
The IEEE Verilog 1364-2001 Standard
What's New, and Why You Need It

Stuart Sutherland
Sutherland HDL, Inc.

(presented at HDLCon in March 2000 — minor updates made October, 2001)

Abstract
At the time of this conference, the proposed IEEE 1364-
2000 Verilog standard is complete, and in the balloting
process for final IEEE approval [update: official IEEE
ratification was not completed until March 2001, making
the official name IEEE 1364-2001, and the nickname
Verilog-2001]. Verilog-2001 adds many significant
enhancements to the Verilog language, which add greater
support for configurable IP modeling, deep-submicron
accuracy, and design management. Other enhancements
make Verilog easier to use. These changes will affect
everyone who uses the Verilog language, as well as those
who implement Verilog software tools. This paper presents
a summary of several of the enhancements in Verilog-2001.

1. History of the IEEE 1364 Verilog standard
The Verilog Hardware Description Language was first
introduced in 1984, as a proprietary language from
Gateway Design Automation. The original Verilog
language was designed to be used with a single product,
the Gateway Verilog-XL digital logic simulator.

In 1989, Gateway Design Automation was acquired by
Cadence Design Systems. In 1990, Cadence released the
Verilog Hardware Description Language and the Verilog
Programming Language Interface (PLI) to the public
domain. Open Verilog International (OVI) was formed to
control the public domain Verilog, and to promote its
usage. Cadence turned over to OVI the FrameMaker
source files of the Cadence Verilog-XL user’s manual. This
document became OVI’s Verilog 1.0 Reference Manual.

In 1993, OVI released its Verilog 2.0 Reference Manual,
which contained a few enhancements to the Verilog
language, such as array of instances. OVI then submitted a
request to the IEEE to formally standardize Verilog 2.0.
The IEEE formed a standards working group to create the
standard, and, in 1995, IEEE 1364-1995 became the
official Verilog standard.

It is important to note that for Verilog-1995, the IEEE
standards working group did not consider any

enhancements to the Verilog language. The goal was to
standardize the Verilog language the way it was being used
at that time. The IEEE working group also decided not to
create an entirely new document for the IEEE 1364
standard. Instead, the OVI FrameMaker files were used to
create the IEEE standard. Since the origin of the OVI
manual was a user’s manual, the IEEE 1364-1995 and
IEEE 1364-2001 Verilog language reference manuals
[1][2] are still organized somewhat like a user’s guide.

2. Goals for IEEE 1364-2001 Verilog standard
Work on the IEEE 1364-2001 Verilog standard began in
January 1997. Three major goals were established:
• Enhance the Verilog language to help with today’s deep

submicron and intellectual property modeling issues.
• Ensure that all enhancements were both useful and

practical, and that simulator and synthesis vendors
would implement Verilog-2001 in their products.

• Correct any errata or ambiguities in the IEEE 1364-1995
Verilog Language Reference Manual.

The Verilog-2001 standard working group was comprised
of about 20 participants, representing a diversified mix of
Verilog users, simulation vendors and synthesis vendors.
The working group was divided into three task forces: The
ASIC Task Force developed enhancements to meet the
needs of very deep submicron timing accuracy. The
Behavioral Task Force developed enhancements for
Behavioral and RTL modeling. The PLI Task Force
enhanced the Verilog Programming Language Interface to
support changes from the other task forces, as well as
adding new capabilities to the PLI.

3. Modeling enhancements
The 21 enhancements listed in this section give Verilog
designers more capability for creating Verilog models.
Many enhancements improve the ease and accuracy of
writing synthesizable RTL models. Other enhancements
allow models to be more scalable and re-usable. Only
changes which add new functionality or syntax are listed
here. Clarifications to Verilog-1995 are not listed.

This paper was first presented at the 9th Annual International HDL Conference and Exhibition, March 2000, Santa Clara, CA.. Minor
updates and clarifications were made by the author in October, 2001. Copyright 2000, Sutherland HDL, Inc., Tualatin, Oregon.

