
DO
CO

DO NOT
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
 •

 •
 •

 •
 •

Copyright © 1999 by John F. Wakerly Copyi

Hi, I'm John
 c h a p t e r1
NOT
PY

COPY

•
•

•

Introduction
m-
are
ll
’re

me-
w a
ill

ut,
o
nt,
ften
e’re

 of
 this

rin-
ome
DO NOT
COPY

DO NOT
COPY

DO NOT

elcome to the world of digital design. Perhaps you’re a co
puter science student who knows all about computer softw
and programming, but you’re still trying to figure out how a
that fancy hardware could possibly work. Or perhaps you
an electrical engineering student who already knows so

thing about analog electronics and circuit design, but you wouldn’t kno
bit if it bit you. No matter. Starting from a fairly basic level, this book w
show you how to design digital circuits and subsystems.

We’ll give you the basic principles that you need to figure things o
and we’ll give you lots of examples. Along with principles, we’ll try t
convey the flavor of real-world digital design by discussing curre
practical considerations whenever possible. And I, the author, will o
refer to myself as “we” in the hope that you’ll be drawn in and feel that w
walking through the learning process together.

1.1 About Digital Design
Some people call it “logic design.” That’s OK, but ultimately the goal
design is to build systems. To that end, we’ll cover a whole lot more in
text than just logic equations and theorems.

This book claims to be about principles and practices. Most of the p
ciples that we present will continue to be important years from now; s

W

1ng Prohibited

2 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

tices,
start
our
 rein-

r you
 you.
n the

ould
e no

ng.”
he
ach.
uch

0% or

IMPORTANT
THEMES IN

DIGITAL DESIGN

out

al

ers.

ic

rt

st-

gy

 and
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

may be applied in ways that have not even been discovered yet. As for prac
they may be a little different from what’s presented here by the time you
working in the field, and they will certainly continue to change throughout y
career. So you should treat the “practices” material in this book as a way to
force principles, and as a way to learn design methods by example.

One of the book's goals is to present enough about basic principles fo
to know what's happening when you use software tools to turn the crank for
The same basic principles can help you get to the root of problems whe
tools happen to get in your way.

Listed in the box on this page, there are several key points that you sh
learn through your studies with this text. Most of these items probably mak
sense to you right now, but you should come back and review them later.

Digital design is engineering, and engineering means “problem solvi
My experience is that only 5%–10% of digital design is “the fun stuff”—t
creative part of design, the flash of insight, the invention of a new appro
Much of the rest is just “turning the crank.” To be sure, turning the crank is m
easier now than it was 20 or even 10 years ago, but you still can’t spend 10
even 50% of your time on the fun stuff.

• Good tools do not guarantee good design, but they help a lot by taking the pain
of doing things right.

• Digital circuits have analog characteristics.

• Know when to worry and when not to worry about the analog aspects of digit
design.

• Always document your designs to make them understandable by yourself and oth

• Associate active levels with signal names and practice bubble-to-bubble log
design.

• Understand and use standard functional building blocks.

• Design for minimum cost at the system level, including your own engineering effo
as part of the cost.

• State-machine design is like programming; approach it that way.

• Use programmable logic to simplify designs, reduce cost, and accommodate la
minute modifications.

• Avoid asynchronous design. Practice synchronous design until a better methodolo
comes along.

• Pinpoint the unavoidable asynchronous interfaces between different subsystems
the outside world, and provide reliable synchronizers.

• Catching a glitch in time saves nine.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.2 Analog versus Digital 3

PY
PY
PY
PY
PY
PY
PY
PY
PY

as in
ing:

g a
matic

rds,
ask

nce
 from
the
m

to
mmu-
ind
arn

tate
 do
u are
ail to

n any

’t! A
rete

en in
 years
s of

ord
has
as a

analog
digital

0
1

DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

Besides the fun stuff and turning the crank, there are many other are
which a successful digital designer must be competent, including the follow

• Debugging. It’s next to impossible to be a good designer without bein
good troubleshooter. Successful debugging takes planning, a syste
approach, patience, and logic: if you can’t discover where a problemis,
find out where it is not!

• Business requirements and practices. A digital designer’s work is affected
by a lot of non-engineering factors, including documentation standa
component availability, feature definitions, target specifications, t
scheduling, office politics, and going to lunch with vendors.

• Risk-taking. When you begin a design project you must carefully bala
risks against potential rewards and consequences, in areas ranging
new-component selection (will it be available when I’m ready to build
first prototype?) to schedule commitments (will I still have a job if I’
late?).

• Communication. Eventually, you’ll hand off your successful designs
other engineers, other departments, and customers. Without good co
nication skills, you’ll never complete this step successfully. Keep in m
that communication includes not just transmitting but also receiving; le
to be a good listener!

In the rest of this chapter, and throughout the text, I’ll continue to s
some opinions about what’s important and what is not. I think I’m entitled to
so as a moderately successful practitioner of digital design. Of course, yo
always welcome to share your own opinions and experience (send em
john@wakerly.com).

1.2 Analog versus Digital
Analog devices and systems process time-varying signals that can take o
value across a continuous range of voltage, current, or other metric. So do digital
circuits and systems; the difference is that we can pretend that they don
digital signal is modeled as taking on, at any time, only one of two disc
values, which we call 0 and 1 (or LOW and HIGH, FALSE and TRUE, negated
and asserted, Sam and Fred, or whatever).

Digital computers have been around since the 1940s, and have be
widespread commercial use since the 1960s. Yet only in the past 10 to 20
has the “digital revolution” spread to many other aspects of life. Example
once-analog systems that have now “gone digital” include the following:

• Still pictures. The majority of cameras still use silver-halide film to rec
images. However, the increasing density of digital memory chips
allowed the development of digital cameras which record a picture
Copyright © 1999 by John F. Wakerly Copying Prohibited

4 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

s of
ount

 and
inal
eras

y
mall

r to
nd the
t 35
o-

e-
use
6-bit
 one
 CD

s
ture,
dded
 con-
mine
The
that
.

og
wires
nes,
O).

nto a
 the
anges
o the
rvice
oice

ers
ned
vate
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

640×480 or larger array of pixels, where each pixel stores the intensitie
its red, green and blue color components as 8 bits each. This large am
of data, over seven million bits in this example, may be processed
compressed into a format called JPEG with as little as 5% of the orig
storage size, depending on the amount of picture detail. So, digital cam
rely on both digital storage and digital processing.

• Video recordings. A digital versatile disc (DVD) stores video in a highl
compressed digital format called MPEG-2. This standard encodes a s
fraction of the individual video frames in a compressed format simila
JPEG, and encodes each other frame as the difference between it a
previous one. The capacity of a single-layer, single-sided DVD is abou
billion bits, sufficient for about 2 hours of high-quality video, and a tw
layer, double-sided disc has four times that capacity.

• Audio recordings. Once made exclusively by impressing analog wav
forms onto vinyl or magnetic tape, audio recordings now commonly
digital compact discs (CDs). A CD stores music as a sequence of 1
numbers corresponding to samples of the original analog waveform,
sample per stereo channel every 22.7 microseconds. A full-length
recording (73 minutes) contains over six billion bits of information.

