B bi 2i⋅
i n–=

p 1–

∑=
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.2 Octal and Hexadecimal Numbers 23

PY
PY
PY
PY
PY
PY
PY
PY
PY

 radix

 2 is
cuits.
rtant

ovide
m.
-
 their
its, so
6 dig-

nting
three

 col-
one

 the
ree

 use

l num-

binary point

MSB
LSB

octal number system
hexadecimal number

system

hexadecimal digits
A–F

binary to octal
conversion

binary to hexadecimal
conversion
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

In a binary number, the radix point is called the binary point. When dealing with
binary and other nondecimal numbers, we use a subscript to indicate the
of each number, unless the radix is clear from the context. Examples of binary
numbers and their decimal equivalents are given below.

The leftmost bit of a binary number is called the high-order or most significant
bit (MSB); the rightmost is the low-order or least significant bit (LSB).

2.2 Octal and Hexadecimal Numbers
Radix 10 is important because we use it in everyday business, and radix
important because binary numbers can be processed directly by digital cir
Numbers in other radices are not often processed directly, but may be impo
for documentation or other purposes. In particular, the radices 8 and 16 pr
convenient shorthand representations for multibit numbers in a digital syste

The octal number system uses radix 8, while the hexadecimal number sys
tem uses radix 16. Table 2-1 shows the binary integers from 0 to 1111 and
octal, decimal, and hexadecimal equivalents. The octal system needs 8 dig
it uses digits 0–7 of the decimal system. The hexadecimal system needs 1
its, so it supplements decimal digits 0–9 with the letters A–F.

The octal and hexadecimal number systems are useful for represe
multibit numbers because their radices are powers of 2. Since a string of
bits can take on eight different combinations, it follows that each 3-bit string can
be uniquely represented by one octal digit, according to the third and fourth
umns of Table 2-1. Likewise, a 4-bit string can be represented by
hexadecimal digit according to the fifth and sixth columns of the table.

Thus, it is very easy to convert a binary number to octal. Starting at
binary point and working left, we simply separate the bits into groups of th
and replace each group with the corresponding octal digit:

The procedure for binary to hexadecimal conversion is similar, except we
groups of four bits:

In these examples we have freely added zeroes on the left to make the tota
ber of bits a multiple of 3 or 4 as required.

100112 = 1·16 + 0·8 + 0·4 + 1·2 + 1·1 = 1910

1000102 = 1·32 + 0·16 + 0·8 + 0·4 + 1·2 + 0·1 = 3410

101.0012 = 1·4 + 0·2 + 1·1 + 0·0.5 + 0·0.25 + 1·0.125 = 5.12510

1000110011102 = 100 011 001 1102 = 43168
111011011101010012 = 011 101 101 110 101 0012 = 3556518

1000110011102 = 1000 1100 11102 = 8CE16

111011011101010012 = 00011101 1011 1010 10012 = 1DBA916
Copyright © 1999 by John F. Wakerly Copying Prohibited

24 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

can
king

y, is
rre-

ertain
oups
use of

 for

Ta b l e 2 - 1
Binary, decimal,
octal, and
hexadecimal
numbers.

octal or hexadecimal to
binary conversion

byte
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

If a binary number contains digits to the right of the binary point, we
convert them to octal or hexadecimal by starting at the binary point and wor
right. Both the left-hand and right-hand sides can be padded with zeroes to get
multiples of three or four bits, as shown in the example below:

Converting in the reverse direction, from octal or hexadecimal to binar
very easy. We simply replace each octal or hexadecimal digit with the co
sponding 3- or 4-bit string, as shown below:

The octal number system was quite popular 25 years ago because of c
minicomputers that had their front-panel lights and switches arranged in gr
of three. However, the octal number system is not used much today, beca
the preponderance of machines that process 8-bit bytes. It is difficult to extract
individual byte values in multibyte quantities in the octal representation;

Binary Decimal Octal
3-Bit

String Hexadecimal
4-Bit

String

0 0 0 000 0 0000

1 1 1 001 1 0001

10 2 2 010 2 0010

11 3 3 011 3 0011

100 4 4 100 4 0100

101 5 5 101 5 0101

110 6 6 110 6 0110

111 7 7 111 7 0111

1000 8 10 — 8 1000

1001 9 11 — 9 1001

1010 10 12 — A 1010

1011 11 13 — B 1011

1100 12 14 — C 1100

1101 13 15 — D 1101

1110 14 16 — E 1110

1111 15 17 — F 1111

10.10110010112 = 010 . 101 100 101 1002 = 2.54548
= 0010 . 1011 0010 11002 = 2.B2C16

13578 = 001 011 101 1112
2046.178 = 010 000 100 110 . 001 1112

BEAD16 = 1011 1110 1010 11012

9F.46C16 = 1001 111 . 0100 0110 11002

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.3 General Positional Number System Conversions 25

PY
PY
PY
PY
PY
PY
PY
PY
PY

For

it
a-
 space.
aving

stitu-
nvert
.
iven

ert-
 the

ber system is useful for
 that I had just turned 2816.
e 50, I’ll be only 3216.
 20, 30, 40, 50, …, but you
ystem is of no fundamental
irthdays 2, 4, 8, 16, 32, and
y do you think the Beatles

nibble

0x prefix

radix-r to decimal
conversion
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

example, what are the octal values of the four 8-bit bytes in the 32-bit number
with octal representation 123456701238?

In the hexadecimal system, two digits represent an 8-bit byte, and 2n digits
represent an n-byte word; each pair of digits constitutes exactly one byte.
example, the 32-bit hexadecimal number 5678ABCD16 consists of four bytes
with values 5616, 7816, AB16, and CD16. In this context, a 4-bit hexadecimal dig
is sometimes called a nibble; a 32-bit (4-byte) number has eight nibbles. Hex
decimal numbers are often used to describe a computer’s memory address
For example, a computer with 16-bit addresses might be described as h
read/write memory installed at addresses 0–EFFF16, and read-only memory at
addresses F000–FFFF16. Many computer programming languages use the prefix
“0x” to denote a hexadecimal number, for example, 0xBFC0000 .

2.3 General Positional Number System Conversions
In general, conversion between two radices cannot be done by simple sub
tions; arithmetic operations are required. In this section, we show how to co
a number in any radix to radix 10 and vice versa, using radix-10 arithmetic

In Section 2.1, we indicated that the value of a number in any radix is g
by the formula

where r is the radix of the number and there are p digits to the left of the radix
point and n to the right. Thus, the value of the number can be found by conv
ing each digit of the number to its radix-10 equivalent and expanding
formula using radix-10 arithmetic. Some examples are given below:

1CE816 = 1·163 + 12·162 + 14·161 + 8·160 = 740010
F1A316 = 15·163 + 1·162 + 10·161 + 3·160 = 6185910
436.58 = 4·82 + 3·81 + 6·80 + 5·8–1 = 286.62510
132.34 = 1·42 + 3·41 + 2·40 + 3·4–1 = 30.7510

WHEN I’M 64 As you grow older, you’ll find that the hexadecimal num
more than just computers. When I turned 40, I told friends
The “16” was whispered under my breath, of course. At ag

People get all excited about decennial birthdays like
should be able to convince your friends that the decimal s
significance. More significant life changes occur around b
64, when you add a most significant bit to your age. Wh
sang “When I’m sixty-four”?

D di r i⋅
i n–=

p 1–∑=
Copyright © 1999 by John F. Wakerly Copying Prohibited

26 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

rit-

ply
een

r a

e

he
e

s

ices.

decimal to radix-r
conversion
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

A shortcut for converting whole numbers to radix 10 is obtained by rew
ing the expansion formula as follows:

D = ((· · ·((dp–1)·r + dp–2)·r + · · ·) · · ·r + d1)·r + d0

That is, we start with a sum of 0; beginning with the leftmost digit, we multi
the sum by r and add the next digit to the sum, repeating until all digits have b
processed. For example, we can write

F1AC16 = (((15)·16 + 1·16 + 10)·16 + 12

Although this formula is not too exciting in itself, it forms the basis fo
very convenient method of converting a decimal number D to a radix r. Consider
what happens if we divide the formula by r. Since the parenthesized part of th
formula is evenly divisible by r, the quotient will be

Q = (· · ·((dp–1)·r + dp–2)·r + · · ·)·r + d1

and the remainder will be d0. Thus, d0 can be computed as the remainder of t
long division of D by r. Furthermore, the quotient Q has the same form as th
original formula. Therefore, successive divisions by r will yield successive dig-
its of D from right to left, until all the digits of D have been derived. Example
are given below:

179 ÷ 2 = 89 remainder 1 (LSB)
÷2 = 44 remainder 1

÷2 = 22 remainder 0
÷2 = 11 remainder 0

÷2 = 5 remainder 1
÷2 = 2 remainder 1

÷2 = 1 remainder 0
÷2 = 0 remainder 1 (MSB)

17910 = 101100112

467 ÷ 8 = 58 remainder 3 (least significant digit)
÷8 = 7 remainder 2

÷ 8 = 0 remainder 7 (most significant digit)
46710 = 7238

3417 ÷ 16 = 213 remainder 9 (least significant digit)
 ÷ 16 = 13 remainder 5

 ÷ 16 = 0 remainder 13 (most significant digit)
341710 = D5916

Table 2-2 summarizes methods for converting among the most common rad
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.3 General Positional Number System Conversions 27

PY
PY
PY
PY
PY
PY
PY
PY
PY

 + 1 ⋅ 64
2 + 1 ⋅ 1 = 149710

29C16

11 011 1102 = 1403368

37410

(MSB)

nt digit)

it)
 digit)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Ta b l e 2 - 2 Conversion methods for common radices.

Conversion Method Example

Binary to

Octal Substitution 101110110012 = 10 111 011 0012 = 27318

Hexadecimal Substitution 101110110012 = 101 1101 10012 = 5D916

Decimal Summation 101110110012 = 1 ⋅ 1024 + 0 ⋅ 512 + 1 ⋅ 256 + 1 ⋅ 128
 + 0 ⋅ 32 + 1 ⋅ 16 + 1 ⋅ 8 + 0 ⋅ 4 + 0 ⋅

Octal to

Binary Substitution 12348 = 001 010 011 1002

Hexadecimal Substitution 12348 = 001 010 011 1002 = 0010 1001 11002 =

Decimal Summation 12348 = 1 ⋅ 512 + 2 ⋅ 64 + 3 ⋅ 8 + 4 ⋅ 1 = 66810

Hexadecimal to

Binary Substitution C0DE16 = 1100 0000 1101 11102

Octal Substitution C0DE16 = 1100 0000 1101 11102 = 1 100 000 0

Decimal Summation C0DE16 = 12 ⋅ 4096 + 0 ⋅ 256 + 13 ⋅ 16 + 14 ⋅ 1 = 49

Decimal to

Binary Division 10810 ÷ 2 = 54 remainder 0 (LSB)
 ÷2 = 27 remainder 0
 ÷2 = 13 remainder 1
 ÷2 = 6 remainder 1
 ÷2 = 3 remainder 0
 ÷2 = 1 remainder 1
 ÷2 = 0 remainder 1
10810 = 11011002

Octal Division 10810 ÷ 8 = 13 remainder 4 (least significant digit)
÷8 = 1 remainder 5

÷8 = 0 remainder 1 (most significa
10810 = 1548

Hexadecimal Division 10810 ÷ 16 = 6 remainder 12 (least significant dig
÷16 = 0 remainder 6 (most significant

10810 = 6C16
Copyright © 1999 by John F. Wakerly Copying Prohibited

28 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 tech-
tch is

 two
ial

umn

ions
e
 as a

wn in
ns
. The

binary addition

binary subtraction

minuend
subtrahend
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

2.4 Addition and Subtraction of Nondecimal Numbers
Addition and subtraction of nondecimal numbers by hand uses the same
nique that we learned in grammar school for decimal numbers; the only ca
that the addition and subtraction tables are different.

Table 2-3 is the addition and subtraction table for binary digits. To add
binary numbers X and Y, we add together the least significant bits with an init
carry (cin) of 0, producing carry (cout) and sum (s) bits according to the table. We
continue processing bits from right to left, adding the carry out of each col
into the next column’s sum.

Two examples of decimal additions and the corresponding binary addit
are shown in Figure 2-1, using a colored arrow to indicate a carry of 1. The sam
examples are repeated below along with two more, with the carries shown
bit string C:

Binary subtraction is performed similarly, using borrows (bin and bout)
instead of carries between steps, and producing a difference bit d. Two examples
of decimal subtractions and the corresponding binary subtractions are sho
Figure 2-2. As in decimal subtraction, the binary minuend values in the colum
are modified when borrows occur, as shown by the colored arrows and bits

Ta b l e 2 - 3
Binary addition and
subtraction table.

cin or bin x y cout s bout d

0 0 0 0 0 0 0

 0 0 1 0 1 1 1

 0 1 0 0 1 0 1

 0 1 1 1 0 0 0

 1 0 0 0 1 1 1

 1 0 1 1 0 1 0

 1 1 0 1 0 0 0

 1 1 1 1 1 1 1

C
X
Y

190
+141

101111000
10111110

+ 10001101

C
X
Y

173
+ 44

001011000
10101101

+ 00101100
X + Y 331 101001011 X + Y 217 11011001

C
X
Y

127
+ 63

011111110
01111111

+ 00111111

C
X
Y

170
+ 85

000000000
10101010

+ 01010101

X + Y 190 10111110 X + Y 255 11111111
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.4 Addition and Subtraction of Nondecimal Numbers 29

PY
PY
PY
PY
PY
PY
PY
PY
PY

time

. For
it

lored

deci-
ther

,

0

0

0

1

0

1

0 10 10 0 1 10 0 10

0

0

1

1

0

1

1

0

0

1

0

0

1

1

0

0

0

1

1

1 1 1 0 1

igure 2-2
xamples of decimal
d corresponding

nary subtractions.

comparing numbers
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

examples from the figure are repeated below along with two more, this
showing the borrows as a bit string B:

A very common use of subtraction in computers is to compare two numbers
example, if the operation X − Y produces a borrow out of the most significant b
position, then X is less than Y; otherwise, X is greater than or equal to Y. The rela-
tionship between carries and borrow in adders and subtractors will be exp
in Section 5.10.