© 2000, Sutherland HDL, Inc. page 2 of 8

3.1 Design management—Verilog configurations

The Verilog-1995 standard leaves design management to
software tools, rather than making it part of the language.
Each simulator vendor has devised ways to handle
different versions of Verilog models, but these tool-specific
methods are not portable across all Verilog software tools.

Verilog-2001 adds configuration blocks, which allow the
exact version and source location of each Verilog module
to be specified as part of the Verilog language. For
portability, virtual model libraries are used in configuration
blocks, and separate library map files associate virtual
libraries with physical locations. Configuration blocks are
specified outside of module definitions. The names of
configurations exist in the same name space as module
names and primitive names. New keywords config and
endconfig are reserved in Verilog-2001. Additional
keywords are reserved for use within a configuration
block: design, instance, cell, use and liblist.

The full syntax and usage of Verilog configuration blocks
is beyond the scope of this paper. The following example
illustrates a simple design configuration. The Verilog
source code is typical; a test bench module contains an
instance of the top-level of a design hierarchy, and the top
level of the design includes instances of other modules.
module test;
...
myChip dut (...); /* instance of design */
...

endmodule

module myChip(...);
...
adder a1 (...);
adder a2 (...);
...

endmodule

The configuration block specifies the source code location
of all, or specific, module instances. Because the
configuration is specified outside of Verilog modules, the
Verilog model source code does not need to be modified to
reconfigure a design. In this configuration example,
instance a1 of the adder will be compiled from the RTL
library, and instance a2 from a specific gate-level library.
/* define a name for this configuration */
config cfg4

/* specify where to find top level modules */
design rtlLib.top

/* set the default search order for finding
instantiated modules */

default liblist rtlLib gateLib;

/* explicitly specify which library to use
for the following module instance */

instance test.dut.a2 liblist gateLib;
endconfig

The configuration block uses virtual libraries to specify the
location of the Verilog model sources. A library map file is
used to associate the virtual library names with physical
file locations. For example:
/* location of RTL models (current directory) */
library rtlLib ./*.v;

/* Location of synthesized models */
library gateLib ./synth_out/*.v;

3.2 Scalable models—Verilog generate

The Verilog-1995 standard has limitations on defining
Verilog models that are scalable and easy to re-use in other
designs. Verilog-1995 has the array of instances construct,
which, though powerful, does not provide the flexibility
needed for truly scalable, complex design structures.

Verilog-2001 adds generate loops, which permit
generating multiple instances of modules and primitives, as
well as generating multiple occurrences of variables, nets,
tasks, functions, continuous assignments, initial
procedures, and always procedures. Generated declarations
and instantiations can be conditionally created, using if–
else decisions and case statements.

Four new keywords have been added in Verilog-2001:
generate, endgenerate, genvar and localparam. The
genvar keyword is a new data type, which stores positive
integer values. It differs from other Verilog variables in
that it can be assigned values and changed during compile
or elaboration time. The index variable used in a generate
loop must be declared as a genvar. A localparam is a
constant that is similar to a parameter, but which cannot be
directly changed using parameter redefinition. A generate
block can also use certain Verilog programming statements
to control what objects are generated. These are: for loops,
if–else decisions and case decisions.

The following example illustrates using generate to create
scalable module instances for a multiplier. If either of the
multiplier’s a_width or b_width parameters are less than 8,
a CLA multiplier is instantiated. If a_width and b_width
are 8 bits or more, a Wallace tree multiplier is instantiated.
module multiplier (a, b, product);
parameter a_width = 8, b_width = 8;
localparam product_width = a_width+b_width;
input [a_width-1:0] a;
input [b_width-1:0] b;
output[product_width-1:0]product;

generate
if((a_width < 8) || (b_width < 8))
CLA_multiplier #(a_width, b_width)
u1 (a, b, product);

else
WALLACE_multiplier #(a_width, b_width)
u1 (a, b, product);

endgenerate
endmodule

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

© 2000, Sutherland HDL, Inc. page 3 of 8

The next example illustrates a multi-bit wide adder which
uses a generate for-loop to instantiate both the primitive
instances and the internal nets connecting the primitives. A
re-definable parameter constant is used to set the width of
the multi-bit adder and the number of instances generated.