• Automobile carburetors. Once controlled strictly by mechanical linkage
(including clever “analog” mechanical devices that sensed tempera
pressure, etc.), automobile engines are now controlled by embe
microprocessors. Various electronic and electromechanical sensors
vert engine conditions into numbers that the microprocessor can exa
to determine how to control the flow of fuel and oxygen to the engine.
microprocessor’s output is a time-varying sequence of numbers
operate electromechanical actuators which, in turn, control the engine

• The telephone system. It started out a hundred years ago with anal
microphones and receivers connected to the ends of a pair of copper
(or was it string?). Even today, most homes still use analog telepho
which transmit analog signals to the phone company’s central office (C
However, in the majority of COs, these analog signals are converted i
digital format before they are routed to their destinations, be they in
same CO or across the world. For many years the private branch exch
(PBXs) used by businesses have carried the digital format all the way t
desktop. Now many businesses, COs, and traditional telephony se
providers are converting to integrated systems that combine digital v
with data traffic over a single IP (Internet Protocol) network.

• Traffic lights. Stop lights used to be controlled by electromechanical tim
that would give the green light to each direction for a predetermi
amount of time. Later, relays were used in controllers that could acti
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.2 Analog versus Digital 5

PY
PY
PY
PY
PY
PY
PY
PY
PY

dded
ntrol
nia

ure
 film
enes,

an

, and
like

nd
actly
ture,

o
 can
n of

tal
. For
rded
have
one

-
rams
 by

be
th
o test
 then
gy.

the
nd a

e its

hardware description
language (HDL)

hardware model
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

the lights according to the pattern of traffic detected by sensors embe
in the pavement. Today’s controllers use microprocessors, and can co
the lights in ways that maximize vehicle throughput or, in some Califor
cities, frustrate drivers in all kinds of creative ways.

• Movie effects. Special effects used to be made exclusively with miniat
clay models, stop action, trick photography, and numerous overlays of
on a frame-by-frame basis. Today, spaceships, bugs, other-worldly sc
and even babies from hell (in Pixar’s animated feature Tin Toy) are synthe-
sized entirely using digital computers. Might the stunt man or wom
someday no longer be needed, either?

The electronics revolution has been going on for quite some time now
the “solid-state” revolution began with analog devices and applications
transistors and transistor radios. So why has there now been a digital revolution?
There are in fact many reasons to favor digital circuits over analog ones:

• Reproducibility of results. Given the same set of inputs (in both value a
time sequence), a properly designed digital circuit always produces ex
the same results. The outputs of an analog circuit vary with tempera
power-supply voltage, component aging, and other factors.

• Ease of design. Digital design, often called “logic design,” is logical. N
special math skills are needed, and the behavior of small logic circuits
be visualized mentally without any special insights about the operatio
capacitors, transistors, or other devices that require calculus to model.

• Flexibility and functionality. Once a problem has been reduced to digi
form, it can be solved using a set of logical steps in space and time
example, you can design a digital circuit that scrambles your reco
voice so that it is absolutely indecipherable by anyone who does not
your “key” (password), but can be heard virtually undistorted by any
who does. Try doing that with an analog circuit.

• Programmability. You’re probably already quite familiar with digital com
puters and the ease with which you can design, write, and debug prog
for them. Well, guess what? Much of digital design is carried out today
writing programs, too, in hardware description languages (HDLs). These
languages allow both structure and function of a digital circuit to
specified or modeled. Besides a compiler, a typical HDL also comes wi
simulation and synthesis programs. These software tools are used t
the hardware model’s behavior before any real hardware is built, and
synthesize the model into a circuit in a particular component technolo

• Speed. Today’s digital devices are very fast. Individual transistors in
fastest integrated circuits can switch in less than 10 picoseconds, a
complete, complex device built from these transistors can examin
Copyright © 1999 by John F. Wakerly Copying Prohibited

6 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

s that

ll
ingle
way
You

u
etter
these
stem
 com-
ssors
ter’s

r will
ook.

r
from
.
 func-
alog
deled

s. A
 1;
, with
sult-

SHORT TIMES
-
st
ht
e a

gate

AND gate
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

inputs and produce an output in less than 2 nanoseconds. This mean
such a device can produce 500 million or more results per second.

• Economy. Digital circuits can provide a lot of functionality in a sma
space. Circuits that are used repetitively can be “integrated” into a s
“chip” and mass-produced at very low cost, making possible throw-a
items like calculators, digital watches, and singing birthday cards. (
may ask, “Is this such a good thing?” Never mind!)

• Steadily advancing technology. When you design a digital system, yo
almost always know that there will be a faster, cheaper, or otherwise b
technology for it in a few years. Clever designers can accommodate
expected advances during the initial design of a system, to forestall sy
obsolescence and to add value for customers. For example, desktop
puters often have “expansion sockets” to accommodate faster proce
or larger memories than are available at the time of the compu
introduction.

So, that’s enough of a sales pitch on digital design. The rest of this chapte
give you a bit more technical background to prepare you for the rest of the b

1.3 Digital Devices
The most basic digital devices are called gates and no, they were not named afte
the founder of a large software company. Gates originally got their name
their function of allowing or retarding (“gating”) the flow of digital information
In general, a gate has one or more inputs and produces an output that is a
tion of the current input value(s). While the inputs and outputs may be an
conditions such as voltage, current, even hydraulic pressure, they are mo
as taking on just two discrete values, 0 and 1.

Figure 1-1 shows symbols for the three most important kinds of gate
2-input AND gate, shown in (a), produces a 1 output if both of its inputs are
otherwise it produces a 0 output. The figure shows the same gate four times
the four possible combinations of inputs that may be applied to it and the re

A microsecond (µsec) is 10−6 second. A nanosecond (ns) is just 10−9 second, and a
picosecond (ps) is 10−12 second. In a vacuum, light travels about a foot in a nanosec
ond, and an inch in 85 picoseconds. With individual transistors in the faste
integrated circuits now switching in less than 10 picoseconds, the speed-of-lig
delay between these transistors across a half-inch-square silicon chip has becom
limiting factor in circuit design.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.4 Electronic Aspects of Digital Design 7

PY
PY
PY
PY
PY
PY
PY
PY
PY

s

its
re are
e.

igital
 we’ll
ever,
relays,

ertain
d on
m
.

so on
equen-

due
. As
nts,

alog
 really

1

1

combinational

OR gate

NOT gate
inverter

flip-flop
state

sequential circuit

memory
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

ing outputs. A gate is called a combinational circuit because its output depend
only on the current input combination.

A 2-input OR gate, shown in (b), produces a 1 output if one or both of
inputs are 1; it produces a 0 output only if both inputs are 0. Once again, the
four possible input combinations, resulting in the outputs shown in the figur

A NOT gate, more commonly called an inverter, produces an output value
that is the opposite of the input value, as shown in (c).