Addition and subtraction tables can be developed for octal and hexa
mal digits, or any other desired radix. However, few computer engineers bo
to memorize these tables. If you rarely need to manipulate nondecimal numbers

B
X
Y

229
− 46

001111100
11100101

− 00101110

B
X
Y

210
−109

011011010
11010010

− 01101101

X − Y 183 10110111 X − Y 101 01100101

B
X
Y

170
− 85

010101010
10101010

− 01010101

B
X
Y

221
− 76

000000000
11011101

− 01001100

X − Y 85 01010101 X − Y 145 10010001

190

+ 141

331

1

1

0

+

1

0

0

1

1 1 1 1 1 1 1

1

0

0

1

0

0

1

1

1

1

1

0

1

0

1

0

1

1

X

Y

X + Y

 X

 Y

 X + Y

173

+ 44

217

1

0

1

+

0

0

1

1

1

0

0

0

1

1

1

1

1

1

0

Figure 2-1 Examples of decimal and corresponding binary additions.

229

– 46

183

–

1

0

1

0

0

1

1

0

1

1

0

0 10 1 1 10 10

1

0

1

 X

 Y

 X – Y

 X

 Y

 X – Y

 minuend

 subtrahend

difference

210

– 109

101

–

The borrow ripples through three columns
to reach a borrowable 1, i.e.,
100 = 011 (the modified bits)
 + 1 (the borrow)

After the first borrow, the new
subtraction for this column is
0–1, so we must borrow again.

Must borrow 1, yielding
the new subtraction 10–1 = 1

1 0 0 1

1

1

0

1

1

1

F
E
an
bi
Copyright © 1999 by John F. Wakerly Copying Prohibited

30 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

culate
ns in
 pro-

ed to
rac-
mal,

s the
 the
rsion
s for

 rep-
nitude
ement

bol
 dec-

e
en-

g an

it

hexadecimal addition

signed-magnitude
system

sign bit
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

then it’s easy enough on those occasions to convert them to decimal, cal
results, and convert back. On the other hand, if you must perform calculatio
binary, octal, or hexadecimal frequently, then you should ask Santa for a
grammer’s “hex calculator” from Texas Instruments or Casio.

If the calculator’s battery wears out, some mental shortcuts can be us
facilitate nondecimal arithmetic. In general, each column addition (or subt
tion) can be done by converting the column digits to decimal, adding in deci
and converting the result to corresponding sum and carry digits in the nondeci-
mal radix. (A carry is produced whenever the column sum equals or exceed
radix.) Since the addition is done in decimal, we rely on our knowledge of
decimal addition table; the only new thing that we need to learn is the conve
from decimal to nondecimal digits and vice versa. The sequence of step
mentally adding two hexadecimal numbers is shown below:

2.5 Representation of Negative Numbers
So far, we have dealt only with positive numbers, but there are many ways to
resent negative numbers. In everyday business, we use the signed-mag
system, discussed next. However, most computers use one of the compl
number systems that we introduce later.

2.5.1 Signed-Magnitude Representation
In the signed-magnitude system, a number consists of a magnitude and a sym
indicating whether the magnitude is positive or negative. Thus, we interpret
imal numbers +98, −57, +123.5, and −13 in the usual way, and we also assum
that the sign is “+” if no sign symbol is written. There are two possible repres
tations of zero, “+0” and “−0”, but both have the same value.

The signed-magnitude system is applied to binary numbers by usin
extra bit position to represent the sign (the sign bit). Traditionally, the most sig-
nificant bit (MSB) of a bit string is used as the sign bit (0 = plus, 1 = minus), and
the lower-order bits contain the magnitude. Thus, we can write several 8-b
signed-magnitude integers and their decimal equivalents:

C
X
Y +

1
1
C

1
9
7

0
B
E

0
9
6

16
16 +

1
1

12

1
9
7

0
11
14

0
9
6

X + Y E 1 9 F16 14
14
E

17
16+1

1

25
16+9

9

15
15
F

010101012 = +8510 110101012 = –8510

011111112 = +12710 111111112 = –12710

000000002 = +010 100000002 = –010
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.5 Representation of Negative Numbers 31

PY
PY
PY
PY
PY
PY
PY
PY
PY

nega-

dds
ends

 must
ent, it

m-
ent
deem-
ild a

al to
h the

ign, a
as
ging
r sub-
ned-

called

ber
en-

ation
-

nt
rs

signed-magnitude
adder

signed-magnitude
subtractor

complement number
system

radix-complement
system

10’s complement
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The signed-magnitude system has an equal number of positive and
tive integers. An n-bit signed-magnitude integer lies within the range −(2n−1−1)
through +(2n−1−1), and there are two possible representations of zero.

Now suppose that we wanted to build a digital logic circuit that a
signed-magnitude numbers. The circuit must examine the signs of the add
to determine what to do with the magnitudes. If the signs are the same, it
add the magnitudes and give the result the same sign. If the signs are differ
must compare the magnitudes, subtract the smaller from the larger, and give the
result the sign of the larger. All of these “ifs,” “adds,” “subtracts,” and “co
pares” translate into a lot of logic-circuit complexity. Adders for complem
number systems are much simpler, as we’ll show next. Perhaps the one re
ing feature of a signed-magnitude system is that, once we know how to bu
signed-magnitude adder, a signed-magnitude subtractor is almost trivi
build—it need only change the sign of the subtrahend and pass it along wit
minuend to an adder.

2.5.2 Complement Number Systems
While the signed-magnitude system negates a number by changing its s
complement number system negates a number by taking its complement
defined by the system. Taking the complement is more difficult than chan
the sign, but two numbers in a complement number system can be added o
tracted directly without the sign and magnitude checks required by the sig
magnitude system. We shall describe two complement number systems,
the “radix complement” and the “diminished radix-complement.”

In any complement number system, we normally deal with a fixed num
of digits, say n. (However, we can increase the number of digits by “sign ext
sion” as shown in Exercise 2.23, and decrease the number by truncating high-
order digits as shown in Exercise 2.24.) We further assume that the radix is r, and
that numbers have the form

D = dn–1dn–2· · ·d1d0 .

The radix point is on the right and so the number is an integer. If an oper
produces a result that requires more than n digits, we throw away the extra high
order digit(s). If a number D is complemented twice, the result is D.

2.5.3 Radix-Complement Representation
In a radix-complement system, the complement of an n-digit number is obtained
by subtracting it from r n. In the decimal number system, the radix compleme
is called the 10’s complement. Some examples using 4-digit decimal numbe
(and subtraction from 10,000) are shown in Table 2-4.

By definition, the radix complement of an n-digit number D is obtained by
subtracting it from r n. If D is between 1 and r n − 1, this subtraction produces
Copyright © 1999 by John F. Wakerly Copying Prohibited

32 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 rep-

om-
y

l

computing the radix
complement
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

another number between 1 and r n − 1. If D is 0, the result of the subtraction is rn,
which has the form 100 ⋅ ⋅ ⋅ 00, where there are a total of n + 1 digits. We throw
away the extra high-order digit and get the result 0. Thus, there is only one
resentation of zero in a radix-complement system.

It seems from the definition that a subtraction operation is needed to c
pute the radix complement of D. However, this subtraction can be avoided b
rewriting r n as (r n − 1) + 1 and r n − D as ((r n − 1) − D) + 1. The number r n − 1
has the form mm ⋅ ⋅ ⋅ mm, where m = r − 1 and there are n m’s. For example,
10,000 equals 9,999 + 1. If we define the complement of a digit d to be r − 1 − d,
then (r n − 1) − D is obtained by complementing the digits of D. Therefore, the
radix complement of a number D is obtained by complementing the individua

Ta b l e 2 - 4
Examples of 10’s and
9s’ complements.

Number
10’s

complement
9s’

complement

1849 8151 8150

2067 7933 7932

100 9900 9899

7 9993 9992

8151 1849 1848

0 10000 (= 0) 9999

Ta b l e 2 - 5
Digit complements.

Complement

Digit Binary Octal Decimal Hexadecimal

0 1 7 9 F

1 0 6 8 E

2 – 5 7 D

3 – 4 6 C

4 – 3 5 B

5 – 2 4 A

6 – 1 3 9

7 – 0 2 8

8 – – 1 7

9 – – 0 6

A – – – 5

B – – – 4

C – – – 3

D – – – 2

E – – – 1

F – – – 0
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.5 Representation of Negative Numbers 33

PY
PY
PY
PY
PY
PY
PY
PY
PY

ple-
ctal,

tive if
ary
at the
-

. As
er

itive
ion of
-

nd a

its

its

its

two’s complement

weight of MSB

extra negative number

sign extension
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

digits of D and adding 1. For example, the 10’s complement of 1849 is 8150+ 1,
or 8151. You should confirm that this trick also works for the other 10’s-com
ment examples above. Table 2-5 lists the digit complements for binary, o
decimal, and hexadecimal numbers.

2.5.4 Two’s-Complement Representation
For binary numbers, the radix complement is called the two’s complement. The
MSB of a number in this system serves as the sign bit; a number is nega
and only if its MSB is 1. The decimal equivalent for a two’s-complement bin
number is computed the same way as for an unsigned number, except th
weight of the MSB is −2n−1 instead of +2n−1. The range of representable num
bers is −(2n−1) through +(2n−1 −1). Some 8-bit examples are shown below:

A carry out of the MSB position occurs in one case, as shown in color above
in all two’s-complement operations, this bit is ignored and only the low-ordn
bits of the result are used.

In the two’s-complement number system, zero is considered pos
because its sign bit is 0. Since two’s complement has only one representat
zero, we end up with one extra negative number, −(2n−1), that doesn’t have a pos
itive counterpart.

We can convert an n-bit two’s-complement number X into an m-bit one, but
some care is needed. If m > n, we must append m − n copies of X’s sign bit to the
left of X (see Exercise 2.23). That is, we pad a positive number with 0s a
negative one with 1s; this is called sign extension. If m < n, we discard X’s n − m

1710 = 00010001
⇓ .

11101110

+1

2

complement bits
−9910 = 10011101

⇓ .
01100010

+1

2

complement b

111011112 = −1710 011000112 = 9910

11910 = 01110111
⇓ .

10001000
+1

complement bits
−12710 = 10000001

⇓ .
01111110

+1

complement b

100010012 = −11910 011111112 = 12710

010 = 00000000
⇓ .

11111111

+1

2

complement bits
−12810 = 10000000

⇓ .
01111111

+1

2

complement b

1 000000002 = 010 100000002 = −12810
Copyright © 1999 by John F. Wakerly Copying Prohibited

34 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 the

 sys-
also
.

-
t

 if

s
mber

es’-

low:

etry
nes’-
 (see
tem

diminished radix-
complement system

9s’ complement

ones’ complement
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

leftmost bits; however, the result is valid only if all of the discarded bits are
same as the sign bit of the result (see Exercise 2.24).

Most computers and other digital systems use the two’s-complement
tem to represent negative numbers. However, for completeness, we’ll
describe the diminished radix-complement and ones’-complement systems

*2.5.5 Diminished Radix-Complement Representation
In a diminished radix-complement system, the complement of an n-digit number
D is obtained by subtracting it from r n−1. This can be accomplished by comple
menting the individual digits of D, without adding 1 as in the radix-complemen
system. In decimal, this is called the 9s’ complement; some examples are given
in the last column of Table 2-4 on page 32.

*2.5.6 Ones’-Complement Representation
The diminished radix-complement system for binary numbers is called the ones’
complement. As in two’s complement, the most significant bit is the sign, 0
positive and 1 if negative. Thus there are two representations of zero, positive
zero (00⋅ ⋅ ⋅ 00) and negative zero (11⋅ ⋅ ⋅ 11). Positive number representation
are the same for both ones’ and two’s complements. However, negative nu
representations differ by 1. A weight of −(2n−1 − 1), rather than −2n−1, is given
to the most significant bit when computing the decimal equivalent of a on
complement number. The range of representable numbers is −(2n−1 − 1) through
+(2n−1 − 1). Some 8-bit numbers and their ones’ complements are shown be

The main advantages of the ones’-complement system are its symm
and the ease of complementation. However, the adder design for o
complement numbers is somewhat trickier than a two’s-complement adder
Exercise 7.67). Also, zero-detecting circuits in a ones’-complement sys

* Throughout this book, optional sections are marked with an asterisk.

1710 = 000100012
⇓ .

111011102 = −1710

−9910 = 100111002
⇓ .

011000112 = 9910

11910 = 011101112
⇓ .

100010002 = −11910

−12710 = 100000002
⇓ .

011111112 = 12710

010 = 000000002 (positive zero)0000000

⇓ .
000 0111111112 = 010 (negative zero)
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.6 Two’s-Complement Addition and Subtraction 35

PY
PY
PY
PY
PY
PY
PY
PY
PY

nvert

is
e-
 bits,

um-

ems,

ive
-

bers.
ent

ange
n and

excess-B representation

bias
excess-2m−1 system

two’s-complement
addition
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

either must check for both representations of zero, or must always co
11 ⋅ ⋅ ⋅ 11 to 00⋅ ⋅ ⋅ 00.

*2.5.7 Excess Representations
Yes, the number of different systems for representing negative numbers is exces-
sive, but there’s just one more for us to cover. In excess-B representation, an
m-bit string whose unsigned integer value is M (0 ≤ M < 2m) represents the
signed integer M − B, where B is called the bias of the number system.

For example, an excess−2m−1 system represents any number X in the range
−2m−1 through +2m−1 − 1 by the m-bit binary representation of X + 2m−1 (which
is always nonnegative and less than 2m). The range of this representation
exactly the same as that of m-bit two’s-complement numbers. In fact, the repr
sentations of any number in the two systems are identical except for the sign
which are always opposite. (Note that this is true only when the bias is 2m−1.)

The most common use of excess representations is in floating-point n
ber systems (see References).

2.6 Two’s-Complement Addition and Subtraction

2.6.1 Addition Rules
A table of decimal numbers and their equivalents in different number syst
Table 2-6, reveals why the two’s complement is preferred for arithmetic opera-
tions. If we start with 10002 (−810) and count up, we see that each success
two’s-complement number all the way to 01112 (+710) can be obtained by add
ing 1 to the previous one, ignoring any carries beyond the fourth bit position.
The same cannot be said of signed-magnitude and ones’-complement num
Because ordinary addition is just an extension of counting, two’s-complem
numbers can thus be added by ordinary binary addition, ignoring any carries
beyond the MSB. The result will always be the correct sum as long as the r
of the number system is not exceeded. Some examples of decimal additio
the corresponding 4-bit two’s-complement additions confirm this:

+3
+ +4

0011
+ 0100

−2
+ −6

1110
+ 1010

+7 0111 −8 11000

+6
+ −3

0110
+ 1101

+4
+ −7

0100
+ 1001

+3 10011 −3 1101
Copyright © 1999 by John F. Wakerly Copying Prohibited

36 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

ter”
r or
 that
ing

Figure 2-3
A modular counting
representation of 4-bit
two’s-complement
numbers.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

2.6.2 A Graphical View
Another way to view the two’s-complement system uses the 4-bit “coun
shown in Figure 2-3. Here we have shown the numbers in a circula
“modular” representation. The operation of this counter very closely mimics
of a real up/down counter circuit, which we’ll study in Section 8.4. Start

Ta b l e 2 - 6 Decimal and 4-bit numbers.