module Nbit_adder (co, sum, a, b, ci);
parameter SIZE = 4;
output [SIZE-1:0] sum;
output co;
input [SIZE-1:0] a, b;
input ci;
wire [SIZE:0] c;

genvar i;

assign c[0] = ci;
assign co = c[SIZE];

generate
for(i=0; i<SIZE; i=i+1)
begin:addbit
wire n1,n2,n3; //internal nets
xor g1 (n1, a[i], b[i]);
xor g2 (sum[i],n1, c[i]);
and g3 (n2, a[i], b[i]);
and g4 (n3, n1, c[i]);
or g5 (c[i+1],n2, n3);

end
endgenerate

endmodule

In the preceding example, each generated net will have a
unique name, and each generated primitive instance will
have a unique instance name. The name comprises the
name of the block within the for-loop, plus the value of the
genvar variable used as the loop index. The names of the
generated n1 nets are:

addbit[0].n1
addbit[1].n1
addbit[2].n1
addbit[3].n1

The instance names generated for the first xor primitive
are:

addbit[0].g1
addbit[1].g1
addbit[2].g1
addbit[3].g1

Note that these generated names use square brackets in the
name. These are illegal characters in user-specified
identifier names, but are permitted in generated names.

3.3 Constant functions

Verilog syntax requires that the declaration of vector
widths and array sizes be based on literal values or constant
expressions. For example:

parameter WIDTH = 8;
wire [WIDTH-1:0] data;

A limitation in the Verilog-1995 standard is that the
constant expression can only be based on arithmetic
operations. It is not possible to use programming
statements to determine the value of a constant expression.

Verilog-2001 adds a new usage of Verilog functions,
referred to as a constant function. The definition of a
constant function is the same as for any Verilog function.
However, a constant function is restricted to only using
constructs whose values can be determined at compile or
elaboration time. Constant functions help to create re-
usable models which can be scaled to different sizes.

The following example defines a function called clogb2
that returns an integer which has the value of the ceiling of
the log base 2. This constant function is used to determine
how wide a RAM address bus must be, based on the
number of addresses in the RAM.
module ram (address_bus, write, select, data);

parameter SIZE = 1024;
input [clogb2(SIZE)-1:0] address_bus;
...
function integer clogb2 (input integer depth);

begin
for(clogb2=0; depth>0; clogb2=clogb2+1)

depth = depth >> 1;
end

endfunction
...
endmodule

3.4 Indexed vector part selects

In the Verilog-1995 standard, variable bit selects of a
vector are permitted, but part-selects must be constant.
Thus, it is illegal to use a variable to select a specific byte
out of a word. The Verilog-2001 standard adds a new
syntax, called indexed part selects. With an indexed part
select, a base expression, a width expression, and an offset
direction are provided, in the form of:
[base_expr +: width_expr] //positive offset
[base_expr -: width_expr] //negative offset

The base expression can vary during simulation run-time.
The width expression must be constant. The offset
direction indicates if the width expression is added to or
subtracted from the base expression. For example,:
reg [63:0] word;
reg [3:0] byte_num; //a value from 0 to 7
wire [7:0] byteN = word[byte_num*8 +: 8];

In the preceding example, if byte_num has a value of 4,
then the value of word[39:32] is assigned to byteN. Bit 32
of the part select is derived from the base expression, and
bit 39 from the positive offset and width expression.

chactor
椭圆形

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

© 2000, Sutherland HDL, Inc. page 4 of 8

3.5 Multidimensional arrays

The Verilog-1995 standard allows one-dimensional arrays
of variables. Verilog-2001 extends this by permitting:
• Multi-dimensional arrays
• Arrays of both variable and net data types