We called these three gates the most important for good reason. Any d
function can be realized using just these three kinds of gates. In Chapter 3
show how gates are realized using transistor circuits. You should know, how
that gates have been built or proposed using other technologies, such as
vacuum tubes, hydraulics, and molecular structures.

A flip-flop is a device that stores either a 0 or 1. The state of a flip-flop is
the value that it currently stores. The stored value can be changed only at c
times determined by a “clock” input, and the new value may further depen
the flip-flop’s current state and its “control” inputs. A flip-flop can be built fro
a collection of gates hooked up in a clever way, as we’ll show in Section 7.2

A digital circuit that contains flip-flops is called a sequential circuit
because its output at any time depends not only on its current input, but al
the past sequence of inputs that have been applied to it. In other words, a s
tial circuit has memory of past events.

1.4 Electronic Aspects of Digital Design
Digital circuits are not exactly a binary version of alphabet soup—with all
respect to Figure 1-1, they don’t have little 0s and 1s floating around in them
we’ll see in Chapter 3, digital circuits deal with analog voltages and curre
and are built with analog components. The “digital abstraction” allows an
behavior to be ignored in most cases, so circuits can be modeled as if they
did process 0s and 1s.

(c) 1

(a) 0
0

0

(b) 0
0

0

0 0

0
0

1

1
0

1

1

0
1

0

1
1

0

1

1

1

1

Figure 1-1 Digital devices: (a) AND gate; (b) OR gate; (c) NOT gate or inverter.
Copyright © 1999 by John F. Wakerly Copying Prohibited

8 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

ical
ather,

tween
n
ts of

 an
any
ve a

rent
have
is
ent

s
. This
is in
avior

ding,
cturer
ior

alog
 only
t it is

edge
sign

you

noise margin

specifications
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

One important aspect of the digital abstraction is to associate a range of
analog values with each logic value (0 or 1). As shown in Figure 1-2, a typ
gate is not guaranteed to have a precise voltage level for a logic 0 output. R
it may produce a voltage somewhere in a range that is a subset of the range
guaranteed to be recognized as a 0 by other gate inputs. The difference be
the range boundaries is called noise margin—in a real circuit, a gate’s output ca
be corrupted by this much noise and still be correctly interpreted at the inpu
other gates.

Behavior for logic 1 outputs is similar. Note in the figure that there is
“invalid” region between the input ranges for logic 0 and logic 1. Although
given digital device operating at a particular voltage and temperature will ha
fairly well defined boundary (or threshold) between the two ranges, diffe
devices may have different boundaries. Still, all properly operating devices
their boundary somewhere in the “invalid” range. Therefore, any signal that
within the defined ranges for 0 and 1 will be interpreted identically by differ
devices. This characteristic is essential for reproducibility of results.

It is the job of an electronic circuit designer to ensure that logic gate
produce and recognize logic signals that are within the appropriate ranges
is an analog circuit-design problem; we touch upon some aspects of th
Chapter 3. It is not possible to design a circuit that has the desired beh
under every possible condition of power-supply voltage, temperature, loa
and other factors. Instead, the electronic circuit designer or device manufa
provides specifications that define the conditions under which correct behav
is guaranteed.

As a digital designer, then, you need not delve into the detailed an
behavior of a digital device to ensure its correct operation. Rather, you need
examine enough about the device’s operating environment to determine tha
operating within its published specifications. Granted, some analog knowl
is needed to perform this examination, but not nearly what you’d need to de
a digital device starting from scratch. In Chapter 3, we’ll give you just what
need.

logic 0

Outputs Inputs
Noise
Margin

Voltage
logic 1

logic 0

logic 1

invalid

Figure 1-2
Logic values and noise
margins.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.5 Software Aspects of Digital Design 9

PY
PY
PY
PY
PY
PY
PY
PY
PY

1-3
late
ame

ign.
ges
nged
make

y of
btain
tware

s-
ith

 also
gnals
reater

uit

rge,
,
s in

 the
zes

computer-aided design
(CAD)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

1.5 Software Aspects of Digital Design
Digital design need not involve any software tools. For example, Figure
shows the primary tool of the “old school” of digital design—a plastic temp
for drawing logic symbols in schematic diagrams by hand (the designer’s n
was engraved into the plastic with a soldering iron).

Today, however, software tools are an essential part of digital des
Indeed, the availability and practicality of hardware description langua
(HDLs) and accompanying circuit simulation and synthesis tools have cha
the entire landscape of digital design over the past several years. We’ll
extensive use of HDLs throughout this book.

In computer-aided design (CAD) various software tools improve the
designer’s productivity and help to improve the correctness and qualit
designs. In a competitive world, the use of software tools is mandatory to o
high-quality results on aggressive schedules. Important examples of sof
tools for digital design are listed below:

• Schematic entry. This is the digital designer’s equivalent of a word proce
sor. It allows schematic diagrams to be drawn “on-line,” instead of w
paper and pencil. The more advanced schematic-entry programs
check for common, easy-to-spot errors, such as shorted outputs, si
that don’t go anywhere, and so on. Such programs are discussed in g
detail in Section 12.1.

• HDLs. Hardware description languages, originally developed for circ
modeling, are now being used more and more for hardware design. They
can be used to design anything from individual function modules to la
multi-chip digital systems. We’ll introduce two HDLs, ABEL and VHDL
at the end of Chapter 4, and we’ll provide examples in both language
the chapters that follow.

• HDL compilers, simulators, and synthesis tools. A typical HDL software
package contains several components. In a typical environment,
designer writes a text-based “program,” and the HDL compiler analy

Figure 1-3
A logic-design
template.

Quarter-size logic symbols, copyright 1976 by Micro Systems Engineering
Copyright © 1999 by John F. Wakerly Copying Prohibited

10 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

 the
ding
ten,
 to a

at-
ery
ns
lly,
 must

ocess
 “get
ict
 it,

es,”
any

ase
s and
t of

m-
 The
rcise
s is
h can
reak
L as
ing

lue
pent
ases,
k of
n-

or.
DL-
reate
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

the program for syntax errors. If it compiles correctly, the designer has
option of handing it over to a synthesis tool that creates a correspon
circuit design targeted to a particular hardware technology. Most of
before synthesis the designer will use the compiler’s results as input
“simulator” to verify the behavior of the design.

• Simulators. The design cycle for a customized, single-chip digital integr
ed circuit is long and expensive. Once the first chip is built, it’s v
difficult, often impossible, to debug it by probing internal connectio
(they are really tiny), or to change the gates and interconnections. Usua
changes must be made in the original design database and a new chip
be manufactured to incorporate the required changes. Since this pr
can take months to complete, chip designers are highly motivated to
it right” (or almost right) on the first try. Simulators help designers pred
the electrical and functional behavior of a chip without actually building
allowing most if not all bugs to be found before the chip is fabricated.

• Simulators are also used in the design of “programmable logic devic
introduced later, and in the overall design of systems that incorporate m
individual components. They are somewhat less critical in this c
because it’s easier for the designer to make changes in component
interconnections on a printed-circuit board. However, even a little bi
simulation can save time by catching simple but stupid mistakes.