 Decimal
Two’s

Complement
Ones’

Complement
Signed

Magnitude
Excess

2m−1

 −8 1000 — — 0000

 −7 1001 1000 1111 0001

 −6 1010 1001 1110 0010

 −5 1011 1010 1101 0011

 −4 1100 1011 1100 0100

 −3 1101 1100 1011 0101

 −2 1110 1101 1010 0110

 −1 1111 1110 1001 0111

 0 0000 1111 or 0000 1000 or 0000 1000

 1 0001 0001 0001 1001

 2 0010 0010 0010 1010

 3 0011 0011 0011 1011

 4 0100 0100 0100 1100

 5 0101 0101 0101 1101

 6 0110 0110 0110 1110

 7 0111 0111 0111 1111

0000

1000

0001

0010

0011

01011011

1100

1101

1110

1111

01101010

01111001

0100

+0

–8

+1–1

+7–7

+2–2

+3–3

+4–4

+5–5

+6–6

Subtraction of
positive numbers

Addition of
positive numbers
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.6 Two’s-Complement Addition and Subtraction 37

PY
PY
PY
PY
PY
PY
PY
PY
PY

ons
ity

t
ive
mber
dd-

mber
 of
unt
er-
ing

An
of the
ed in
lows

-
there

nary
y be
ers

overflow

overflow rules

two’s-complement
subtraction
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

with the arrow pointing to any number, we can add +n to that number by
counting up n times, that is, by moving the arrow n positions clockwise. It is also
evident that we can subtract n from a number by counting down n times, that is,
by moving the arrow n positions counterclockwise. Of course, these operati
give correct results only if n is small enough that we don’t cross the discontinu
between −8 and +7.

What is most interesting is that we can also subtract n (or add −n) by mov-
ing the arrow 16 − n positions clockwise. Notice that the quantity 16 − n is what
we defined to be the 4-bit two’s complement of n, that is, the two’s-complemen
representation of −n. This graphically supports our earlier claim that a negat
number in two’s-complement representation may be added to another nu
simply by adding the 4-bit representations using ordinary binary addition. A
ing a number in Figure 2-3 is equivalent to moving the arrow a corresponding
number of positions clockwise.

2.6.3 Overflow
If an addition operation produces a result that exceeds the range of the nu
system, overflow is said to occur. In the modular counting representation
Figure 2-3, overflow occurs during addition of positive numbers when we co
past +7. Addition of two numbers with different signs can never produce ov
flow, but addition of two numbers of like sign can, as shown by the follow
examples:

Fortunately, there is a simple rule for detecting overflow in addition:
addition overflows if the signs of the addends are the same and the sign
sum is different from the addends’ sign. The overflow rule is sometimes stat
terms of carries generated during the addition operation: An addition overf
if the carry bits cin into and cout out of the sign position are different. Close exam
ination of Table 2-3 on page 28 shows that the two rules are equivalent—
are only two cases where cin ≠ cout, and these are the only two cases where x = y
and the sum bit is different.

2.6.4 Subtraction Rules
Two’s-complement numbers may be subtracted as if they were ordi
unsigned binary numbers, and appropriate rules for detecting overflow ma
formulated. However, most subtraction circuits for two’s-complement numb

−3
+ −6

1101
+ 1010

+5
+ +6

0101
+ 0110

−9 10111 = +7 +11 1011 = −5

−8
+ −8

1000
+ 1000

+7
+ +7

0111
+ 0111

−16 10000 = +0 +14 1110 = −2
Copyright © 1999 by John F. Wakerly Copying Prohibited

38 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

aking
s for

ished
t of
ith an

Or,
f the
ns of

low
ss:

ng as

 basic
same
 han-

ently
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

do not perform subtraction directly. Rather, they negate the subtrahend by t
its two’s complement, and then add it to the minuend using the normal rule
addition.

Negating the subtrahend and adding the minuend can be accompl
with only one addition operation as follows: Perform a bit-by-bit complemen
the subtrahend and add the complemented subtrahend to the minuend w
initial carry (cin) of 1 instead of 0. Examples are given below:

Overflow in subtraction can be detected by examining the signs of the min-
uend and the complemented subtrahend, using the same rule as in addition.
using the technique in the preceding examples, the carries into and out o
sign position can be observed and overflow detected irrespective of the sig
inputs and output, again using the same rule as in addition.

An attempt to negate the “extra” negative number results in overf
according to the rules above, when we add 1 in the complementation proce

However, this number can still be used in additions and subtractions as lo
the final result does not exceed the number range:

2.6.5 Two’s-Complement and Unsigned Binary Numbers
Since two’s-complement numbers are added and subtracted by the same
binary addition and subtraction algorithms as unsigned numbers of the
length, a computer or other digital system can use the same adder circuit to
dle numbers of both types. However, the results must be interpreted differ

+4
− +3

0100
− 0011

1
0100

+ 1100

— cin

+3
− +4

0011
− 0100

1
0011

+ 1011

— cin

+3 10001 −1 1111

+3
− −4

0011
− 1100

1
0011

+ 0011

— cin

−3
− −4

1101
− 1100

1
1101

+ 0011

— cin

+7 0111 +1 10001

−(−8) = −1000 = 0111
+ 0001

1000 = −8

+4
+ −8

0100
+ 1000

−3
− −8

1101
− 1000

1
1101

+ 0111

— cin

−4 1100 +5 10101
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.6 Two’s-Complement Addition and Subtraction 39

PY
PY
PY
PY
PY
PY
PY
PY
PY

.,

ent
btain
cupy

arrow

igned

tem if

um-

e-

ifi-
ent

sult.
in
 a

signed vs. unsigned
numbers

Figure 2-4
A modular counting
representation of 4-bit
unsigned numbers.

carry

borrow
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

depending on whether the system is dealing with signed numbers (e.g−8
through +7) or unsigned numbers (e.g., 0 through 15).

We introduced a graphical representation of the 4-bit two’s-complem
system in Figure 2-3. We can relabel this figure as shown in Figure 2-4 to o
a representation of the 4-bit unsigned numbers. The binary combinations oc
the same positions on the wheel, and a number is still added by moving the
a corresponding number of positions clockwise, and subtracted by moving the
arrow counterclockwise.

An addition operation can be seen to exceed the range of the 4-bit uns
number system in Figure 2-4 if the arrow moves clockwise through the disconti-
nuity between 0 and 15. In this case a carry out of the most significant bit
position is said to occur.

Likewise a subtraction operation exceeds the range of the number sys
the arrow moves counterclockwise through the discontinuity. In this case abor-
row out of the most significant bit position is said to occur.

From Figure 2-4 it is also evident that we may subtract an unsigned n
ber n by counting clockwise 16 − n positions. This is equivalent to adding the
4-bit two’s-complement of n. The subtraction produces a borrow if the corr
sponding addition of the two’s complement does not produce a carry.

In summary, in unsigned addition the carry or borrow in the most sign
cant bit position indicates an out-of-range result. In signed, two’s-complem
addition the overflow condition defined earlier indicates an out-of-range re
The carry from the most significant bit position is irrelevant in signed addition
the sense that overflow may or may not occur independently of whether or not
carry occurs.

0000

1000

0001

0010

0011

01011011

1100

1101

1110

1111

01101010

01111001

0100

0

8

115

79

214

313

412

511

610

Subtraction Addition
Copyright © 1999 by John F. Wakerly Copying Prohibited

40 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

ive

e
, but

the

osi-

i-

and
sing

sub-
es’-
t.
 sec-

ones’-complement
addition

end-around carry

ones’-complement
subtraction
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

*2.7 Ones’-Complement Addition and Subtraction
Another look at Table 2-6 helps to explain the rule for adding ones’-complement
numbers. If we start at 10002 (−710) and count up, we obtain each success
ones’-complement number by adding 1 to the previous one, except at the transi-
tion from 11112 (negative 0) to 00012 (+110). To maintain the proper count, we
must add 2 instead of 1 whenever we count past 11112. This suggests a techniqu
for adding ones’-complement numbers: Perform a standard binary addition
add an extra 1 whenever we count past 11112.

Counting past 11112 during an addition can be detected by observing
carry out of the sign position. Thus, the rule for adding ones’-complement num-
bers can be stated quite simply:

• Perform a standard binary addition; if there is a carry out of the sign p
tion, add 1 to the result.

This rule is often called end-around carry. Examples of ones’-complement add
tion are given below; the last three include an end-around carry:

Following the two-step addition rule above, the addition of a number
its ones’ complement produces negative 0. In fact, an addition operation u
this rule can never produce positive 0 unless both addends are positive 0.

As with two’s complement, the easiest way to do ones’-complement
traction is to complement the subtrahend and add. Overflow rules for on
complement addition and subtraction are the same as for two’s complemen

Table 2-7 summarizes the rules that we presented in this and previous
tions for negation, addition, and subtraction in binary number systems.

+3
+ +4

0011
+ 0100

+4
+ −7

0100
+ 1000

+5
+ −5

0101
+ 1010

+7 0111 −3 1100 −0 1111

−2
+ −5

1101
+ 1010

+6
+ −3

0110
+ 1100

−0
+ −0

1111
+ 1111

−7 10111
+ 1

+3 10010
+ 1

−0 11110
+ 1

1000 0011 1111
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.8 Binary Multiplication 41

PY
PY
PY
PY
PY
PY
PY
PY
PY

pli-
 can
 the
le

action Rules

tract the subtrahend
 the minuend. Result is
f range if a borrow out
e MSB occurs.

ge the sign bit of the
ahend and proceed as
dition.

plement all bits of the
ahend and add to the
end with an initial
 of 1.

plement all bits of the
ahend and proceed as
dition.

shift-and-add
multiplication

unsigned binary
multiplication
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*2.8 Binary Multiplication
In grammar school we learned to multiply by adding a list of shifted multi
cands computed according to the digits of the multiplier. The same method
be used to obtain the product of two unsigned binary numbers. Forming
shifted multiplicands is trivial in binary multiplication, since the only possib
values of the multiplier digits are 0 and 1. An example is shown below:

Ta b l e 2 - 7 Summary of addition and subtraction rules for binary numbers.

Number System Addition Rules Negation Rules Subtr

Unsigned Add the numbers. Result is out of
range if a carry out of the MSB
occurs.

Not applicable Sub
from
out o
of th

Signed magnitude (same sign) Add the magnitudes;
overflow occurs if a carry out of
MSB occurs; result has the same
sign.
(opposite sign) Subtract the
smaller magnitude from the larg-
er; overflow is impossible; result
has the sign of the larger.

Change the number’s
sign bit.

Chan
subtr
in ad

Two’s complement Add, ignoring any carry out of
the MSB. Overflow occurs if the
carries into and out of MSB are
different.

Complement all bits of
the number; add 1 to the
result.

Com
subtr
minu
carry

Ones’ complement Add; if there is a carry out of the
MSB, add 1 to the result. Over-
flow if carries into and out of
MSB are different.

Complement all bits of
the number.

Com
subtr
in ad

11
× 13

1011
× 1101

multiplicand
multiplier

33
110

1011
00000 }shifted multiplicands

143 101100
1011000

10001111 product
Copyright © 1999 by John F. Wakerly Copying Prohibited

42 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

ital
d to a
ns

m
ddi-
tial
uct
t the
ight-
-add
n

ned
ulti-
 had

tive

on,

e of
 mul-
’s-

except
r-

ent
fted

partial product

signed multiplication

two’s-complement
multiplication
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Instead of listing all the shifted multiplicands and then adding, in a dig
system it is more convenient to add each shifted multiplicand as it is create
partial product. Applying this technique to the previous example, four additio
and partial products are used to multiply 4-bit numbers:

In general, when we multiply an n-bit number by an m-bit number, the resulting
product requires at most n + m bits to express. The shift-and-add algorith
requires m partial products and additions to obtain the result, but the first a
tion is trivial, since the first partial product is zero. Although the first par
product has only n significant bits, after each addition step the partial prod
gains one more significant bit, since each addition may produce a carry. A
same time, each step yields one more partial product bit, starting with the r
most and working toward the left, that does not change. The shift-and
algorithm can be performed by a digital circuit that includes a shift register, a
adder, and control logic, as shown in Section 8.7.2.

Multiplication of signed numbers can be accomplished using unsig
multiplication and the usual grammar school rules: Perform an unsigned m
plication of the magnitudes and make the product positive if the operands
the same sign, negative if they had different signs. This is very convenient in
signed-magnitude systems, since the sign and magnitude are separate.

In the two’s-complement system, obtaining the magnitude of a nega
number and negating the unsigned product are nontrivial operations. This leads
us to seek a more efficient way of performing two’s-complement multiplicati
described next.

Conceptually, unsigned multiplication is accomplished by a sequenc
unsigned additions of the shifted multiplicands; at each step, the shift of the
tiplicand corresponds to the weight of the multiplier bit. The bits in a two
complement number have the same weights as in an unsigned number,
for the MSB, which has a negative weight (see Section 2.5.4). Thus, we can pe
form two’s-complement multiplication by a sequence of two’s-complem
additions of shifted multiplicands, except for the last step, in which the shi

11
× 13

1011
× 1101

multiplicand
multiplier

0000
1011

partial product
shifted multiplicand

01011
0000↓

partial product
shifted multiplicand

001011
1011↓↓

partial product
shifted multiplicand

0110111
1011↓↓↓

partial product
shifted multiplicand

10001111 product
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.9 Binary Division 43

PY
PY
PY
PY
PY
PY
PY
PY
PY

fore
, this
ers:

ach

 has

d for
re the

shift-and-subtract
division

unsigned division
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

multiplicand corresponding to the MSB of the multiplier must be negated be
it is added to the partial product. Our previous example is repeated below
time interpreting the multiplier and multiplicand as two’s-complement numb

Handling the MSBs is a little tricky because we gain one significant bit at e
step and we are working with signed numbers. Therefore, before adding each
shifted multiplicand and k-bit partial product, we change them to k + 1 signifi-
cant bits by sign extension, as shown in color above. Each resulting sum
k + 1 bits; any carry out of the MSB of the k + 1-bit sum is ignored.