This enhancement requires a change to both the syntax of
array declarations, as well as the syntax for array indexing.
Examples of declaring and indexing a one-dimensional and
a three-dimensional array are shown below.
//1-dimensional array of 8-bit reg variables
//(allowed in Verilog-1995 and Verilog-2001)
reg [7:0] array1 [0:255];
wire [7:0] out1 = array1[address];

//3-dimensional array of 8-bit wire nets
//(new for Verilog-2001)
wire [7:0] array3 [0:255][0:255][0:15];
wire [7:0] out3 = array3[addr1][addr2][addr3];

3.6 Bit and part selects within arrays

The Verilog-1995 standard does not permit directly
accessing a bit or part select of an array word. A full array
word has to copied to a temporary variable, and the bit or
part selected from the temporary variable. Verilog-2001
removes this restriction, and allows bit selects and part
selects of array words to be directly accessed. For example:
//select the high-order byte of one word in a
//2-dimensional array of 32-bit reg variables
reg [31:0] array2 [0:255][0:15];
wire [7:0] out2 = array2[100][7][31:24];

3.7 Signed arithmetic extensions

For integer math operations, Verilog uses the data types of
the operands to determine if signed or unsigned arithmetic
should be performed. As a general rule (there are
exceptions), if any operand in an expression is unsigned,
unsigned operations are performed. To perform signed
arithmetic, all operands in the expression must be signed.
In Verilog-1995, the integer data type is signed, and the reg
and net data types are unsigned. A limitation in Verilog-
1995 is that the integer data type has a fixed vector size,
which is 32-bits in most Verilog simulators. Thus, signed
integer math in Verilog-1995 is limited to 32-bit vectors.
The Verilog-2001 standard adds five enhancements to
provide greater signed arithmetic capability:
• Reg and net data types can be declared as signed
• Function return values can be declared as signed
• Integer numbers in any radix can be declared as signed
• Operands can be converted from unsigned to signed
• Arithmetic shift operators have been added

The Verilog-1995 standard has a reserved keyword,
signed, but this keyword was not used in Verilog-1995.
Verilog-2001 uses this keyword to allow reg data types, net

data types, ports and functions to be declared as signed
types. Some example declarations are:
reg signed [63:0] data;
wire signed [7:0] vector;
input signed [31:0] a;
function signed [128:0] alu;

In Verilog-1995, a literal integer number with no radix
specified is considered a signed value, but a literal integer
with a radix specified is considered an unsigned value.
Verilog-2001 adds an additional specifier, the letter ‘s’,
which can be combined with the radix specifier, to indicate
that the literal number is a signed value.
16'hC501 //an unsigned 16-bit hex value
16'shC501 //a signed 16-bit hex value

In addition to being able to declare signed data types and
values, Verilog-2001 adds two new system functions,
$signed and $unsigned. These system functions are used
to convert an unsigned value to signed, or vice-versa.
reg [63:0] a; //unsigned data type
always @(a) begin
result1 = a / 2; //unsigned arithmetic
result2 = $signed(a) / 2;//signed arithmetic

end

One more signed arithmetic enhancement in Verilog-2001
is arithmetic shift operators, represented by >>> and <<<
tokens. An arithmetic right-shift operation maintains the
sign of a value, by filling with the sign-bit value as it shifts.
For example, if the 8-bit signed variable D contained
8’b10100011, a logical right shift and an arithmetic right
shift by 3 bits would yield the following:
D >> 3 //logical shift yields 8'b00010100
D >>> 3 //arithmetic shift yields 8'b11110100

3.8 Power operator

Verilog-2001 adds a power operator, represented by an **
token. This operator preforms similar functionality as the C
pow() function. It will return a real number if either
operand is a real value, and an integer value if both
operands are integer values. One practical application of
the power operator is to calculate values such as 2n. For
example:
always @(posedge clock)

result = base ** exponent;

3.9 Re-entrant tasks and recursive functions

Verilog-2001 adds a new keyword, automatic. This
keyword can be used to declare an automatic task that is re-
entrant. All task declarations within an automatic task are
allocated dynamically for each concurrent task entry. A
function can also be declared as automatic, which allows
the function to be called recursively (declarations within
the function will be allocated dynamically for each

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

© 2000, Sutherland HDL, Inc. page 5 of 8

recursive call). Declarations within an automatic task or
function can not be accessed by hierarchical references.