• Test benches. Digital designers have learned how to formalize circuit si
ulation and testing into software environments called “test benches.”
idea is to build a set of programs around a design to automatically exe
its functions and check both its functional and its timing behavior. Thi
especially useful when small design changes are made—the test benc
be run to ensure that bug fixes or “improvements” in one area do not b
something else. Test-bench programs may be written in the same HD
the design itself, in C or C++, or in combination of languages includ
scripting languages like PERL.

• Timing analyzers and verifiers. The time dimension is very important in
digital design. All digital circuits take time to produce a new output va
in response to an input change, and much of a designer’s effort is s
ensuring that such output changes occur quickly enough (or, in some c
not too quickly). Specialized programs can automate the tedious tas
drawing timing diagrams and specifying and verifying the timing relatio
ships between different signals in a complex system.

• Word processors. Let’s not forget the lowly text editor and word process
These tools are obviously useful for creating the source code for H
based designs, but they have an important use in every design—to c
documentation!
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.5 Software Aspects of Digital Design 11

PY
PY
PY
PY
PY
PY
PY
PY
PY

 spe-
ages
ives
plex

ital
rself
word
ll the

evices (PLDs) and field-
 a circuit or subsystem by

lable with up to millions of
er increasing. If a PLD- or
often fix it by changing the
out changing any compo-
f prototyping and modifying
or simulation in board-level

 that as chip technology
 level, rather than the board
accurate simulation will
ner.
 trends in PLD and FPGA

ence of devices that include
igher-level functions such
At this point, most digital

erconnections whose basic
cturer.
igh-level programmable
 by changing a program;
 could be a waste of time.
rely a full-speed simulator
s shipped in the product!
s the answer, ask yourself
 do you know who debug

ust trying it out?
 complex for a designer to
n, with or without simula-
ms is best accomplished
ct by design.” It is a goal of
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

In addition to using the tools above, designers may sometimes write
cialized programs in high-level languages like C or C++, or scripts in langu
like PERL, to solve particular design problems. For example, Section 11.1 g
a few examples of C programs that generate the “truth tables” for com
combinational logic functions.

Although CAD tools are important, they don’t make or break a dig
designer. To take an analogy from another field, you couldn’t consider you
to be a great writer just because you’re a fast typist or very handy with a
processor. During your study of digital design, be sure to learn and use a

PROGRAMMABLE
LOGIC DEVICES

VERSUS
SIMULATION

Later in this book you’ll learn how programmable logic d
programmable gate arrays (FPGAs) allow you to design
writing a sort of program. PLDs and FPGAs are now avai
gates, and the capabilities of these technologies are ev
FPGA-based design doesn’t work the first time, you can
program and physically reprogramming the device, with
nents or interconnections at the system level. The ease o
PLD- and FPGA-based systems can eliminate the need f
design; simulation is required only for chip-level designs.

The most widely held view in industry trends says
advances, more and more design will be done at the chip
level. Therefore, the ability to perform complete and
become increasingly important to the typical digital desig

However, another view is possible. If we extrapolate
capabilities, in the next decade we will witness the emerg
not only gates and flip-flops as building blocks, but also h
as processors, memories, and input/output controllers.
designers will use complex on-chip components and int
functions have already been tested by the device manufa

In this future view, it is still possible to misapply h
functions, but it is also possible to fix mistakes simply
detailed simulation of a design before simply “trying it out”
Another, compatible view is that the PLD or FPGA is me
for the program, and this full-speed simulator is what get

Does this extreme view have any validity? To gues
the following question. How many software programmers
a new program by “simulating” its operation rather than j

In any case, modern digital systems are much too
have any chance of testing every possible input conditio
tion. As in software, correct operation of digital syste
through practices that ensure that the systems are “corre
this text to encourage such practices.
Copyright © 1999 by John F. Wakerly Copying Prohibited

12 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

ators,
e that
ou’re

d an
alf
 inch

f the
, like
e (IC
 on

oduce
izza-

 Each
ckage
tomer.
” to

tion
inter-
on’t
lec-

integrated circuit (IC)

wafer

die

A DICEY
DECISION

y

 it.

er

IC
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

tools that are available to you, such as schematic-entry programs, simul
and HDL compilers. But remember that learning to use tools is no guarante
you’ll be able to produce good results. Please pay attention to what y
producing with them!

1.6 Integrated Circuits
A collection of one or more gates fabricated on a single silicon chip is calle
integrated circuit (IC). Large ICs with tens of millions of transistors may be h
an inch or more on a side, while small ICs may be less than one-tenth of an
on a side.

Regardless of its size, an IC is initially part of a much larger, circular wafer,
up to ten inches in diameter, containing dozens to hundreds of replicas o
same IC. All of the IC chips on the wafer are fabricated at the same time
pizzas that are eventually sold by the slice, except in this case, each piec
chip) is called a die. After the wafer is fabricated, the dice are tested in place
the wafer and defective ones are marked. Then the wafer is sliced up to pr
the individual dice, and the marked ones are discarded. (Compare with the p
maker who sells all the pieces, even the ones without enough pepperoni!)
unmarked die is mounted in a package, its pads are connected to the pa
pins, and the packaged IC is subjected to a final test and is shipped to a cus

Some people use the term “IC” to refer to a silicon die. Some use “chip
refer to the same thing. Still others use “IC” or “chip” to refer to the combina
of a silicon die and its package. Digital designers tend to use the two terms
changeably, and they really don’t care what they’re talking about. They d
require a precise definition, since they’re only looking at the functional and e
trical behavior of these things. In the balance of this text, we’ll use the term IC to
refer to a packaged die.

A reader of the second edition wrote to me to collect a $5 reward for pointing out m
“glaring” misuse of “dice” as the plural of “die.” According to the dictionary, she
said, the plural form of “die” is “dice” only when describing those little cubes with
dots on each side; otherwise it’s “dies,” and she produced the references to prove

Being stubborn, I asked my friends at the Microprocessor Report about this
issue. According to the editor,

There is, indeed, much dispute over this term. We actually stopped using
the term “dice” in Microprocessor Report more than four years ago. I
actually prefer the plural “die,” … but perhaps it is best to avoid using
the plural whenever possible.

So there you have it, even the experts don’t agree with the dictionary! Rath
than cop out, I boldly chose to use “dice” anyway, by rolling the dice.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.6 Integrated Circuits 13

PY
PY
PY
PY
PY
PY
PY
PY
PY

all,
plest

ful of

 in a
ng
is 0.3
wn in
age
Cs.
eds to

for a

small-scale integration
(SSI)

dual in-line-pin (DIP)
package

pin 15

Figure 1-4
Dual in-line pin (DIP)
packages: (a) 14-pin;
(b) 20-pin; (c) 28-pin.

pin diagram
pinout

14

13

12

11

10

9

8

VCC

14

13

12

11

10

9

8

VCC
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

In the early days of integrated circuits, ICs were classified by size—sm
medium, or large—according to how many gates they contained. The sim
type of commercially available ICs are still called small-scale integration (SSI),
and contain the equivalent of 1 to 20 gates. SSI ICs typically contain a hand
gates or flip-flops, the basic building blocks of digital design.