*2.9 Binary Division
The simplest binary division algorithm is based on the shift-and-subtract method
that we learned in grammar school. Table 2-8 gives examples of this metho
unsigned decimal and binary numbers. In both cases, we mentally compa

−5
× −3

1011
× 1101

multiplicand
multiplier

00000
11011

partial product
shifted multiplicand

111011
00000↓

partial product
shifted multiplicand

1111011
11011↓↓

partial product
shifted multiplicand

11100111
00101↓↓↓

partial product
shifted and negated multiplicand

00001111 product

11
19

)217 1011
10011

)11011001
quotient
dividend

Ta b l e 2 - 8
Example of
long division.

110 10110000 shifted divisor

107
99

0101000
0000000

reduced dividend
shifted divisor

8 101000
000000

reduced dividend
shifted divisor

101000
10110

reduced dividend
shifted divisor

10011
1011

reduced dividend
shifted divisor

1000 remainder
Copyright © 1999 by John F. Wakerly Copying Prohibited

44 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 of
atest
 than
 two

y to

e

sion
agni-
e
s the
ivi-
ften

puta-
ers.
deci-
bers

 basic
e of

ed

 4-bit
00 to

ion,
 in a

ome

enta-

division overflow

signed division

code
code word

binary-coded decimal
(BCD)
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

reduced dividend with multiples of the divisor to determine which multiple
the shifted divisor to subtract. In the decimal case, we first pick 11 as the gre
multiple of 11 less than 21, and then pick 99 as the greatest multiple less
107. In the binary case, the choice is somewhat simpler, since the only
choices are zero and the divisor itself.

Division methods for binary numbers are somewhat complementar
binary multiplication methods. A typical division algorithm accepts an n+m-bit
dividend and an n-bit divisor, and produces an m-bit quotient and an n-bit
remainder. A division overflows if the divisor is zero or the quotient would tak
more than m bits to express. In most computer division circuits, n = m.

Division of signed numbers can be accomplished using unsigned divi
and the usual grammar school rules: Perform an unsigned division of the m
tudes and make the quotient positive if the operands had the same sign, negativ
if they had different signs. The remainder should be given the same sign a
dividend. As in multiplication, there are special techniques for performing d
sion directly on two’s-complement numbers; these techniques are o
implemented in computer division circuits (see References).

2.10 Binary Codes for Decimal Numbers
Even though binary numbers are the most appropriate for the internal com
tions of a digital system, most people still prefer to deal with decimal numb
As a result, the external interfaces of a digital system may read or display
mal numbers, and some digital devices actually process decimal num
directly.

The human need to represent decimal numbers doesn’t change the
nature of digital electronic circuits—they still process signals that take on on
only two states that we call 0 and 1. Therefore, a decimal number is represent
in a digital system by a string of bits, where different combinations of bit values
in the string represent different decimal numbers. For example, if we use a
string to represent a decimal number, we might assign bit combination 00
decimal digit 0, 0001 to 1, 0010 to 2, and so on.

A set of n-bit strings in which different bit strings represent different num-
bers or other things is called a code. A particular combination of n bit-values is
called a code word. As we’ll see in the examples of decimal codes in this sect
there may or may not be an arithmetic relationship between the bit values
code word and the thing that it represents. Furthermore, a code that usesn-bit
strings need not contain 2n valid code words.

At least four bits are needed to represent the ten decimal digits. There are
billions and billions of different ways to choose ten 4-bit code words, but s
of the more common decimal codes are listed in Table 2-9.

Perhaps the most “natural” decimal code is binary-coded decimal (BCD),
which encodes the digits 0 through 9 by their 4-bit unsigned binary repres
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.10 Binary Codes for Decimal Numbers 45

PY
PY
PY
PY
PY
PY
PY
PY
PY

used.
t sub-
 two

ned 8-
 be

ega-
 the

000

000

000

000

000

000

000

100

010

001

000

011

101

110

111

t of n items is given by

. For a 4-bit

se 10 out of 16 4-bit code

o the 10 digits. So there are

 codes.

n!
n m!–()

packed-BCD
representation
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

tions, 0000 through 1001. The code words 1010 through 1111 are not
Conversions between BCD and decimal representations are trivial, a direc
stitution of four bits for each decimal digit. Some computer programs place
BCD digits in one 8-bit byte in packed-BCD representation; thus, one byte may
represent the values from 0 to 99 as opposed to 0 to 255 for a normal unsig
bit binary number. BCD numbers with any desired number of digits may
obtained by using one byte for each two digits.

As with binary numbers, there are many possible representations of n
tive BCD numbers. Signed BCD numbers have one extra digit position for

Ta b l e 2 - 9 Decimal codes.

Decimal digit BCD (8421) 2421 Excess-3 Biquinary 1-out-of-10

0 0000 0000 0011 0100001 1000000

1 0001 0001 0100 0100010 0100000

2 0010 0010 0101 0100100 0010000

3 0011 0011 0110 0101000 0001000

4 0100 0100 0111 0110000 0000100

5 0101 1011 1000 1000001 0000010

6 0110 1100 1001 1000010 0000001

7 0111 1101 1010 1000100 0000000

8 1000 1110 1011 1001000 0000000

9 1001 1111 1100 1010000 0000000

Unused code words

1010 0101 0000 0000000 0000000

1011 0110 0001 0000001 0000000

1100 0111 0010 0000010 0000000

1101 1000 1101 0000011 0000000

1110 1001 1110 0000101 0000000

1111 1010 1111 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

BINOMIAL
COEFFICIENTS

The number of different ways to choose m items from a se

a binomial coefficient, denoted , whose value is

decimal code, there are different ways to choo

words, and 10! ways to assign each different choice t

⋅ 10! or 29,059,430,400 different 4-bit decimal

n
m 

 
m! ⋅

16
10 

 

16!
10! 6!⋅

Copyright © 1999 by John F. Wakerly Copying Prohibited

46 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 pop-
y; in

rs,
is cor-

igit

ial

n
word
 code

ay

 the
CD
nt-
cess-3

ther
f the

its in
 in a
 word

BCD addition

weighted code

8421 code
2421 code
self-complementing

code

excess-3 code

biquinary code
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

sign. Both the signed-magnitude and 10’s-complement representations are
ular. In signed-magnitude BCD, the encoding of the sign bit string is arbitrar
10’s-complement, 0000 indicates plus and 1001 indicates minus.

Addition of BCD digits is similar to adding 4-bit unsigned binary numbe
except that a correction must be made if a result exceeds 1001. The result
rected by adding 6; examples are shown below:

Notice that the addition of two BCD digits produces a carry into the next d
position if either the initial binary addition or the correction factor addition pro-
duces a carry. Many computers perform packed-BCD arithmetic using spec
instructions that handle the carry correction automatically.

Binary-coded decimal is a weighted code because each decimal digit ca
be obtained from its code word by assigning a fixed weight to each code-
bit. The weights for the BCD bits are 8, 4, 2, and 1, and for this reason the
is sometimes called the 8421 code. Another set of weights results in the 2421
code shown in Table 2-9. This code has the advantage that it is self-
complementing, that is, the code word for the 9s’ complement of any digit m
be obtained by complementing the individual bits of the digit’s code word.

Another self-complementing code shown in Table 2-9 is the excess-3 code.
Although this code is not weighted, it has an arithmetic relationship with
BCD code—the code word for each decimal digit is the corresponding B
code word plus 00112. Because the code words follow a standard binary cou
ing sequence, standard binary counters can easily be made to count in ex
code, as we’ll show in Figure 8-37 on page 600.

Decimal codes can have more than four bits; for example, the biquinary
code in Table 2-9 uses seven. The first two bits in a code word indicate whe
the number is in the range 0–4 or 5–9, and the last five bits indicate which o
five numbers in the selected range is represented.

One potential advantage of using more than the minimum number of b
a code is an error-detecting property. In the biquinary code, if any one bit
code word is accidentally changed to the opposite value, the resulting code

5
+ 9

0101
+ 1001

4
+ 5

0100
+ 0101

14 1110
+ 0110 — correction

9 1001

10+4 1 0100

8
+ 8

1000
+ 1000

9
+ 9

1001
+ 1001

−16 1 0000
+ 0110 — correction

18 1 0010
+ 0110 — correction

10+6 1 0110 10+8 1 1000
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.11 Gray Code 47

PY
PY
PY
PY
PY
PY
PY
PY
PY

t
cimal

9 is
0-bit

ools,
 an
. For
f con-
 the

a sig-

t cer-
ndary
ange
 the
cept-

011.
ccur
r

es.
e in
uch a
e-

1-out-of-10 code

Gray code
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

does not represent a decimal digit and can therefore be flagged as an error. Ou
of 128 possible 7-bit code words, only 10 are valid and recognized as de
digits; the rest can be flagged as errors if they appear.

A 1-out-of-10 code such as the one shown in the last column of Table 2-
the sparsest encoding for decimal digits, using 10 out of 1024 possible 1
code words.

2.11 Gray Code
In electromechanical applications of digital systems—such as machine t
automotive braking systems, and copiers—it is sometimes necessary for
input sensor to produce a digital value that indicates a mechanical position
example, Figure 2-5 is a conceptual sketch of an encoding disk and a set o
tacts that produce one of eight 3-bit binary-coded values depending on
rotational position of the disk. The dark areas of the disk are connected to
nal source corresponding to logic 1, and the light areas are unconnected, which
the contacts interpret as logic 0.

The encoder in Figure 2-5 has a problem when the disk is positioned a
tain boundaries between the regions. For example, consider the bou
between the 001 and 010 regions of the disk; two of the encoded bits ch
here. What value will the encoder produce if the disk is positioned right on
theoretical boundary? Since we’re on the border, both 001 and 010 are ac
able. However, because the mechanical assembly is not perfect, the two right-
hand contacts may both touch a “1” region, giving an incorrect reading of
Likewise, a reading of 000 is possible. In general, this sort of problem can o
at any boundary where more than one bit changes. The worst problems occu
when all three bits are changing, as at the 000–111 and 011–100 boundari

The encoding-disk problem can be solved by devising a digital cod
which only one bit changes between each pair of successive code words. S
code is called a Gray code; a 3-bit Gray code is listed in Table 2-10. We’ve red

000111

001

011100

010

110

101

0 0 1

Figure 2-5
A mechanical encoding
disk using a 3-bit binary
code.
Copyright © 1999 by John F. Wakerly Copying Prohibited

48 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

bit of
lue on

sired

s:

f

n
d.

les 2

de

Figure 2
A mechan
disk using
code.

reflected code
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

signed the encoding disk using this code as shown in Figure 2-6. Only one
the new disk changes at each border, so borderline readings give us a va
one side or the other of the border.

There are two convenient ways to construct a Gray code with any de
number of bits. The first method is based on the fact that Gray code is a reflected
code; it can be defined (and constructed) recursively using the following rule

1. A 1-bit Gray code has two code words, 0 and 1.

2. The first 2n code words of an n+1-bit Gray code equal the code words o
an n-bit Gray code, written in order with a leading 0 appended.

3. The last 2n code words of an n+1-bit Gray code equal the code words of a
n-bit Gray code, but written in reverse order with a leading 1 appende

If we draw a line between rows 3 and 4 of Table 2-10, we can see that ru
and 3 are true for the 3-bit Gray code. Of course, to construct an n-bit Gray code
for an arbitrary value of n with this method, we must also construct a Gray co
of each length smaller than n.

Ta b l e 2 - 1 0
A comparison of 3-bit
binary code and
Gray code.

Decimal
number

Binary
code

Gray
code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

000100

001

010110

011

101

111

0 0 1

-6
ical encoding
 a 3-bit Gray
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.12 Character Codes 49

PY
PY
PY
PY
PY
PY
PY
PY
PY

m

de.

 num-
ric.

t string

ents
rs
habet,

ven

01

s that
and
sed in

ere a
sent

f code

the
n any

text

ASCII

 
ceiling function
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The second method allows us to derive an n-bit Gray-code code word
directly from the corresponding n-bit binary code word:

1. The bits of an n-bit binary or Gray-code code word are numbered fro
right to left, from 0 to n − 1.

2. Bit i of a Gray-code code word is 0 if bits i and i + 1 of the corresponding
binary code word are the same, else bit i is 1. (When i + 1 = n, bit n of the
binary code word is considered to be 0.)

Again, inspection of Table 2-10 shows that this is true for the 3-bit Gray co

*2.12 Character Codes
As we showed in the preceding section, a string of bits need not represent a
ber, and in fact most of the information processed by computers is nonnume
The most common type of nonnumeric data is text, strings of characters from
some character set. Each character is represented in the computer by a bi
according to an established convention.

The most commonly used character code is ASCII (pronounced ASS key),
the American Standard Code for Information Interchange. ASCII repres
each character with a 7-bit string, yielding a total of 128 different characte
shown in Table 2-11. The code contains the uppercase and lowercase alp
numerals, punctuation, and various nonprinting control characters. Thus, the
text string “Yeccch!” is represented by a rather innocuous-looking list of se
7-bit numbers:

1011001 1100101 1100011 1100011 1100011 1101000 01000

2.13 Codes for Actions, Conditions, and States
The codes that we’ve described so far are generally used to represent thing
we would probably consider to be “data”—things like numbers, positions,
characters. Programmers know that dozens of different data types can be u
a single computer program.

In digital system design, we often encounter nondata applications wh
string of bits must be used to control an action, to flag a condition, or to repre
the current state of the hardware. Probably the most commonly used type o
for such an application is a simple binary code. If there are n different actions,
conditions, or states, we can represent them with a b-bit binary code with
b = log2 n bits. (The brackets   denote the ceiling function—the smallest
integer greater than or equal to the bracketed quantity. Thus, b is the smallest
integer such that 2b ≥ n.)