A task or function that is declared without the automatic
keyword behaves as Verilog-1995 tasks and functions,
which are static. All declared items in a static task or
function are statically allocated, and are shared by all calls
to the task or function.

The following example illustrates a function which
recursively calls itself in order to find the factorial (n!) of a
32-bit unsigned integer operand.
function automatic [63:0] factorial;
input [31:0] n;
if (n == 1)
factorial = 1;

else
factorial = n * factorial(n-1);

endfunction

3.10 Combinational logic sensitivity token

To properly model combinational logic using a Verilog
always procedure, the sensitivity list must include all input
signals used by that block of logic. In large, complex
blocks of combinational logic, it is easy to inadvertently
omit an input from the sensitivity list, which can lead to
simulation and synthesis mismatches.

Verilog-2001 adds a new wild card token, @*, which can
be used to represent a combinational logic sensitivity list.
The @* token indicates that the simulator or synthesis tool
should automatically be sensitive changes on any values
which are read in the following statement or statement
group. In the following example, the @* token will cause
the procedure to automatically be sensitive to changes on
sel, a or b.
always @* //combinational logic sensitivity
if (sel)
y = a;

else
y = b;

3.11 Comma-separated sensitivity lists

Verilog-2001 adds a second way to list signals in a
sensitivity list, by separating the signal names with
commas instead of the or keyword. The following two
sensitivity lists are functionally identical:
always @(a or b or c or d or sel)

always @(a, b, c, d, sel)

The new, comma-separated sensitivity list does not add any
new functionality. It does, however, make Verilog syntax
more intuitive, and more consistent with other signal lists
in Verilog.

3.12 Enhanced file I/O

Verilog-1995 has very limited file I/O capability built into
the Verilog language. Instead, file operations are handled
through the Verilog Programming Language Interface
(PLI), which gives access to the file I/O libraries in the C
language. Verilog-1995 file I/O also limits the number files
it can open at the same time to, at most, 31.

Verilog-2001 adds several new system tasks and system
functions, which provide extensive file I/O capability
directly in the Verilog language, without having to create
custom PLI applications. In addition, Verilog-2001
increases the limit of the number of files that can be open
at the same time to 230. The new file I/O system tasks and
system functions in Verilog-2001, listed alphabetically, are:
$ferror, $fgetc, $fgets, $fflush, $fread, $fscanf, $fseek,
$fscanf, $ftel, $rewind and $ungetc. Verilog-2001 also
adds string versions of these commands, which allow
creating formatted strings, or reading information from a
string. These new system tasks are: $sformat, $swrite,
$swriteb, $swriteh, $swriteo and $sscanf.

3.13 Automatic width extension beyond 32 bits

With Verilog-1995, assigning an unsized high-impedance
value (e.g.: ‘bz) to a bus that is greater than 32 bits would
only set the lower 32 bits to high-impedance. The upper
bits would be set to 0. To set the entire bus to high-
impedance requires explicitly specifying the number of
high impedance bits. For example:

Verilog-1995:
parameter WIDTH = 64;
reg [WIDTH-1:0] data;
data = 'bz; //fills with 'h00000000zzzzzzzz
data = 64'bz; //fills with 'hzzzzzzzzzzzzzzzz

The fill rules in Verilog-1995 make it difficult to write
models that are easily scaled to new vector sizes.
Redefinable parameters can be used to scale vector widths,
but the Verilog source code must still be modified to alter
the literal value widths used in assignment statements.