The SSI ICs that you’re likely to encounter in an educational lab come
14-pin dual in-line-pin (DIP) package. As shown in Figure 1-4(a), the spaci
between pins in a column is 0.1 inch and the spacing between columns
inch. Larger DIP packages accommodate functions with more pins, as sho
(b) and (c). A pin diagram shows the assignment of device signals to pack
pins, or pinout. Figure 1-5 shows the pin diagrams for a few common SSI I
Such diagrams are used only for mechanical reference, when a designer ne
determine the pin numbers for a particular IC. In the schematic diagram

(b) (c)(a) 0.3"

0.1"

pin 1 pin 14

pin 8

0.1"

pin 1 pin 20

0.3"

pin 11

0.6"

0.1"

pin 1 pin 28

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7400

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7402

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7404

1

2

3

4

5

6

7 GND

7410

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7411

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7420

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7421

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7430

1

2

3

4

5

6

7 GND

7432

1

2

3

4

5

6

7

14

13

12

11

10

9

8GND

VCC

7408

Figure 1-5 Pin diagrams for a few 7400-series SSI ICs.
Copyright © 1999 by John F. Wakerly Copying Prohibited

14 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

uped

ger-
y pro-

SI
r, or
ilding
lent

nt
icro-

TINY-SCALE
INTEGRATION

SI,
d

s
ll
ns
ign,

ents

e
and

STANDARD
LOGIC

FUNCTIONS

M s
in
c ies
f
P n
la

ies
M p-
t

medium-scale
integration (MSI)

large-scale integration
(LSI)
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

digital circuit, pin diagrams are not used. Instead, the various gates are gro
functionally, as we’ll show in Section 5.1.

Although SSI ICs are still sometimes used as “glue” to tie together lar
scale elements in complex systems, they have been largely supplanted b
grammable logic devices, which we’ll study in Sections 5.3 and 8.3.

The next larger commercially available ICs are called medium-scale
integration (MSI), and contain the equivalent of about 20 to 200 gates. An M
IC typically contains a functional building block, such as a decoder, registe
counter. In Chapters 5 and 8, we’ll place a strong emphasis on these bu
blocks. Even though the use of discrete MSI ICs is declining, the equiva
building blocks are used extensively in the design of larger ICs.

Large-scale integration (LSI) ICs are bigger still, containing the equivale
of 200 to 200,000 gates or more. LSI parts include small memories, m
processors, programmable logic devices, and customized devices.

In the coming years, perhaps the most popular remaining use of SSI and M
especially in DIP packages, will be in educational labs. These devices will affor
students the opportunity to “get their hands” dirty by “breadboarding” and wiring up
simple circuits in the same way that their professors did years ago.

However, much to my surprise and delight, a segment of the IC industry ha
actually gone downscale from SSI in the past few years. The idea has been to se
individual logic gates in very small packages. These devices handle simple functio
that are sometimes needed to match larger-scale components to a particular des
or in some cases they are used to work around bugs in the larger-scale compon
or their interfaces.

An example of such an IC is Motorola’s 74VHC1G00. This chip is a single
2-input NAND gate housed in a 5-pin package (power, ground, two inputs, and on
output). The entire package, including pins, measures only 0.08 inches on a side,
is only 0.04 inches high! Now that’s what I would call “tiny-scale integration”!

any standard “high-level” functions appear over and over as building block
 digital design. Historically, these functions were first integrated in MSI cir-

uits. Subsequently, they have appeared as components in the “macro” librar
or ASIC design, as “standard cells” in VLSI design, as “canned” functions in
LD programming languages, and as library functions in hardware-descriptio
nguages such as VHDL.

Standard logic functions are introduced in Chapters 5 and 8 as 74-ser
SI parts, as well as in HDL form. The discussion and examples in these cha

ers provide a basis for understanding and using these functions in any form.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.7 Programmable Logic Devices 15

PY
PY
PY
PY
PY
PY
PY
PY
PY

count.
es
mable
s 50

ed”
y that
g

ing
and

ould
 the
 in

ntro-

 the
 and

unity
lica-
 the
es.

iple
o the
ble,
rger
inter-

anu-
logic
tains
rge,
1-6

very large-scale
integration (VLSI)

programmable logic
array (PLA)

programmable array
logic (PAL) device

programmable logic
device (PLD)

complex PLD (CPLD)

field-programmable
gate array (FPGA)
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The dividing line between LSI and very large-scale integration (VLSI) is
fuzzy, and tends to be stated in terms of transistor count rather than gate
Any IC with over 1,000,000 transistors is definitely VLSI, and that includ
most microprocessors and memories nowadays, as well as larger program
logic devices and customized devices. In 1999, the VLSI ICs as large a
million transistors were being designed.

1.7 Programmable Logic Devices
There are a wide variety of ICs that can have their logic function “programm
into them after they are manufactured. Most of these devices use technolog
also allows the function to be reprogrammed, which means that if you find a bu
in your design, you may be able to fix it without physically replacing or rewir
the device. In this book, we’ll frequently refer to the design opportunities
methods for such devices.

Historically, programmable logic arrays (PLAs) were the first program-
mable logic devices. PLAs contained a two-level structure of AND and OR gates
with user-programmable connections. Using this structure, a designer c
accommodate any logic function up to a certain level of complexity using
well-known theory of logic synthesis and minimization that we’ll present
Chapter 4.

PLA structure was enhanced and PLA costs were reduced with the i
duction of programmable array logic (PAL) devices. Today, such devices are
generically called programmable logic devices (PLDs), and are the “MSI” of
programmable logic industry. We’ll have a lot to say about PLD architecture
technology in Sections 5.3 and 8.3.

The ever-increasing capacity of integrated circuits created an opport
for IC manufacturers to design larger PLDs for larger digital-design app
tions. However, for technical reasons that we’ll discuss in \secref{CPLDs},
basic two-level AND-OR structure of PLDs could not be scaled to larger siz
Instead, IC manufacturers devised complex PLD (CPLD) architectures to
achieve the required scale. A typical CPLD is merely a collection of mult
PLDs and an interconnection structure, all on the same chip. In addition t
individual PLDs, the on-chip interconnection structure is also programma
providing a rich variety of design possibilities. CPLDs can be scaled to la
sizes by increasing the number of individual PLDs and the richness of the
connection structure on the CPLD chip.

At about the same time that CPLDs were being invented, other IC m
facturers took a different approach to scaling the size of programmable
chips. Compared to a CPLD, a field-programmable gate arrays (FPGA) con
a much larger number of smaller individual logic blocks, and provides a la
distributed interconnection structure that dominates the entire chip. Figure
illustrates the difference between the two chip-design approaches.
Copyright © 1999 by John F. Wakerly Copying Prohibited

16 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

rgu-
arge
 is a
 more
esign
duc-

-
 and
iled,
tes.
ially
s of

rage
asing
ited

st of
, and

arges
g the

PLD

PLD

(a)

Figure 1-

semicustom IC
application-specific IC

(ASIC)

nonrecurring
engineering (NRE)
cost
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

Proponents of one approach or the other used to get into “religious” a
ments over which way was better, but the largest manufacturer of l
programmable logic devices, Xilinx Corporation, acknowledges that there
place for both approaches and manufactures both types of devices. What’s
important than chip architecture is that both approaches support a style of d
in which products can be moved from design concept to prototype and pro
tion in a very period of time short time.