For example, consider a simple traffic-light controller. The signals at
intersection of a north-south (N-S) and an east-west (E-W) street might be i
Copyright © 1999 by John F. Wakerly Copying Prohibited

50 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

Ta b l e 2 - 1 1 A
X

b3b2b1b0

Row
(hex)

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

NUL Null
SOH Start of he
STX Start of te
ETX End of tex
EOT End of tra
ENQ Enquiry

ACK Acknowled
BEL Bell
BS Backspac
HT Horizontal
LF Line feed
VT Vertical tab

FF Form feed
CR Carriage r
SO Shift out
SI Shift in

SP Space
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

merican Standard Code for Information Interchange (ASCII), Standard No.
3.4-1968 of the American National Standards Institute.

b6b5b4 (column)

000
0

001
1

010
2

011
3

100
4

101
5

110
6

111
7

NUL DLE SP 0 @ P ‘ p

SOH DC1 ! 1 A Q a q

STX DC2 " 2 B R b r

ETX DC3 # 3 C S c s

EOT DC4 $ 4 D T d t

ENQ NAK % 5 E U e u

ACK SYN & 6 F V f v

BEL ETB ’ 7 G W g w

BS CAN (8 H X h x

HT EM) 9 I Y i y

LF SUB * : J Z j z

VT ESC + ; K [k {

FF FS , < L \ l |

CR GS – = M] m }

SO RS . > N ^ n ~

SI US / ? O _ o DEL

Control codes

DLE Data link escape
ading DC1 Device control 1

xt DC2 Device control 2
t DC3 Device control 3
nsmission DC4 Device control 4

NAK Negative acknowledge

ge SYN Synchronize
ETB End transmitted block

e CAN Cancel
 tab EM End of medium

SUB Substitute
ESC Escape

FS File separator
eturn GS Group separator

RS Record separator
US Unit separator

DEL Delete or rubout
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.13 Codes for Actions, Conditions, and States 51

PY
PY
PY
PY
PY
PY
PY
PY
PY

bits, as
ode
rbi-
igner
ther
os-

n.
perate
lect”
he
h its
rds
e for
rol
e

This
 they

mes

. For
e

ice

E-W
red

Code
word

ON 000

ON 001

ON 010

off 100

off 101

ON 110

1-out-of-n code

inverted 1-out-of-n code
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

of the six states listed in Table 2-12. These states can be encoded in three
shown in the last column of the table. Only six of the eight possible 3-bit c
words are used, and the assignment of the six chosen code words to states is a
trary, so many other encodings are possible. An experienced digital des
chooses a particular encoding to minimize circuit cost or to optimize some o
parameter (like design time—there’s no need to try billions and billions of p
sible encodings).

Another application of a binary code is illustrated in Figure 2-7(a). Here,
we have a system with n devices, each of which can perform a certain actio
The characteristics of the devices are such that they may be enabled to o
only one at a time. The control unit produces a binary-coded “device se
word with log2 n bits to indicate which device is enabled at any time. T
“device select” code word is applied to each device, which compares it wit
own “device ID” to determine whether it is enabled.Although its code wo
have the minimum number of bits, a binary code isn’t always the best choic
encoding actions, conditions, or states. Figure 2-7(b) shows how to contn
devices with a 1-out-of-n code, an n-bit code in which valid code words have on
bit equal to 1 and the rest of the bits equal to 0. Each bit of the 1-out-of-n code
word is connected directly to the enable input of a corresponding device.
simplifies the design of the devices, since they no longer have device IDs;
need only a single “enable” input bit.

The code words of a 1-out-of-10 code were listed in Table 2-9. Someti
an all-0s word may also be included in a 1-out-of-n code, to indicate that no
device is selected. Another common code is an inverted 1-out-of-n code, in
which valid code words have one 0~bit and the rest of the bits equal to 1.

In complex systems, a combination of coding techniques may be used
example, consider a system similar to Figure 2-7(b), in which each of thn
devices contains up to s subdevices. The control unit could produce a dev

Ta b l e 2 - 1 2 States in a traffic-light controller.

Lights

State
N-S

green
N-S

yellow
N-S
red

E-W
green

E-W
yellow

N-S go ON off off off off

N-S wait off ON off off off

N-S delay off off ON off off

E-W go off off ON ON off

E-W wait off off ON off ON

E-W delay off off ON off off
Copyright © 1999 by John F. Wakerly Copying Prohibited

52 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

lid

 do,

he

f-4

 valid
ding.

ed to

.

compar

Device

binary-c

device
enable

Device

Control
Unit

(a)

(b)

1-out-of

Control
Unit

m-out-of-n code

8B10B code
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

select code word with a 1-out-of-n coded field to select a device, and a log2 s-
bit binary-coded field to select one of the s subdevices of the selected device.

An m-out-of-n code is a generalization of the 1-out-of-n code in which
valid code words have m bits equal to 1 and the rest of the bits equal to 0. A va
m-out-of-n code word can be detected with an m-input AND gate, which produc-
es a 1 output if all of its inputs are 1. This is fairly simple and inexpensive to
yet for most values of m, an m-out-of-n code typically has far more valid code
words than a 1-out-of-n code. The total number of code words is given by t

binomial coefficient , which has the value . Thus, a 2-out-o

code has 6 valid code words, and a 3-out-of-10 code has 120.
An important variation of an m-out-of-n code is the 8B10B code used in the

802.3z Gigabit Ethernet standard. This code uses 10 bits to represent 256
code words, or 8 bits worth of data. Most code words use a 5-out-of-10 co

However, since is only 252, some 4- and 6-out-of-10 words are also us

complete the code in a very interesting way; more on this in Section 2.16.2

device
ID

e

device
enable

device
ID

compare

device
enable

Device

device
ID

compare

device
enable

Device

oded device select

device
enable

Device

device
enable

Device

-n coded device select

Figure 2-7 Control structure for a digital system with n devices: (a) using
a binary code; (b) using a 1-out-of-n code.

n
m 

  n!
m! n m–()!⋅

5
10 

 
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.14 n-Cubes and Distance 53

PY
PY
PY
PY
PY
PY
PY
PY
PY

d an

ex
nly

ng
 an

odes

n-cube

Figure 2-8
n-cubes for n = 1, 2,
3, and 4.

Figure 2-9
Traversing n-cubes
in Gray-code order:
(a) 3-cube;
(b) 4-cube.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

*2.14 n-Cubes and Distance
An n-bit string can be visualized geometrically, as a vertex of an object calle
n-cube. Figure 2-8 shows n-cubes for n = 1, 2, 3, 4. An n-cube has 2n vertices,
each of which is labeled with an n-bit string. Edges are drawn so that each vert
is adjacent to n other vertices whose labels differ from the given vertex in o
one bit. Beyond n = 4, n-cubes are really tough to draw.

For reasonable values of n, n-cubes make it easy to visualize certain codi
and logic minimization problems. For example, the problem of designing
n-bit Gray code is equivalent to finding a path along the edges of an n-cube, a
path that visits each vertex exactly once. The paths for 3- and 4-bit Gray c
are shown in Figure 2-9.

100 101

010 011

110 111

000 001

1110

00 010 1

0100 0101

0010

0011

0110

0111

0000 0001

1100

1101

1010

1011

1110 1111

1000

1001

1-cube 2-cube

3-cube 4-cube

100 101

010 011

110 111

000 001

0100

0010

0011

0110

0000 0001

1100

1101

1011

1110 1111

1000

1001

0111

(a) (b)

0101

1010
Copyright © 1999 by John F. Wakerly Copying Prohibited

54 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

tices.
 have
ing of

of the
e “x”
e
ularly
gic

 to

cause
in it.
per-

ata;

that
r
 (a

 stores
e—if
ord,

dent
t

distance
Hamming distance

m-subcube

don’t-care

error
failure
temporary failure
permanent failure

error model
independent error

model

single error
multiple error

error-detecting code

noncode word
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Cubes also provide a geometrical interpretation for the concept of dis-
tance, also called Hamming distance. The distance between two n-bit strings is
the number of bit positions in which they differ. In terms of an n-cube, the dis-
tance is the minimum length of a path between the two corresponding ver
Two adjacent vertices have distance 1; vertices 001 and 100 in the 3-cube
distance 2. The concept of distance is crucial in the design and understand
error-detecting codes, discussed in the next section.

An m-subcube of an n-cube is a set of 2m vertices in which n − m of the bits
have the same value at each vertex, and the remaining m bits take on all 2m com-
binations. For example, the vertices (000, 010, 100, 110) form a 2-subcube
3-cube. This subcube can also be denoted by a single string, xx0, wher
denotes that a particular bit is a don’t-care; any vertex whose bits match in th
non-x positions belongs to this subcube. The concept of subcubes is partic
useful in visualizing algorithms that minimize the cost of combinational lo
functions, as we’ll show in Section 4.4.

*2.15 Codes for Detecting and Correcting Errors
An error in a digital system is the corruption of data from its correct value
some other value. An error is caused by a physical failure. Failures can be either
temporary or permanent. For example, a cosmic ray or alpha particle can
a temporary failure of a memory circuit, changing the value of a bit stored
Letting a circuit get too hot or zapping it with static electricity can cause a
manent failure, so that it never works correctly again.

The effects of failures on data are predicted by error models. The simplest
error model, which we consider here, is called the independent error model. In
this model, a single physical failure is assumed to affect only a single bit of d
the corrupted data is said to contain a single error. Multiple failures may cause
multiple errors—two or more bits in error—but multiple errors are normally
assumed to be less likely than single errors.

2.15.1 Error-Detecting Codes
Recall from our definitions in Section 2.10 that a code that uses n-bit strings
need not contain 2n valid code words; this is certainly the case for the codes
we now consider. An error-detecting code has the property that corrupting o
garbling a code word will likely produce a bit string that is not a code word
noncode word).

A system that uses an error-detecting code generates, transmits, and
only code words. Thus, errors in a bit string can be detected by a simple rul
the bit string is a code word, it is assumed to be correct; if it is a noncode w
it contains an error.

An n-bit code and its error-detecting properties under the indepen
error model are easily explained in terms of an n-cube. A code is simply a subse
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 55

PY
PY
PY
PY
PY
PY
PY
PY
PY

 no
x.
rds.
Since
ect all
ave
ge

f the

 1s
 two

Figure 2-10
Code words in two
different 3-bit codes:
(a) minimum distance
= 1, does not detect
all single errors;
(b) minimum distance
= 2, detects all single
errors.

minimum distance

information bit

parity bit

even-parity code
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

of the vertices of the n-cube. In order for the code to detect all single errors,
code-word vertex can be immediately adjacent to another code-word verte

For example, Figure 2-10(a) shows a 3-bit code with five code wo
Code word 111 is immediately adjacent to code words 110, 011 and 101.
a single failure could change 111 to 110, 011 or 101 this code does not det
single errors. If we make 111 a noncode word, we obtain a code that does h
the single-error-detecting property, as shown in (b). No single error can chan
one code word into another.

The ability of a code to detect single errors can be stated in terms o
concept of distance introduced in the preceding section:

• A code detects all single errors if the minimum distance between all possi-
ble pairs of code words is 2.

In general, we need n + 1 bits to construct a single-error-detecting code
with 2n code words. The first n bits of a code word, called information bits, may
be any of the 2n n-bit strings. To obtain a minimum-distance-2 code, we add one
more bit, called a parity bit, that is set to 0 if there are an even number of
among the information bits, and to 1 otherwise. This is illustrated in the first
columns of Table 2-13 for a code with three information bits. A valid n+1-bit
code word has an even number of 1s, and this code is called an even-parity code.

Information
Bits

Even-parity
Code

Odd-parity
Code

Ta b l e 2 - 1 3
Distance-2 codes with
three information bits.

000 000 0 000 1

001 001 1 001 0

010 010 1 010 0

011 011 0 011 1

100 100 1 100 0

101 101 0 101 1

110 110 0 110 1

111 111 1 111 0

100 101

010 011

110 111

000 001

(b)

100 101

010 011

110 111

000 001

(a)

= code word

= noncode word
Copyright © 1999 by John F. Wakerly Copying Prohibited

56 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 bits

 the
lp us
 less
, the

efore
o cor-

ws a
code

ords

odd-parity code
1-bit parity code

check bits

Figure 2-11
Some code words
and noncode words in
a 7-bit, distance-3
code.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

We can also construct a code in which the total number of 1s in a valid n+1-bit
code word is odd; this is called an odd-parity code and is shown in the third col-
umn of the table. These codes are also sometimes called 1-bit parity codes, since
they each use a single parity bit.

The 1-bit parity codes do not detect 2-bit errors, since changing two
does not affect the parity. However, the codes can detect errors in any odd num-
ber of bits. For example, if three bits in a code word are changed, then
resulting word has the wrong parity and is a noncode word. This doesn’t he
much, though. Under the independent error model, 3-bit errors are much
likely than 2-bit errors, which are not detectable. Thus, practically speaking
1-bit parity codes’ error detection capability stops after 1-bit errors. Other codes,
with minimum distance greater than 2, can be used to detect multiple errors.

2.15.2 Error-Correcting and Multiple-Error-Detecting Codes
By using more than one parity bit, or check bits, according to some well-chosen
rules, we can create a code whose minimum distance is greater than 2. B
showing how this can be done, let’s look at how such a code can be used t
rect single errors or detect multiple errors.

Suppose that a code has a minimum distance of 3. Figure 2-11 sho
fragment of the n-cube for such a code. As shown, there are at least two non
words between each pair of code words. Now suppose we transmit code w

0001011

0001001

0000011

0001010

0011011

= code word

= noncode word

1011001

0011001

1001001

1011000

1010001

1010010

0001111 1111001

1010110

1010000

1011010

1010011

1001011 1011011

0010010

1000010

0101011 1011101

1110010

Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 57

PY
PY
PY
PY
PY
PY
PY
PY
PY

 Then
-
ive a
rd

lled

s
is-

 code

’ve
d” to
ept-
are

rect-
etect

odes

.
 1

heck

error correction

decoding
decoder

error-correcting code

re just distance-1 pertur-

Hamming code

parity-check matrix
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

and assume that failures affect at most one bit of each received code word.
a received noncode word with a 1-bit error will be closer to the originally trans
mitted code word than to any other code word. Therefore, when we rece
noncode word, we can correct the error by changing the received noncode wo
to the nearest code word, as indicated by the arrows in the figure. Deciding
which code word was originally transmitted to produce a received word is ca
decoding, and the hardware that does this is an error-correcting decoder.

A code that is used to correct errors is called an error-correcting code. In
general, if a code has minimum distance 2c + 1, it can be used to correct error
that affect up to c bits (c = 1 in the preceding example). If a code’s minimum d
tance is 2c + d + 1, it can be used to correct errors in up to c bits and to detect
errors in up to d additional bits.

For example, Figure 2-12(a) shows a fragment of the n-cube for a code
with minimum distance 4 (c = 1, d = 1). Single-bit errors that produce noncode
words 00101010 and 11010011 can be corrected. However, an error that produc-
es 10100011 cannot be corrected, because no single-bit error can produce this
noncode word, and either of two 2-bit errors could have produced it. So the
can detect a 2-bit error, but it cannot correct it.