Verilog-2001 changes the rule for assignment expansion so
that an unsized value of Z or X will automatically expand
to fill the full width of the vector on the left-hand side of
the assignment.
Verilog-2001:
parameter WIDTH = 64;
reg [WIDTH-1:0] data;
data = 'bz; //fills with 'hzzzzzzzzzzzzzzzz

3.14 In-line parameter passing by name

Verilog-1995 has two methods of redefining parameters
within a module instance: explicit redefinition using
defparam statements, and in-line implicit redefinition using
the # token as part of the module instance. The latter

recursive call

© 2000, Sutherland HDL, Inc. page 6 of 8

method is more concise, but because it redefines parameter
by their declaration position, it is error-prone and is not
self-documenting. The following example illustrates the
two Verilog-1995 methods for parameter redefinition.
module ram (...);
parameter WIDTH = 8;
parameter SIZE = 256;
...

endmodule

module my_chip (...);
...
//Explicit parameter redefinition by name
RAM ram1 (...);
defparam ram1.SIZE = 1023;

//Implicit parameter redefintion by position
RAM #(8,1023) ram2 (...);

endmodule

Verilog-2001 adds a third method to redefine parameters,
in-line explicit redefinition. This new method allows in-
line parameter values to be listed in any order, and
document the parameters being redefined.

//In-line explicit parameter redefintion
RAM #(.SIZE(1023)) ram2 (...);

3.15 Combined port and data type declarations

Verilog requires that signals connected to the input or
outputs of a module have two declarations: the direction of
the port, and the data type of the signal. In Verilog-1995,
these two declarations had to be done as two separate
statements. Verilog-2001 adds a simpler syntax, by
combining the declarations into one statement.
module mux8 (y, a, b, en);
output reg [7:0] y;
input wire [7:0] a, b;
input wire en;

3.16 ANSI-style input and output declarations

Verilog-1995 uses the older Kernighan and Ritchie C
language syntax to declare module ports, where the order
of the ports is defined within parentheses, and the
declarations of the ports are listed after the parentheses.
Verilog-1995 tasks and functions omit the parentheses list,
and use the order of the input and output declarations to
define the input/output order.

Verilog-2001 updates the syntax for declaring inputs and
outputs of modules, tasks and functions to be more like the
ANSI C language. That is, the declarations can be
contained in the parentheses that show the order of inputs
and outputs.
module mux8 (output reg [7:0] y,

input wire [7:0] a,
input wire [7:0] b,
input wire en);

function [63:0] alu (
input [63:0] a, b,
input [7:0] opcode);

3.17 Reg declaration initial assignments

Verilog-2001 adds the ability to initialize variables at the
time they are declared, instead of requiring a separate
initial procedure to initialize variables. The initial value
assigned to the variable will take place within simulation
time zero, just as if the value had been assigned within an
initial procedure.

Verilog-1995:
reg clock;
initial
clk = 0;

Verilog-2001:
reg clock = 0;

3.18 “Register” changed to “variable”

Since the inception of Verilog in 1984, the term “register”
has been used to describe the group of variable data types
in the Verilog language. “Register” is not a keyword, it is
simply a name for a class of data types, namely: reg,
integer, time, real and realtime. The use of term “register”
is often a source of confusion for new users of Verilog,
who sometimes assume that the term implies a hardware
register (flip-flops). The IEEE 1364-2001 Verilog
Language Reference Manual replaces the term “register”
with the more intuitive term “variable”.

3.19 Enhanced conditional compilation

Verilog-1995 supports conditional compilation, using the
`ifdef, `else and `endif compiler directives. Verilog-2001
adds more extensive conditional compilation control, with
`ifndef and `elsif compiler directives.

3.20 File and line compiler directive

Verilog tools need to keep track of the line number and the
file name of Verilog source code. This information can be
used for error messages, and can be accessed by the
Verilog PLI. If Verilog source is pre-processed by some
other tool, however, the line and file information of the
original source code can be lost. Verilog-2001 adds a `line
compiler directive, which can be used to specify the
original source code line number and file name. This
allows the location in an original file to be maintained if
another process modifies the source, such as by adding or
removing lines of source text.