Also important in achieving short “time-to-market” for all kinds of PLD
based products is the use of HDLs in their design. Languages like ABEL
VHDL, and their accompanying software tools, allow a design to be comp
synthesized, and downloaded into a PLD, CPLD, or FPGA literally in minu
The power of highly structured, hierarchical languages like VHDL is espec
important in helping designers utilize the hundreds of thousands or million
gates that are provided in the largest CPLDs and FPGAs.

1.8 Application-Specific ICs
Perhaps the most interesting developments in IC technology for the ave
digital designer are not the ever-increasing chip sizes, but the ever-incre
opportunities to “design your own chip.” Chips designed for a particular, lim
product or application are called semicustom ICs or application-specific ICs
(ASICs). ASICs generally reduce the total component and manufacturing co
a product by reducing chip count, physical size, and power consumption
they often provide higher performance.

The nonrecurring engineering (NRE) cost for designing an ASIC can
exceed the cost of a discrete design by $5,000 to $250,000 or more. NRE ch
are paid to the IC manufacturer and others who are responsible for designin

PLD PLD PLD

PLD PLD PLD

Programmable Interconnect

(b) = logic block

6 Large programmable-logic-device scaling approaches: (a) CPLD; (b) FPGA.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.8 Application-Specific ICs 17

PY
PY
PY
PY
PY
PY
PY
PY
PY

anu-
tually

00
n the
me of

-
cific
one
ery
ork

s of
rs,
ories,

ichip
abso-
 the
miz-
s the
for a

ers

nec-
 and
 very
vel
are

at the
d as

r, and
lls in
mplet-

 told

ook
nal
d on

custom LSI

standard cells

standard-cell design

gate array
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

internal structure of the chip, creating tooling such as the metal masks for m
facturing the chips, developing tests for the manufactured chips, and ac
making the first few sample chips.

The NRE cost for a typical, medium-complexity ASIC with about 100,0
gates is $30–$50,000. An ASIC design normally makes sense only whe
NRE cost can be offset by the per-unit savings over the expected sales volu
the product.

The NRE cost to design a custom LSI chip—a chip whose functions, inter
nal architecture, and detailed transistor-level design is tailored for a spe
customer—is very high, $250,000 or more. Thus, full custom LSI design is d
only for chips that have general commercial application or that will enjoy v
high sales volume in a specific application (e.g., a digital watch chip, a netw
interface, or a bus-interface circuit for a PC).

To reduce NRE charges, IC manufacturers have developed librarie
standard cells including commonly used MSI functions such as decode
registers, and counters, and commonly used LSI functions such as mem
programmable logic arrays, and microprocessors. In a standard-cell design, the
logic designer interconnects functions in much the same way as in a mult
MSI/LSI design. Custom cells are created (at added cost, of course) only if
lutely necessary. All of the cells are then laid out on the chip, optimizing
layout to reduce propagation delays and minimize the size of the chip. Mini
ing the chip size reduces the per-unit cost of the chip, since it increase
number of chips that can be fabricated on a single wafer. The NRE cost
standard-cell design is typically on the order of $150,000.

Well, $150,000 is still a lot of money for most folks, so IC manufactur
have gone one step further to bring ASIC design capability to the masses. Agate
array is an IC whose internal structure is an array of gates whose intercon
tions are initially unspecified. The logic designer specifies the gate types
interconnections. Even though the chip design is ultimately specified at this
low level, the designer typically works with “macrocells,” the same high-le
functions used in multichip MSI/LSI and standard-cell designs; softw
expands the high-level design into a low-level one.

The main difference between standard-cell and gate-array design is th
macrocells and the chip layout of a gate array are not as highly optimize
those in a standard-cell design, so the chip may be 25% or more large
therefore may cost more. Also, there is no opportunity to create custom ce
the gate-array approach. On the other hand, a gate-array design can be co
ed faster and at lower NRE cost, ranging from about $5000 (what you’re
initially) to $75,000 (what you find you’ve spent when you’re all done).

The basic digital design methods that you’ll study throughout this b
apply very well to the functional design of ASICs. However, there are additio
opportunities, constraints, and steps in ASIC design, which usually depen
the particular ASIC vendor and design environment.
Copyright © 1999 by John F. Wakerly Copying Prohibited

18 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

Bs
yers

-mil
ed in a
ity is

 the
re bent
ents
ds on
 to be
n the
 glue).

paste,

ch-
ther
or very
verse
light

not
for a
onded
ltiple
wer,

s it.

n and
evel,
ne.

igher

printed-circuit board
(PCB)

printed-wiring board
(PWB)

PCB traces
mil
fine-line

surface-mount
technology (SMT)

multichip module
(MCM)
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

1.9 Printed-Circuit Boards
An IC is normally mounted on a printed-circuit board (PCB) [or printed-wiring
board (PWB)] that connects it to other ICs in a system. The multilayer PC
used in typical digital systems have copper wiring etched on multiple, thin la
of fiberglass that are laminated into a single board about 1/16 inch thick.

Individual wire connections, or PCB traces are usually quite narrow, 10 to
25 mils in typical PCBs. (A mil is one-thousandth of an inch.) In fine-line PCB
technology, the traces are extremely narrow, as little as 4 mils wide with 4
spacing between adjacent traces. Thus, up to 125 connections may be rout
one-inch-wide band on a single layer of the PCB. If higher connection dens
needed, then more layers are used.

Most of the components in modern PCBs use surface-mount technology
(SMT). Instead of having the long pins of DIP packages that poke through
board and are soldered to the underside, the leads of SMT IC packages a
to make flat contact with the top surface of the PCB. Before such compon
are mounted on the PCB, a special “solder paste” is applied to contact pa
the PCB using a stencil whose hole pattern matches the contact pads
soldered. Then the SMT components are placed (by hand or by machine) o
pads, where they are held in place by the solder paste (or in some cases, by
Finally, the entire assembly is passed through an oven to melt the solder
which then solidifies when cooled.

Surface-mount component technology, coupled with fine-line PCB te
nology, allows extremely dense packing of integrated circuits and o
components on a PCB. This dense packing does more than save space. F
high-speed circuits, dense packing goes a long way toward minimizing ad
analog phenomena, including transmission-line effects and speed-of-
limitations.