When a noncode word is received, we don’t know which code word was
originally transmitted; we only know which code word is closest to what we
received. Thus, as shown in Figure 2-12(b), a 3-bit error may be “correcte
the wrong value. The possibility of making this kind of mistake may be acc
able if 3-bit errors are very unlikely to occur. On the other hand, if we
concerned about 3-bit errors, we can change the decoding policy for the code.
Instead of trying to correct errors, we just flag all noncode words as uncor
able errors. Thus, as shown in (c), we can use the same distance-4 code to d
up to 3-bit errors but correct no errors (c = 0, d = 3).

2.15.3 Hamming Codes
In 1950, R. W. Hamming described a general method for constructing c
with a minimum distance of 3, now called Hamming codes. For any value of i,
his method yields a 2i−1-bit code with i check bits and 2i − 1 − i information
bits. Distance-3 codes with a smaller number of information bits are obtained by
deleting information bits from a Hamming code with a larger number of bits

The bit positions in a Hamming code word can be numbered from
through 2i −1. In this case, any position whose number is a power of 2 is a c
bit, and the remaining positions are information bits. Each check bit is grouped
with a subset of the information bits, as specified by a parity-check matrix. As

DECISIONS,
DECISIONS

The names decoding and decoder make sense, since they a
bations of deciding and decider.
Copyright © 1999 by John F. Wakerly Copying Prohibited

58 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

-
y. For
 and
it is
up is

Figure 2-12
Some code words
noncode words in
distance-4 code:
(a) correcting 1-bit
detecting 2-bit erro
(b) incorrectly “cor
a 3-bit error;
(c) correcting no e
detecting up to 3-b
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
shown in Figure 2-13(a), each check bit is grouped with the information posi
tions whose numbers have a 1 in the same bit when expressed in binar
example, check bit 2 (010) is grouped with information bits 3 (011), 6 (110),
7 (111). For a given combination of information-bit values, each check b
chosen to produce even parity, that is, so the total number of 1s in its gro
even.

00101011

00101010

00100011

10100011

11100011

11010011

11000011

detectable 2-bit errors

3-bit error
looks like a
1-bit error

all 1- to 3-bit errors
are detectable

detectable 2-bit errors

correctable 1-bit errors

(a)

(b)

(c)

00101011

00101010

00100011

10100011

11100011

11010011

11000011

00101011 11000011

 and
an 8-bit,

 and
rs;

recting”

rrors but
it errors.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 59

PY
PY
PY
PY
PY
PY
PY
PY
PY

ing
 as in
ds.
rov-
other

elds

d
lt is a

-

g to
cor-

ber-
f the
tion
at no

Figure 2-13
Parity-check matrices
for 7-bit Hamming
codes: (a) with bit
positions in
numerical order;
(b) with check bits
and information bits
separated.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Traditionally, the bit positions of a parity-check matrix and the result
code words are rearranged so that all of the check bits are on the right,
Figure 2-13(b). The first two columns of Table 2-14 list the resulting code wor

We can prove that the minimum distance of a Hamming code is 3 by p
ing that at least a 3-bit change must be made to a code word to obtain an
code word. That is, we’ll prove that a 1-bit or 2-bit change in a code word yi
a noncode word.

If we change one bit of a code word, in position j, then we change the parity
of every group that contains position j. Since every information bit is containe
in at least one group, at least one group has incorrect parity, and the resu
noncode word.

What happens if we change two bits, in positions j and k? Parity groups that
contain both positions j and k will still have correct parity, since parity is unaf
fected when an even number of bits are changed. However, since j and k are
different, their binary representations differ in at least one bit, correspondin
one of the parity groups. This group has only one bit changed, resulting in in
rect parity and a noncode word.

If you understand this proof, you should also see how the position num
ing rules for constructing a Hamming code are a simple consequence o
proof. For the first part of the proof (1-bit errors), we required that the posi
numbers be nonzero. And for the second part (2-bit errors), we required th

7 6 5 4

Bit position

3 2 1

Groups

Groups

(a)

7 6 5

Bit position

3

(b)

4 2 1

C

B

A

C

B

A

Group
name

Group
name

Check bits

Information bits Check bits
Copyright © 1999 by John F. Wakerly Copying Prohibited

60 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

f all
 more
at-

e

(the

error-correcting
decoder

syndrome
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

two positions have the same number. Thus, with an i-bit position number, you
can construct a Hamming code with up to 2i − 1 bit positions.

The proof also suggests how we can design an error-correcting decoder for
a received Hamming code word. First, we check all of the parity groups; i
have even parity, then the received word is assumed to be correct. If one or
groups have odd parity, then a single error is assumed to have occurred. The p
tern of groups that have odd parity (called the syndrome) must match one of the
columns in the parity-check matrix; the corresponding bit position is assumed to
contain the wrong value and is complemented. For example, using the cod
defined by Figure 2-13(b), suppose we receive the word 0101011. Groups B and
C have odd parity, corresponding to position 6 of the parity-check matrix

Ta b l e 2 - 1 4 Code words in distance-3 and distance-4 Hamming
codes with four information bits.

Minimum-distance-3 code Minimum-distance-4 code

Information
Bits Parity Bits

Information
Bits Parity Bits

0000 000 0000 0000

0001 011 0001 0111

0010 101 0010 1011

0011 110 0011 1100

0100 110 0100 1101

0101 101 0101 1010

0110 011 0110 0110

0111 000 0111 0001

1000 111 1000 1110

1001 100 1001 1001

1010 010 1010 0101

1011 001 1011 0010

1100 001 1100 0011

1101 010 1101 0100

1110 100 1110 1000

1111 111 1111 1111
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 61

PY
PY
PY
PY
PY
PY
PY
PY
PY

ived

ini-
parity
ode,
In
2-bit
mod-

etect

e the
rd,

 have
ming

g and
oders

ta
cted
es,
 CRC

6

2

4

8

cyclic redundancy
check (CRC) code
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

syndrome is 110, or 6). By complementing the bit in position 6 of the rece
word, we determine that the correct word is 0001011.

A distance-3 Hamming code can easily be modified to increase its m
mum distance to 4. We simply add one more check bit, chosen so that the
of all the bits, including the new one, is even. As in the 1-bit even-parity c
this bit ensures that all errors affecting an odd number of bits are detectable.
particular, any 3-bit error is detectable. We already showed that 1- and
errors are detected by the other parity bits, so the minimum distance of the
ified code must be 4.

Distance-3 and distance-4 Hamming codes are commonly used to d
and correct errors in computer memory systems, especially in large mainframe
computers where memory circuits account for the bulk of the system’s failures.
These codes are especially attractive for very wide memory words, sinc
required number of parity bits grows slowly with the width of the memory wo
as shown in Table 2-15.

2.15.4 CRC Codes
Beyond Hamming codes, many other error-detecting and -correcting codes
been developed. The most important codes, which happen to include Ham
codes, are the cyclic redundancy check (CRC) codes. A rich set of knowledge
has been developed for these codes, focused both on their error detectin
correcting properties and on the design of inexpensive encoders and dec
for them (see References).

Two important applications of CRC codes are in disk drives and in da
networks. In a disk drive, each block of data (typically 512 bytes) is prote
by a CRC code, so that errors within a block can be detected and, in some driv
corrected. In a data network, each packet of data ends with check bits in a

Ta b l e 2 - 1 5 Word sizes of distance-3 and distance-4 Hamming codes.

Minimum-distance-3 Codes Minimum-distance-4 Codes

Information Bits Parity Bits Total Bits Parity Bits Total Bits

1 2 3 3 4

≤ 4 3 ≤ 7 4 ≤ 8

≤ 11 4 ≤ 15 5 ≤ 1

≤ 26 5 ≤ 31 6 ≤ 3

≤ 57 6 ≤ 63 7 ≤ 6

≤ 120 7 ≤ 127 8 ≤ 12
Copyright © 1999 by John F. Wakerly Copying Prohibited

62 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

 burst-
ulti-

kely

mn
her

two-dimensional code

(b)

information

Columns are co
in 1-bit even-pa

Figure 2-14
Two-dimensional code
(a) general structure;
(b) using even parity fo
both the row and colum
codes to obtain
minimum distance 4;
(c) typical pattern of a
undetectable error.

product code
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

code. The CRC codes for both applications were selected because of their
error detecting properties. In addition to single-bit errors, they can detect m
bit errors that are clustered together within the disk block or packet. Such errors
are more likely than errors of randomly distributed bits, because of the li
physical causes of errors in the two applications—surface defects in disc drives
and noise bursts in communication links.

2.15.5 Two-Dimensional Codes
Another way to obtain a code with large minimum distance is to construct a two-
dimensional code, as illustrated in Figure 2-14(a). The information bits are con-
ceptually arranged in a two-dimensional array, and parity bits are provided to
check both the rows and the columns. A code Crow with minimum distance drow is
used for the rows, and a possibly different code Ccol with minimum distance dcol
is used for the columns. That is, the row-parity bits are selected so that each row
is a code word in Crow and the column-parity bits are selected so that each colu
is a code word in Ccol. (The “corner” parity bits can be chosen according to eit
code.) The minimum distance of the two-dimensional code is the product ofdrow
and dcol; in fact, two-dimensional codes are sometimes called product codes.

(a)

information bits
checks
on rows

Rows are
code words
in Crow

checks
on checkschecks on columns

Columns are code words in Ccol

bits

Rows are
code words
in 1-bit
even-parity
code

de words
rity code

No effect on column parity

No effect on
row parity

(c)

s:

r
n

n
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section *2.15 Codes for Detecting and Correcting Errors 63

PY
PY
PY
PY
PY
PY
PY
PY
PY

-bit
ce of
cing

least

for-
each

, we

ing
 con-
o the

ge
is

non-
cking

for a
drive
ple,

ure,
 that

RAID

CRC512
. . .
. . .

Figure 2-15
Structure of error-
correcting code for
a RAID system.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

As shown in Figure 2-14(b), the simplest two-dimensional code uses 1
even-parity codes for the rows and columns, and has a minimum distan
2 ⋅ 2, or 4. You can easily prove that the minimum distance is 4 by convin
yourself that any pattern of one, two, or three bits in error causes incorrect parity
of a row or a column or both. In order to obtain an undetectable error, at
four bits must be changed in a rectangular pattern as in (c).

The error detecting and correcting procedures for this code are straight
ward. Assume we are reading information one row at a time. As we read
row, we check its row code. If an error is detected in a row, we can’t tell which bit
is wrong from the row check alone. However, assuming only one row is bad
can reconstruct it by forming the bit-by-bit Exclusive OR of the columns, omit-
ting the bad row, but including the column-check row.

To obtain an even larger minimum distance, a distance-3 or -4 Hamm
code can be used for the row or column code or both. It is also possible to
struct a code in three or more dimensions, with minimum distance equal t
product of the minimum distances in each dimension.

An important application of two-dimensional codes is in RAID stora
systems. RAID stands for “redundant array of inexpensive disks.” In th
scheme, n+1 identical disk drives are used to store n disks worth of data. For
example, eight 8-Gigabyte drives could be use to store 64 Gigabytes of
redundant data, and a ninth 8-gigabyte drive would be used to store che
information.

Figure 2-15 shows the general scheme of a two-dimensional code
RAID system; each disk drive is considered to be a row in the code. Each
stores m blocks of data, where a block typically contains 512 bytes. For exam
an 8-gigabyte drive would store about 16 million blocks. As shown in the fig
each block includes its own check bits in a CRC code, to detect errors within
block. The first n drives store the nonredundant data. Each block in drive n+1

information blocks

Disk 1

Disk 2

Disk 3

Disk 4

Disk 5

Disk 6

Disk n

Disk n+1

Block number

1 2 3 4 5 6 7 8 . . . m9 10 1211

check blocks

. . .

. . .

. One block

Data bytes
1 2 3 4 5 6 7
Copyright © 1999 by John F. Wakerly Copying Prohibited

64 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

k

RC
orrect
f the

rite
 check
isk

ns is
is 0
od-

s.
Each
e can
alled
ult-
e

ular,
rtant
 and

 a
er of

t uni-

rty is
hange

checksum
checksum code

ones’-complement
checksum code

unidirectional error
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

stores parity bits for the corresponding blocks in the first n drives. That is, each
bit i in drive n+1 block b is chosen so that there are an even number of 1s in bloc
b bit position i across all the drives.

In operation, errors in the information blocks are detected by the C
code. Whenever an error is detected in a block on one of the drives, the c
contents of that block can be constructed simply by computing the parity o
corresponding blocks in all the other drives, including drive n+1. Although this
requires n extra disk read operations, it’s better than losing your data! W
operations require extra disk accesses as well, to update the corresponding
block when an information block is written (see Exercise 2.46). Since d
writes are much less frequent than reads in typical applications, this overhead
usually is not a problem.

2.15.6 Checksum Codes
The parity-checking operation that we’ve used in the previous subsectio
essentially modulo-2 addition of bits—the sum modulo 2 of a group of bits
if the number of 1s in the group is even, and 1 if it is odd. The technique of m
ular addition can be extended to other bases besides 2 to form check digit

For example, a computer stores information as a set of 8-bit bytes.
byte may be considered to have a decimal value from 0 to 255. Therefore, w
use modulo-256 addition to check the bytes. We form a single check byte, c
a checksum, that is the sum modulo 256 of all the information bytes. The res
ing checksum code can detect any single byte error, since such an error will caus
a recomputed sum of bytes to disagree with the checksum.

Checksum codes can also use a different modulus of addition. In partic
checksum codes using modulo-255, ones’-complement addition are impo
because of their special computational and error detecting properties,
because they are used to check packet headers in the ubiquitous Internet Protocol
(IP) (see References).

2.15.7 m-out-of- n Codes
The 1-out-of-n and m-out-of-n codes that we introduced in Section 2.13 have
minimum distance of 2, since changing only one bit changes the total numb
1s in a code word and therefore produces a noncode word.

These codes have another useful error-detecting property—they detec
directional multiple errors. In a unidirectional error, all of the erroneous bits
change in the same direction (0s change to 1s, or vice versa). This prope
very useful in systems where the predominant error mechanism tends to c
all bits in the same direction.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.16 Codes for Serial Data Transmission and Storage 65

PY
PY
PY
PY
PY
PY
PY
PY
PY

 be

ple,
uire

uld

many

sion.
h

 Hz).

l data
e

ever,
tion.

parallel data

serial data

ell

2

bit cell

bit rate, bps

bit time

bit cell
line code
Non-Return-to-Zero

(NRZ)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

2.16 Codes for Serial Data Transmission and Storage

2.16.1 Parallel and Serial Data
Most computers and other digital systems transmit and store data in a parallel
format. In parallel data transmission, a separate signal line is provided for each
bit of a data word. In parallel data storage, all of the bits of a data word can
written or read simultaneously.