3.21 Attributes

The Verilog language was originally created as a hardware
description language for digital simulation. As tools other
than simulation have adopted Verilog as a source input,

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

chactor
线条

© 2000, Sutherland HDL, Inc. page 7 of 8

there has been a need for these tools to be able add tool-
specific information to the Verilog language. In Verilog-
1995, there was no mechanism for adding tool-specific
information, which led to non-standard methods, such as
hiding synthesis commands in Verilog comments.

Verilog-2001 adds a mechanism for specifying properties
about objects, statements and groups of statements in the
HDL source. These properties are referred to as attributes.
Attributes may be used by various tools, including
simulators, to control the operation or behavior of the tool.
An attribute is contained within the tokens (* and *).
Attributes can be associated with all instances of an object,
or with a specific instance of an object. Attributes can be
assigned values, including strings, and attribute values can
be re-defined for each instance of an object.

Verilog-2001 does not define any standard attributes. The
names and values of attributes will be defined by tool
vendors or other standards. An example of how a synthesis
tool might use attributes is shown below:
(* parallel case *) case (1'b1) //1-hot FSM
state[0]: ...
state[1]: ...
state[2]: ...

endcase

4. ASIC/FPGA accuracy enhancements
The original Verilog language was created in a time when 2
to 5 micron designs were common. As silicon technologies
and design methodologies have changed, the Verilog
language has evolved as well. Verilog-2001 continues this
evolution, with enhancements specific for today’s—and
tomorrow’s—deep submicron designs.

4.1 On-detect pulse error propagation

Verilog-1995 provides on-event pulse error propagation for
pin-to-pin path delays. A pulse is a glitch on the inputs of a
model path that is less than the delay of the path. With on-
event propagation, the leading and trailing edge of an input
pulse propagate to the path outputs as a logic X. The timing
of the X on the output is the same as if the input changes
had propagated to the output.

Verilog-2001 adds on-detect pulse error propagation. On-
detect is a more pessimistic method of setting the output to
an X when an input glitch occurs. As with on-event, on-
detect changes the leading edge of the pulse into a
transition to X, and the trailing edge to a transition from X,
but the time of the leading edge is changed to occur
immediately upon detection of the pulse.

On-event or on-detect can be explicitly specified using two
new keywords within a Verilog specify block:
pulsestyle_onevent and pulsestyle_ondetect. On-event

pulse error propagation is the default pulse style.
specify
pulsestyle_ondetect out;
(in => out) = (4,6);

endspecify

4.2 Negative pulse detection

It is possible for an output logic X pulse to be calculated
where the trailing edge of the pulse would occur prior to
the leading edge of the pulse. In Verilog-1995, a negative
pulse would be cancelled. Verilog-2001 provides a
mechanism to have a logic X pulse propagate to the output
to indicate that a negative pulse had occurred. Two more
keywords are added to the Verilog specify block to
explicitly enable or disable negative pulse propagation,
showcancelled and noshowcancelled.
specify
showcancelled out;
(a => out) = (2,3);
(b => out) = (4,5);

endspecify

4.3 New timing constraint checks

Verilog-2001 adds several new timing constraint checks, to
more accurately model deep submicron timing. The new
timing checks are: $removal, $recrem, $timeskew and
$fullskew. A full description of the timing checks is
beyond the scope of this paper. Refer to the IEEE 1364-
2001 Verilog standard for details on these checks.

4.4 Negative timing constraints

Verilog-2001 changes the $setuphold timing constraint by
adding four additional arguments. These new arguments
allow accurate specification of negative setup or hold
times. The setup and hold timing check values define a
timing violation window with respect to a reference signal
edge, during which the data must remain constant. A
positive value for both setup and hold times indicates that

in

rise/fall
4/6

outin

12 14 1810

out (on-event)
(default)

out (o n-detect)

© 2000, Sutherland HDL, Inc. page 8 of 8

this violation window straddles the reference signal. A
negative hold or setup time means the violation window is
shifted to either before or after the reference edge. This can
happen in a real device because of disparate internal device
delays between the internal clock and data signal paths.