To satisfy the most stringent requirements for speed and density, multichip
modules (MCMs) have been developed. In this technology, IC dice are
mounted in individual plastic or ceramic packages. Instead, the IC dice
high-speed subsystem (say, a processor and its cache memory) are b
directly to a substrate that contains the required interconnections on mu
layers. The MCM is hermetically sealed and has its own external pins for po
ground, and just those signals that are required by the system that contain

1.10 Digital-Design Levels
Digital design can be carried out at several different levels of representatio
abstraction. Although you may learn and practice design at a particular l
from time to time you’ll need to go up or down a level or two to get the job do
Also, the industry itself and most designers have been steadily moving to h
levels of abstraction as circuit density and functionality have increased.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.10 Digital-Design Levels 19

PY
PY
PY
PY
PY
PY
PY
PY
PY

ring
king

es. The

ch in
own to
dou-

 IC
are of
 and
ently

es in

 all
next
nter”

ple
put

sign

nc-
l. The
 be
res

Moore’s Law

A

B

Z

S

Figure 1-7
Switch model for
multiplexer function.
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

The lowest level of digital design is device physics and IC manufactu
processes. This is the level that is primarily responsible for the breathta
advances in IC speed and density that have occurred over the past decad
effects of these advances are summarized in Moore’s Law, first stated by Intel
founder Gordon Moore in 1965: that the number of transistors per square in
an IC doubles every year. In recent years, the rate of advance has slowed d
doubling about every 18 months, but it is important to note that with each
bling of density has also come a doubling of speed.

This book does not reach down to the level of device physics and
processes, but you need to recognize the importance of that level. Being aw
likely technology advances and other changes is important in system
product planning. For example, decreases in chip geometries have rec
forced a move to lower logic-power-supply voltages, causing major chang
the way designers plan and specify modular systems and upgrades.

In this book, we jump into digital design at the transistor level and go
the way up to the level of logic design using HDLs. We stop short of the
level, which includes computer design and overall system design. The “ce
of our discussion is at the level of functional building blocks.

To get a preview of the levels of design that we’ll cover, consider a sim
design example. Suppose you are to build a “multiplexer” with two data in
bits, A and B, a control input bit S, and an output bit Z. Depending on the value
of S, 0 or 1, the circuit is to transfer the value of either A or B to the output Z. This
idea is illustrated in the “switch model” of Figure 1-7. Let us consider the de
of this function at several different levels.

Although logic design is usually carried out at higher level, for some fu
tions it is advantageous to optimize them by designing at the transistor leve
multiplexer is such a function. Figure 1-8 shows how the multiplexer can
designed in “CMOS” technology using specialized transistor circuit structu

A

B

S

VCC

Z

Figure 1-8
Multiplexer design using
CMOS transmission gates.
Copyright © 1999 by John F. Wakerly Copying Prohibited

20 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

h, the
hes

 to
na-
ince
s

ed in
thms
e

rform
 14

gic
 the
lta-
t one
s in
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

called “transmission gates,” discussed in Section 3.7.1. Using this approac
multiplexer can be built with just six transistors. Any of the other approac
that we describe require at least 14 transistors.

In the traditional study of logic design, we would use a “truth table”
describe the multiplexer’s logic function. A truth table list all possible combi
tions of input values and the corresponding output values for the function. S
the multiplexer has three inputs, it has 23 or 8 possible input combinations, a
shown in the truth table in Table 1-1.

Once we have a truth table, traditional logic design methods, describ
Section 4.3, use Boolean algebra and well understood minimization algori
to derive an “optimal” two-level AND-OR equation from the truth table. For th
multiplexer truth table, we would derive the following equation:

This equation is read “Z equals not S and A or S and B.” Going one step further,
we can convert the equation into a corresponding set of logic gates that pe
the specified logic function, as shown in Figure 1-9. This circuit requires
transistors if we use standard CMOS technology for the four gates shown.

A multiplexer is a very commonly used function, and most digital lo
technologies provide predefined multiplexer building blocks. For example,
74x157 is an MSI chip that performs multiplexing on two 4-bit inputs simu
neously. Figure 1-10 is a logic diagram that shows how we can hook up jus
bit of this 4-bit building block to solve the problem at hand. The number
color are pin numbers of a 16-pin DIP package containing the device.

Table 1-1
Truth table for the
multiplexer function.

S A B Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Z = S′ ⋅ A + S ⋅ B

A

S

B

Z

SN
ASN

SB

Figure 1-9
Gate-level logic diagram
for multiplexer function.
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.10 Digital-Design Levels 21

PY
PY
PY
PY
PY
PY
PY
PY
PY

able
ean
nve-

s an
the
tion
 and
t’s

ulti-
 an
 a
lines
 any
re”

es a
e
is
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

We can also realize the multiplexer function as part of a programm
logic device. Languages like ABEL allow us to specify outputs using Bool
equations similar to the one on the previous page, but it’s usually more co
nient to use “higher-level” language elements. For example, Table 1-2 i
ABEL program for the multiplexer function. The first three lines define
name of the program module and specify the type of PLD in which the func
will be realized. The next two lines specify the device pin numbers for inputs
output. The “WHEN” statement specifies the actual logic function in a way tha
very easy to understand, even though we haven’t covered ABEL yet.

An even higher level language, VHDL, can be used to specify the m
plexer function in a way that is very flexible and hierarchical. Table 1-3 is
example VHDL program for the multiplexer. The first two lines specify
standard library and set of definitions to use in the design. The next four
specify only the inputs and outputs of the function, and purposely hide
details about the way the function is realized internally. The “architectu
section of the program specifies the function’s behavior. VHDL syntax tak
little getting used to, but the single “when” statement says basically the sam
thing that the ABEL version did. A VHDL “synthesis tool” can start with th

module chap1mux
title 'Two-input multiplexer example'
CHAP1MUX device 'P16V8'

A, B, S pin 1, 2, 3;
Z pin 13 istype 'com';

equations

WHEN S == 0 THEN Z = A; ELSE Z = B;

end chap1mux

Table 1-2
ABEL program for
the multiplexer.

74x157

1A

1B

2A

2B

3A

3B

4A

4B

G

2
4

1Y

7
2Y

9
3Y

12
4Y

3

5

6

11

10

14

13

S
1

15

S

B

A
Z

Figure 1-10
Logic diagram for a
multiplexer using an
MSI building block.
Copyright © 1999 by John F. Wakerly Copying Prohibited

22 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

cified

”)
s to
else-
y an
This

ally
ough
rcle
the

, the

 min-
’t all
izes
add-in

board-level design
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

behavioral description and produce a circuit that has this behavior in a spe
target digital-logic technology.

By explicitly enforcing a separation of input/output definitions (“entity
and internal realization (“architecture”), VHDL makes it easy for designer
define alternate realizations of functions without having to make changes
where in the design hierarchy. For example, a designer could specif
alternate, structural architecture for the multiplexer as shown in Table 1-4.
architecture is basically a text equivalent of the logic diagram in Figure 1-9.

Going one step further, VHDL is powerful enough that we could actu
define operations that model functional behavioral at the transistor level (th
we won’t explore such capabilities in this book). Thus, we could come full ci
by writing a VHDL program that specifies a transistor-level realization of
multiplexer equivalent to Figure 1-8.