Parallel formats are not cost-effective for some applications. For exam
parallel transmission of data bytes over the telephone network would req
eight phone lines, and parallel storage of data bytes on a magnetic disk wo
require a disk drive with eight separate read/write heads. Serial formats allow
data to be transmitted or stored one bit at a time, reducing system cost in
applications.

Figure 2-16 illustrates some of the basic ideas in serial data transmis
A repetitive clock signal, named CLOCK in the figure, defines the rate at whic
bits are transmitted, one bit per clock cycle. Thus, the bit rate in bits per second
(bps) numerically equals the clock frequency in cycles per second (hertz, or

The reciprocal of the bit rate is called the bit time and numerically equals
the clock period in seconds (s). This amount of time is reserved on the seria
line (named SERDATA in the figure) for each bit that is transmitted. The tim
occupied by each bit is sometimes called a bit cell. The format of the actual sig-
nal that appears on the line during each bit cell depends on the line code. In the
simplest line code, called Non-Return-to-Zero (NRZ), a 1 is transmitted by plac-
ing a 1 on the line for the entire bit cell, and a 0 is transmitted as a 0. How
more complex line codes have other rules, as discussed in the next subsec

bit number 1 2 3 4 5 6 7 8 1

bit cell bit cell bit cell bit cell bit cell bit cell bit cell bit cell bit c

time

bit time

SYNC

SERDATA

CLOCK

Figure 2-16 Basic concepts for serial data transmission.
Copyright © 1999 by John F. Wakerly Copying Prohibited

66 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

ystem
. For
hich

byte.
data
word
nnec-
ire is
nnec-
rial

l too
ically
ted
tion

sion.
ta to
 how
t
rro-

synchronization signal

Figure 2-17
Commonly used line
codes for serial data.
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Regardless of the line code, a serial data transmission or storage s
needs some way of identifying the significance of each bit in the serial stream
example, suppose that 8-bit bytes are transmitted serially. How can we tell w
is the first bit of each byte? A synchronization signal, named SYNC in
Figure 2-16, provides the necessary information; it is 1 for the first bit of each

Evidently, we need a minimum of three signals to recover a serial
stream: a clock to define the bit cells, a synchronization signal to define the
boundaries, and the serial data itself. In some applications, like the interco
tion of modules in a computer or telecommunications system, a separate w
used for each of these signals, since reducing the number of wires per co
tion from n to three is savings enough. We’ll give an example of a 3-wire se
data system in Section 8.5.4.

In many applications, the cost of having three separate signals is stil
high (e.g., three phone lines, three read/write heads). Such systems typ
combine all three signals into a single serial data stream and use sophistica
analog and digital circuits to recover the clock and synchronization informa
from the data stream.

*2.16.2 Serial Line Codes
The most commonly used line codes for serial data are illustrated in Figure 2-17.
In the NRZ code, each bit value is sent on the line for the entire bit cell. This is
the simplest and most reliable coding scheme for short distance transmis
However, it generally requires a clock signal to be sent along with the da
define the bit cells. Otherwise, it is not possible for the receiver to determine
many 0s or 1s are represented by a continuous 0 or 1 level. For example, withou
a clock to define the bit cells, the NRZ waveform in Figure 2-17 might be e
neously interpreted as 01010.

NRZ

bit value 1 1 10 00 1 0

NRZI

RZ

Manchester

BPRZ

time
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 2.16 Codes for Serial Data Transmission and Storage 67

PY
PY
PY
PY
PY
PY
PY
PY
PY

e
nly if
e the
Z-
tinu-

 dis-
 by

eter-
rity

cov-
0010

 pre-
rom
uous

 the
de,
se to
ransi-

peed

tream
eceiver

re’s
with
ieved

 words

des
e are
f-10
these
m by
,
lso

digital phase-locked
loop (DPLL)

transition-sensitive
media

Non-Return-to-Zero
Invert-on-1s (NRZI)

Return-to-Zero (RZ)

DC balance

balanced code
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

A digital phase-locked loop (DPLL) is an analog/digital circuit that can b
used to recover a clock signal from a serial data stream. The DPLL works o
the serial data stream contains enough 0-to-1 and 1-to-0 transitions to giv
DPLL “hints” about when the original clock transitions took place. With NR
coded data, the DPLL works only if the data does not contain any long, con
ous streams of 1s or 0s.

Some serial transmission and storage media are transition sensitive; they
cannot transmit or store absolute 0 or 1 levels, only transitions between two
crete levels. For example, a magnetic disk or tape stores information
changing the polarity of the medium’s magnetization in regions corresponding
to the stored bits. When the information is recovered, it is not feasible to d
mine the absolute magnetization polarity of a region, only that the pola
changes between one region and the next.

Data stored in NRZ format on transition-sensitive media cannot be re
ered unambiguously; the data in Figure 2-17 might be interpreted as 0111
or 10001101. The Non-Return-to-Zero Invert-on-1s (NRZI) code overcomes this
limitation by sending a 1 as the opposite of the level that was sent during the
vious bit cell, and a 0 as the same level. A DPLL can recover the clock f
NRZI-coded data as long as the data does not contain any long, contin
streams of 0s.

The Return-to-Zero (RZ) code is similar to NRZ except that, for a 1 bit,
1 level is transmitted only for a fraction of the bit time, usually 1/2. With this co
data patterns that contain a lot of 1s create lots of transitions for a DPLL to u
recover the clock. However, as in the other line codes, a string of 0s has no t
tions, and a long string of 0s makes clock recovery impossible.

Another requirement of some transmission media, such as high-s
fiber-optic links, is that the serial data stream be DC balanced. That is, it must
have an equal number of 1s and 0s; any long-term DC component in the s
(created by have a lot more 1s than 0s or vice versa) creates a bias at the r
that reduces its ability to distinguish reliably between 1s and 0s.

Ordinarily, NRZ, NRZI or RZ data has no guarantee of DC balance; the
nothing to prevent a user data stream from having a long string of words
more than 1s than 0s or vice versa. However, DC balance can still be ach
using a few extra bits to code the user data in a balanced code, in which each
code word has an equal number of 1s and 0s, and then sending these code
in NRZ format.

For example, in Section 2.13 we introduced the 8B10B code, which co
8 bits of user data into 10 bits in a mostly 5-out-of-10 code. Recall that ther
only 252 5-out-of-10 code words, but there are another = 210 4-out-o
code words and an equal number of 6-out-of-10 code words. Of course,
code words aren’t quite DC balanced. The 8B10B code solves this proble
associating with each 8-bit value to be encoded a pair of unbalanced code words
one 4-out-of-10 (“light”) and the other 6-out-of-10 (“heavy”). The coder a

4
10 

 
Copyright © 1999 by John F. Wakerly Copying Prohibited

68 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

light.
elects
able
ome

itions

1111,
ns.

he

es it
rate a
PRZ
nalog
d

 as
)
 way
our
it

s of
o pre-

rn, it
r the
iddle

running disparity

Bipolar Return-to-Zero
(BPRZ)

Alternate Mark
Inversion (AMI)

KILO-, MEGA-,
GIGA-, TERA- i-

g

zero-code suppression

Manchester
diphase
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

keeps track of the running disparity, a single bit of information indicating
whether the last unbalanced code word that it transmitted was heavy or
When it comes time to transmit another unbalanced code word, the coder s
the one of the pair with the opposite weight. This simple trick makes avail
252 + 210 = 462 code words for the 8B10B to encode 8 bits of user data. S
of the “extra” code words are used to conveniently encode non-data cond
on the serial line, such as IDLE, SYNC, and ERROR. Not all the unbalanced code
words are used. Also, some of the balanced code words, such as 000001
are not used either, in favor of unbalanced pairs that contain more transitio

All of the preceding codes transmit or store only two signal levels. T
Bipolar Return-to-Zero (BPRZ) code transmits three signal levels: +1, 0, and −1.
The code is like RZ except that 1s are alternately transmitted as +1 and −1; for
this reason, the code is also known as Alternate Mark Inversion (AMI).

The big advantage of BPRZ over RZ is that it’s DC balanced. This mak
possible to send BPRZ streams over transmission media that cannot tole
DC component, such as transformer-coupled phone lines. In fact, the B
code has been used in T1 digital telephone links for decades, where a
speech signals are carried as streams of 8000 8-bit digital samples per secon
that are transmitted in BPRZ format on 64 Kbps serial channels.

As with RZ, it is possible to recover a clock signal from a BPRZ stream
long as there aren’t too many 0s in a row. Although TPC (The Phone Company
has no control over what you say (at least, not yet), they still have a simple
of limiting runs of 0s. If one of the 8-bit bytes that results from sampling y
analog speech pattern is all 0s, they simply change second-least significant b
to 1! This is called zero-code suppression and I’ll bet you never noticed it. And
this is also why, in many data applications of T1 links, you get only 56 Kbp
usable data per 64 Kbps channel; the LSB of each byte is always set to 1 t
vent zero-code suppression from changing the other bits.

The last code in Figure 2-17 is called Manchester or diphase code. The
major strength of this code is that, regardless of the transmitted data patte
provides at least one transition per bit cell, making it very easy to recove
clock. As shown in the figure, a 0 is encoded as a 0-to-1 transition in the m

The prefixes K (kilo-), M (mega-), G (giga-), and T (tera-) mean 103, 106, 109, and
1012, respectively, when referring to bps, hertz, ohms, watts, and most other eng
neering quantities. However, when referring to memory sizes, the prefixes mean 210,
220, 230, and 240. Historically, the prefixes were co-opted for this purpose because
memory sizes are normally powers of 2, and 210 (1024) is very close to 1000,

Now, when somebody offers you 50 kilobucks a year for your first engineerin
job, it’s up to you to negotiate what the prefix means!
Copyright © 1999 by John F. Wakerly Copying Prohibited

References 69

PY
PY
PY
PY
PY
PY
PY
PY
PY

ode’s
er bit
given
sed
ial

pter 4

n also

read-

 an

etic.
to
-
h
n be

illed
and
.
nded
ction

-

st, for an amusing view
ology and cheap wireless
ivity to the phone net-
uch less far-fetched.

finite fields
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

of the bit cell, and a 1 is encoded as a 1-to-0 transition. The Manchester c
major strength is also its major weakness. Since it has more transitions p
cell than other codes, it also requires more media bandwidth to transmit a
bit rate. Bandwidth is not a problem in coaxial cable, however, which was u
in the original Ethernet local area networks to carry Manchester-coded ser
data at the rate of 10 Mbps (megabits per second).

References

The presentation in the first nine sections of this chapter is based on Cha
of Microcomputer Architecture and Programming, by John F. Wakerly (Wiley,
1981). Precise, thorough, and entertaining discussions of these topics ca
be found in Donald E. Knuth’s Seminumerical Algorithms, 3rd edition (Addi-
son-Wesley, 1997). Mathematically inclined readers will find Knuth’s analysis
of the properties of number systems and arithmetic to be excellent, and all
ers should enjoy the insights and history sprinkled throughout the text.

Descriptions of digital logic circuits for arithmetic operations, as well as
introduction to properties of various number systems, appear in Computer Arith-
metic by Kai Hwang (Wiley, 1979). Decimal Computation by Hermann Schmid
(Wiley, 1974) contains a thorough description of techniques for BCD arithm

An introduction to algorithms for binary multiplication and division and
floating-point arithmetic appears in Microcomputer Architecture and Program
ming: The 68000 Family by John F. Wakerly (Wiley, 1989). A more thoroug
discussion of arithmetic techniques and floating-point number systems ca
found in Introduction to Arithmetic for Digital Systems Designers by Shlomo
Waser and Michael J. Flynn (Holt, Rinehart and Winston, 1982).

CRC codes are based on the theory of finite fields, which was developed by
French mathematician Évariste Galois (1811–1832) shortly before he was k
in a duel with a political opponent. The classic book on error-detecting
error-correcting codes is Error-Correcting Codes by W. W. Peterson and E. J
Weldon, Jr. (MIT Press, 1972, 2nd ed.); however, this book is recomme
only for mathematically sophisticated readers. A more accessible introdu
can be found in Error Control Coding: Fundamentals and Applications by S.
Lin and D. J. Costello, Jr. (Prentice Hall, 1983). Another recent, communica
tion-oriented introduction to coding theory can be found in Error-Control

ABOUT TPC Watch the 1967 James Coburn movie, The President’s Analy
of TPC. With the growing pervasiveness of digital techn
communications, the concept of universal, personal connect
work presented in the movie’s conclusion has become m
Copyright © 1999 by John F. Wakerly Copying Prohibited

70 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

sys-
d

nable
 use

lud-
ts of

rial
s

ined
.S.

 after
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Techniques for Digital Communication by A. M. Michelson and A. H. Levesque
(Wiley-Interscience, 1985). Hardware applications of codes in computer
tems are discussed in Error-Detecting Codes, Self-Checking Circuits, an
Applications by John F. Wakerly (Elsevier/North-Holland, 1978).

As shown in the above reference by Wakerly, ones’-complement checksum
codes have the ability to detect long bursts of unidirectional errors; this is useful
in communication channels where errors all tend to be in the same direction. The
special computational properties of these codes also make them quite ame
to efficient checksum calculation by software programs, important for their
in the Internet Protocol; see RFC-1071 and RFC-1141.

An introduction to coding techniques for serial data transmission, inc
ing mathematical analysis of the performance and bandwidth requiremen
several codes, appears in Introduction to Communications Engineering by R. M.
Gagliardi (Wiley-Interscience, 1988, 2nd ed.). A nice introduction to the se
codes used in magnetic disks and tapes is given in Computer Storage System
and Technology by Richard Matick (Wiley-Interscience, 1977).

The structure of the 8B10B code and the rationale behind it is expla
nicely in the original IBM patent by Peter Franaszek and Albert Widmer, U
patent number 4,486,739 (1984). This and almost all U.S. patents issued
1971 can be found on the web at www.patents.ibm.com. When you’re done
reading Franaszek, for a good time do a boolean search for inventor “wakerly”.