1.11 The Name of the Game
Given the functional and performance requirements for a digital system
name of the game in practical digital design is to minimize cost. For board-level
designs—systems that are packaged on a single PCB—this usually means
imizing the number of IC packages. If too many ICs are required, they won
fit on the PCB. “Well, just use a bigger PCB,” you say. Unfortunately, PCB s
are usually constrained by factors such as pre-existing standards (e.g.,

Table 1-3
VHDL program for
the multiplexer.

library IEEE;
use IEEE.std_logic_1164.all;

entity Vchap1mux is
 port (A, B, S: in STD_LOGIC;
 Z: out STD_LOGIC);
end Vchap1mux;

architecture Vchap1mux_arch of Vchap1mux is
begin
 Z <= A when S = '0' else B;
end Vchap1mux_arch;

Table 1-4
“Structural” VHDL
program for the
multiplexer.

architecture Vchap1mux_gate_arch of Vchap1mux is
signal SN, ASN, SB: STD_LOGIC;
begin
 U1: INV (S, SN);
 U2: AND2 (A, SN, ASN);
 U3: AND2 (S, B, SB);
 U4: OR2 (ASN, SB, Z);
end Vchap1mux_gate_arch;
Copyright © 1999 by John F. Wakerly Copying Prohibited

Section 1.12 Going Forward 23

PY
PY
PY
PY
PY
PY
PY
PY
PY

dicts
 fool-

ltiple

 IC
e an
tion
ons,
tock in
 also a

or-
 easy
 total
ction
me

wo

reas-
ight
t can
been
 to
sign

 opti-
n the

n of
ually
 the
ea—
fixes
 must

ook,
ild

asic
ur

 must

ASIC design
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO
DO NOT CO

boards for PCs), packaging constraints (e.g., it has to fit in a toaster), or e
from above (e.g., in order to get the project approved three months ago, you
ishly told your manager that it would all fit on a 3 × 5 inch PCB, and now you’ve
got to deliver!). In each of these cases, the cost of using a larger PCB or mu
PCBs may be unacceptable.

Minimizing the number of ICs is usually the rule even though individual
costs vary. For example, a typical SSI or MSI IC may cost 25 cents, whil
small PLD may cost a dollar. It may be possible to perform a particular func
with three SSI and MSI ICs (75 cents) or one PLD (a dollar). In most situati
the more expensive PLD solution is used, not because the designer owns s
the IC company, but because the PLD solution uses less PCB area and is
lot easier to change if it’s not right the first time.

In ASIC design, the name of the game is a little different, but the imp
tance of structured, functional design techniques is the same. Although it’s
to burn hours and weeks creating custom macrocells and minimizing the
gate count of an ASIC, only rarely is this advisable. The per-unit cost redu
achieved by having a 10% smaller chip is negligible except in high-volu
applications. In applications with low to medium volume (the majority), t
other factors are more important: design time and NRE cost.

A shorter design time allows a product to reach the market sooner, inc
ing revenues over the lifetime of the product. A lower NRE cost also flows r
to the “bottom line,” and in small companies may be the only way the projec
be completed before the company runs out of money (believe me, I’ve
there!). If the product is successful, it’s always possible and profitable
“tweak” the design later to reduce per-unit costs. The need to minimize de
time and NRE cost argues in favor of a structured, as opposed to highly
mized, approach to ASIC design, using standard building blocks provided i
ASIC manufacturer’s library.

The considerations in PLD, CPLD, and FPGA design are a combinatio
the above. The choice of a particular PLD technology and device size is us
made fairly early in the design cycle. Later, as long as the design “fits” in
selected device, there’s no point in trying to optimize gate count or board ar
the device has already been committed. However, if new functions or bug
push the design beyond the capacity of the selected device, that’s when you
work very hard to modify the design to make it fit.

1.12 Going Forward
This concludes the introductory chapter. As you continue reading this b
keep in mind two things. First, the ultimate goal of digital design is to bu
systems that solve problems for people. While this book will give you the b
tools for design, it’s still your job to keep “the big picture” in the back of yo
mind. Second, cost is an important factor in every design decision; and you
Copyright © 1999 by John F. Wakerly Copying Prohibited

24 Chapter 1 Introduction

DO
DO
DO
DO
DO
DO
DO
DO
DO

esign

t you
dex.

 next

,
,

G,

have

e
h
s of
pler

m of
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY
 NOT COPY

consider not only the cost of digital components, but also the cost of the d
activity itself.

Finally, as you get deeper into the text, if you encounter something tha
think you’ve seen before but don’t remember where, please consult the in
I’ve tried to make it as helpful and complete as possible.

Drill Problems
1.1 Suggest some better-looking chapter-opening artwork to put on page 1 of the

edition of this book.

1.2 Give three different definitions for the word “bit” as used in this chapter.

1.3 Define the following acronyms: ASIC, CAD, CD, CO, CPLD, DIP, DVD, FPGA
HDL, IC, IP, LSI, MCM, MSI, NRE, OK, PBX, PCB, PLD, PWB, SMT, SSI
VHDL, VLSI.

1.4 Research the definitions of the following acronyms: ABEL, CMOS, JPE
MPEG, OK, PERL, VHDL. (Is OK really an acronym?)

1.5 Excluding the topics in Section 1.2, list three once-analog systems that
“gone digital” since you were born.

1.6 Draw a digital circuit consisting of a 2-input AND gate and three inverters, wher
an inverter is connected to each of the AND gate’s inputs and its output. For eac
of the four possible combinations of inputs applied to the two primary input
this circuit, determine the value produced at the primary output. Is there a sim
circuit that gives the same input/output behavior?

1.7 When should you use the pin diagrams of Figure 1-5 in the schematic diagra
a circuit?

1.8 What is the relationship between “die” and “dice”?
Copyright © 1999 by John F. Wakerly Copying Prohibited

	Introduction
	1.1� About Digital Design
	Important Themes in Digital Design

	1.2� Analog versus Digital
	Short Times

	1.3� Digital Devices
	1.4� Electronic Aspects of Digital Design
	Figure 1�2 Logic values and noise margins.

	1.5� Software Aspects of Digital Design
	Figure 1�3 A logic-design template.
	Programmable Logic Devices Versus Simulation

	1.6� Integrated Circuits
	A Dicey Decision
	Figure 1�4 Dual in-line pin (DIP) packages: (a) 14-pin; (b) 20-pin; (c) 28-pin.
	Tiny-Scale Integration
	STANDARD LOGIC FUNCTIONS

	1.7� Programmable Logic Devices
	1.8� Application-Specific ICs
	1.9� Printed-Circuit Boards
	1.10� Digital-Design Levels
	Figure 1�8 Multiplexer design using CMOS transmission gates.
	Table 1�1 Truth table for the multiplexer function.
	Figure 1�9 Gate-level logic diagram for multiplexer function.
	Figure 1�10 Logic diagram for a multiplexer using an MSI building block.
	Table 1�2 ABEL program for the multiplexer.
	Table 1�3 VHDL program for the multiplexer.
	Table 1�4 “Structural” VHDL program for the multiplexer.

	1.11� The Name of the Game
	1.12� Going Forward
	Drill Problems