Drill Problems

2.1 Perform the following number system conversions:

2.2 Convert the following octal numbers into binary and hexadecimal:

2.3 Convert the following hexadecimal numbers into binary and octal:

(a) 11010112 = ?16 (b) 1740038 = ?2

(c) 101101112 = ?16 (d) 67.248 = ?2

(e) 10100.11012 = ?16 (f) F3A516 = ?2

(g) 110110012 = ?8 (h) AB3D16 = ?2

(i) 101111.01112 = ?8 (j) 15C.3816 = ?2

(a) 10238 = ?2 = ?16 (b) 7613028 = ?2 = ?16

(c) 1634178 = ?2 = ?16 (d) 5522738 = ?2 = ?16

(e) 5436.158 = ?2 = ?16 (f) 13705.2078 = ?2 = ?16

(a) 102316 = ?2 = ?8 (b) 7E6A16 = ?2 = ?8

(c) ABCD16 = ?2 = ?8 (d) C35016 = ?2 = ?8

(e) 9E36.7A16 = ?2 = ?8 (f) DEAD.BEEF16 = ?2 = ?8
Copyright © 1999 by John F. Wakerly Copying Prohibited

Drill Problems 71

PY
PY
PY
PY
PY
PY
PY
PY
PY

ctal

ows

ent

o’s-

two-
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

2.4 What are the octal values of the four 8-bit bytes in the 32-bit number with o
representation 123456701238?

2.5 Convert the following numbers into decimal:

2.6 Perform the following number system conversions:

2.7 Add the following pairs of binary numbers, showing all carries:

2.8 Repeat Drill 2.7 using subtraction instead of addition, and showing borr
instead of carries.

2.9 Add the following pairs of octal numbers:

2.10 Add the following pairs of hexadecimal numbers:

2.11 Write the 8-bit signed-magnitude, two’s-complement, and ones’-complem
representations for each of these decimal numbers: +18, +115, +79, −49, −3, −100.

2.12 Indicate whether or not overflow occurs when adding the following 8-bit tw
complement numbers:

2.13 How many errors can be detected by a code with minimum distance d?

2.14 What is the minimum number of parity bits required to obtain a distance-4,
dimensional code with n information bits?

(a) 11010112 = ?10 (b) 1740038 = ?10

(c) 101101112 = ?10 (d) 67.248 = ?10

(e) 10100.11012 = ?10 (f) F3A516 = ?10

(g) 120103 = ?10 (h) AB3D16 = ?10

(i) 71568 = ?10 (j) 15C.3816 = ?10

(a) 12510 = ?2 (b) 348910 = ?8

(c) 20910 = ?2 (d) 971410 = ?8

(e) 13210 = ?2 (f) 2385110 = ?16

(g) 72710 = ?5 (h) 5719010 = ?16

(i) 143510 = ?8 (j) 6511310 = ?16

(a) 110101
+ 11001

(b) 101110
+ 100101

(c) 11011101
+ 1100011

(d) 1110010
+ 1101101

(a) 1372
+ 4631

(b) 47135
+ 5125

(c) 175214
+ 152405

(d) 110321
+ 56573

(a) 1372
+ 4631

(b) 4F1A5
+ B8D5

(c) F35B
+ 27E6

(d) 1B90F
+ C44E

(a) 11010100
+ 10101011

(b) 10111001
+ 11010110

(c) 01011101
+ 00100001

(d) 00100110
+ 01011010
Copyright © 1999 by John F. Wakerly Copying Prohibited

72 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

nt of

 sys-

rti-
d this
 end
ble

 way
 sys-
rom

of

s
ays

mple-

s of

n with
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Exercises

2.15 Here’s a problem to whet your appetite. What is the hexadecimal equivale
6145310?

2.16 Each of the following arithmetic operations is correct in at least one number
tem. Determine possible radices of the numbers in each operation.

2.17 The first expedition to Mars found only the ruins of a civilization. From the a
facts and pictures, the explorers deduced that the creatures who produce
civilization were four-legged beings with a tentacle that branched out at the
with a number of grasping “fingers.” After much study, the explorers were a
to translate Martian mathematics. They found the following equation:

5x2 − 50x + 125 = 0

with the indicated solutions x = 5 and x = 8. The value x = 5 seemed legitimate
enough, but x = 8 required some explanation. Then the explorers reflected on the
in which Earth’s number system developed, and found evidence that the Martian
tem had a similar history. How many fingers would you say the Martians had? (F
The Bent of Tau Beta Pi, February, 1956.)

2.18 Suppose a 4n-bit number B is represented by an n-digit hexadecimal number H.
Prove that the two’s complement of B is represented by the 16’s complement
H. Make and prove true a similar statement for octal representation.

2.19 Repeat Exercise 2.18 using the ones’ complement of B and the 15s’ complement
of H.

2.20 Given an integer x in the range −2n−1 ≤ x ≤ 2n−1 − 1, we define [x] to be the two’s-
complement representation of x, expressed as a positive number: [x] = x if x ≥ 0
and [x] = 2n − |x| if x < 0, where | x| is the absolute value of x. Let y be another
integer in the same range as x. Prove that the two’s-complement addition rule
given in Section 2.6 are correct by proving that the following equation is alw
true:

[x + y] = ([x] + [y]) modulo 2n

(Hints: Consider four cases based on the signs of x and y. Without loss of generality,
you may assume that | x| ≥ | y|.)

2.21 Repeat Exercise 2.20 using appropriate expressions and rules for ones’-co
ment addition.

2.22 State an overflow rule for addition of two’s-complement numbers in term
counting operations in the modular representation of Figure 2-3.

2.23 Show that a two’s-complement number can be converted to a representatio
more bits by sign extension. That is, given an n-bit two’s-complement number X,
show that the m-bit two’s-complement representation of X, where m > n, can be

(a) 1234 + 5432 = 6666 (b) 41 / 3 = 13

(c) 33/3 = 11 (d) 23+44+14+32 = 223

(e) 302/20 = 12.1 (f) 14 = 5
Copyright © 1999 by John F. Wakerly Copying Prohibited

Exercises 73

PY
PY
PY
PY
PY
PY
PY
PY
PY

n with

on-

-

r

 one
nd
ver-

2.28,

rrows
 fol-

light

2-5,

od-

 code
hy?

appli-
her
 way

bject)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

obtained by appending m − n copies of X’s sign bit to the left of the n-bit repre-
sentation of X.

2.24 Show that a two’s-complement number can be converted to a representatio
fewer bits by removing higher-order bits. That is, given an n-bit two’s-comple-
ment number X, show that the m-bit two’s-complement number Y obtained by
discarding the d leftmost bits of X represents the same number as X if and only if
the discarded bits all equal the sign bit of Y.

2.25 Why is the punctuation of “two’s complement” and “ones’ complement” inc
sistent? (See the first two citations in the References.)

2.26 A n-bit binary adder can be used to perform an n-bit unsigned subtraction opera
tion X − Y, by performing the operation X + Y + 1, where X and Y are n-bit
unsigned numbers and Y represents the bit-by-bit complement of Y. Demonstrate
this fact as follows. First, prove that (X − Y) = (X + Y + 1) − 2n. Second, prove that
the carry out of the n-bit adder is the opposite of the borrow from the n-bit sub-
traction. That is, show that the operation X − Y produces a borrow out of the MSB
position if and only if the operation X + Y + 1 does not produce a carry out of the
MSB position.

2.27 In most cases, the product of two n-bit two’s-complement numbers requires fewe
than 2n bits to represent it. In fact, there is only one case in which 2n bits are
needed—find it.

2.28 Prove that a two’s-complement number can be multiplied by 2 by shifting it
bit position to the left, with a carry of 0 into the least significant bit position a
disregarding any carry out of the most significant bit position, assuming no o
flow. State the rule for detecting overflow.

2.29 State and prove correct a technique similar to the one described in Exercise
for multiplying a ones’-complement number by 2.

2.30 Show how to subtract BCD numbers, by stating the rules for generating bo
and applying a correction factor. Show how your rules apply to each of the
lowing subtractions: 9 − 3, 5 − 7, 4 − 9, 1 − 8.

2.31 How many different 3-bit binary state encodings are possible for the traffic-
controller of Table 2-12?

2.32 List all of the “bad” boundaries in the mechanical encoding disc of Figure
where an incorrect position may be sensed.

2.33 As a function of n, how many “bad” boundaries are there in a mechanical enc
ing disc that uses an n-bit binary code?

2.34 On-board altitude transponders on commercial and private aircraft use Gray
to encode the altitude readings that are transmitted to air traffic controllers. W

2.35 An incandescent light bulb is stressed every time it is turned on, so in some
cations the lifetime of the bulb is limited by the number of on/off cycles rat
than the total time it is illuminated. Use your knowledge of codes to suggest a
to double the lifetime of 3-way bulbs in such applications.

2.36 As a function of n, how many different distinct subcubes of an n-cube are there?

2.37 Find a way to draw a 3-cube on a sheet of paper (or other two-dimensional o
so that none of the lines cross, or prove that it’s impossible.
Copyright © 1999 by John F. Wakerly Copying Prohibited

74 Chapter 2 Number Systems and Codes

DO
DO
DO
DO
DO
DO
DO
DO
DO

s.

bits

-
cient
ce-2
 bits.

 or a
-15,
ach

 list

 new
nt

es

110
des,
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

2.38 Repeat Exercise 2.37 for a 4-cube.

2.39 Write a formula that gives the number of m-subcubes of an n-cube for a specific
value of m. (Your answer should be a function of n and m.)

2.40 Define parity groups for a distance-3 Hamming code with 11 information bit

2.41 Write the code words of a Hamming code with one information bit.

2.42 Exhibit the pattern for a 3-bit error that is not detected if the “corner” parity
are not included in the two-dimensional codes of Figure 2-14.

2.43 The rate of a code is the ratio of the number of information bits to the total num
ber of bits in a code word. High rates, approaching 1, are desirable for effi
transmission of information. Construct a graph comparing the rates of distan
parity codes and distance-3 and -4 Hamming codes for up to 100 information

2.44 Which type of distance-4 code has a higher rate—a two-dimensional code
Hamming code? Support your answer with a table in the style of Table 2
including the rate as well as the number of parity and information bits of e
code for up to 100 information bits.

2.45 Show how to construct a distance-6 code with four information bits. Write a
of its code words.

2.46 Describe the operations that must be performed in a RAID system to write
data into information block b in drive d, so the data can be recovered in the eve
of an error in block b in any drive. Minimize the number of disk access
required.

2.47 In the style of Figure 2-17, draw the waveforms for the bit pattern 10101
when sent serially using the NRZ, NRZI, RZ, BPRZ, and Manchester co
assuming that the bits are transmitted in order from left to right.
Copyright © 1999 by John F. Wakerly Copying Prohibited

	Number Systems and Codes
	2.1� Positional Number Systems
	2.2� Octal and Hexadecimal Numbers
	Table 2�1 Binary, decimal, octal, and hexadecimal numbers.
	When I’m 64

	2.3� General Positional Number System Conversions
	Table 2�2� Conversion methods for common radices.
	Table 2�3 Binary addition and subtraction table.

	2.4� Addition and Subtraction of Nondecimal Numbers
	Figure 2�1� Examples of decimal and corresponding binary additions.
	Figure 2�2 Examples of decimal and corresponding binary subtractions.

	2.5� Representation of Negative Numbers
	2.5.1� Signed-Magnitude Representation
	2.5.2� Complement Number Systems
	2.5.3� Radix-Complement Representation
	Table 2�4 Examples of 10’s and 9s’ complements.
	Table 2�5 Digit complements.

	2.5.4� Two’s-Complement Representation
	*2.5.5� Diminished Radix-Complement Representation
	*2.5.6� Ones’-Complement Representation
	*2.5.7� Excess Representations

	2.6� Two’s-Complement Addition and Subtraction
	2.6.1� Addition Rules
	Table 2�6� Decimal and 4-bit numbers.

	2.6.2� A Graphical View
	Figure 2�3 A modular counting representation of 4-bit two’s-complement numbers.

	2.6.3� Overflow
	2.6.4� Subtraction Rules
	2.6.5� Two’s-Complement and Unsigned Binary Numbers
	Figure 2�4 A modular counting representation of 4-bit unsigned numbers.

	*2.7� Ones’-Complement Addition and Subtraction
	Table 2�7� Summary of addition and subtraction rules for �binary numbers.

	*2.8� Binary Multiplication
	*2.9� Binary Division
	Table 2�8 Example of long division.

	2.10� Binary Codes for Decimal Numbers
	Table 2�9� Decimal codes.
	Binomial Coefficients

	2.11� Gray Code
	Figure 2�5 A mechanical encoding disk using a 3-bit binary code.
	Table 2�10 A comparison of 3-bit binary code and Gray code.
	Figure 2�6 A mechanical encoding disk using a 3-bit Gray code.

	*2.12� Character Codes
	Table 2�11� American Standard Code for Information Interchange (ASCII), Standard No. X3.4�1968 of...

	2.13� Codes for Actions, Conditions, and States
	Table 2�12� �States in a traffic-light controller.
	Figure 2�7� Control structure for a digital system with n devices: (a) using a binary code; (b) u...

	*2.14� n-Cubes and Distance
	Figure 2�8 n-cubes for n�=�1, 2, 3, and 4.
	Figure 2�9 Traversing n�cubes in Gray-code order: (a) 3�cube; (b) 4�cube.

	*2.15� Codes for Detecting and Correcting Errors
	2.15.1� Error-Detecting Codes
	Figure 2�10 Code words in two different 3�bit codes: (a) minimum distance = 1, does not detect al...
	Table 2�13 Distance-2 codes with three information bits.

	2.15.2� Error-Correcting and Multiple-Error-Detecting Codes
	Figure 2�11 Some code words and noncode words in a 7�bit, distance-3 code.
	Decisions, Decisions
	Figure 2�12 Some code words and noncode words in an 8�bit, distance-4 code: (a)�correcting 1�bit ...

	2.15.3� Hamming Codes
	Figure 2�13 Parity-check matrices for 7-bit Hamming codes: (a)�with bit positions in numerical or...
	Table 2�14� Code words in distance-3 and distance-4 �Hamming codes with four information bits.
	Table 2�15� �Word sizes of distance-3 and distance-4 Hamming codes.

	2.15.4� CRC Codes
	2.15.5� Two-Dimensional Codes
	Figure 2�14 Two-dimensional codes: (a)�general structure; (b)�using even parity for both the row ...
	Figure 2�15 Structure of error- correcting code for a RAID system.

	2.15.6� Checksum Codes
	2.15.7� m-out-of-n Codes

	2.16� Codes for Serial Data Transmission and Storage
	2.16.1� Parallel and Serial Data
	Figure 2�16� Basic concepts for serial data transmission.

	*2.16.2� Serial Line Codes
	Figure 2�17 Commonly used line codes for serial data.
	Kilo-, Mega-, Giga-, Tera-
	About TPC

	References
	Drill Problems
	Exercises