The new $setuphold arguments are added to the end of the
Verilog-1995 $setuphold argument list. The new arguments
are optional. If they are not specified, the syntax for
$setuphold is the same as with Verilog-1995, thus
maintaining backward compatibility.

The new $recrem timing check, which combines
$recovery and $removal, can also accept negative values,
using a syntax similar to $setuphold. Refer to the IEEE
1364-2001 Verilog standard for details on specifying
negative timing constraints using these timing checks.

4.5 Enhanced SDF support

The IEEE 1364-2001 Verilog language reference manual
adds a section which details how delays in an SDF file map
to delays within the Verilog language. The discussion is
based on the latest SDF standard, IEEE Std 1497-1999 [3].

This latest SDF standard includes labels, which provide a
means to annotate delays to Verilog procedures. In order to
support SDF labels, one change has been made to the
Verilog syntax. In Verilog-1995, specparam constants
could only be declared within a specify block. Verilog-
2001 allows specparam constants to be declared and used
at the module level.

4.6 Extended VCD files

The Verilog-1995 standard defines a standard 4-state logic
Value Change Dump (VCD) file format. The $dumpvars
and related system tasks are used to create and control a
VCD file.

Verilog-2001 adds extensions to the Value Change Dump
(VCD) file format. These extensions add more detail on
Verilog port changes, on net strength changes, and on the
time at which simulation finished. In Verilog-2001, several
new system tasks have been defined, which create and
control an extended VCD file. These new system tasks are:
$dumpports, $dumpportsall, $dumpportsoff,
$dumpportson, $dumpportslimit and $dumpportsflush.

5. PLI enhancements
Verilog-2001 includes numerous updates to the Verilog
Programming Language Interface portion of the Verilog
standard. These changes fall into three primary groups:
• New features added to within the PLI
• Implementation of PLI support for all enhancements

added to the Verilog language for Verilog-2001
• Clarifications to the Verilog-1995 PLI standard

The Verilog PLI standard includes three libraries of C
functions, the TF, ACC and VPI libraries. The TF and
ACC libraries are older versions of the Verilog PLI, and are
maintained in the IEEE 1364 Verilog standard for
backward compatibility. The VPI library is the most
current version of the PLI standard, and offers many
advantages over the older libraries.

The Verilog-2001 contains many clarifications and errata
corrections to the definitions of the older TF and ACC
libraries. However, no new features or capabilities have
been added to the TF and ACC libraries. All
enhancements to the Verilog PLI have been incorporated
in the VPI library. These include support for the many new
features in the Verilog language, as well as the addition of
six new VPI routines: vpi_control(), vpi_get_data(),
vpi_put_data(), vpi_get_userdata(), vpi_put_userdata()
and vpi_flush(). Refer to the IEEE 1364-2001 Verilog
standard for a full description of these new VPI routines.

6. References
1. IEEE Std 1364-1995, IEEE Standard Hardware

Description Language Based on the Verilog® Hardware
Description Language. The Institute of Electrical and Elec-
tronics Engineers, Inc. 345 East 47th Street, New York, NY
10017-2394, USA. ISBN 1-55937-727-5.

2. IEEE Std p1364-2001, IEEE Standard Hardware
Description Language Based on the Verilog® Hardware
Description Language. The Institute of Electrical and Elec-
tronics Engineers, Inc. 345 East 47th Street, New York, NY
10017-2394, USA. (ISBN not yet assigned).

3. IEEE Std p1497-1999, Standard for Standard Delay Format
(SDF) for the Electronic Design Process. The Institute of Elec-
trical and Electronics Engineers, Inc. 345 East 47th Street,
New York, NY 10017-2394, USA. (ISBN not yet assigned).

7. Summary
The IEEE 1364-2001 Verilog standard is complete, and
received official ratification by the IEEE in March, 2001.
Verilog-2001 adds many important enhancements to the
Verilog language, which provide powerful constructs for
writing re-usable, scalable models, Intellectual Property
modeling, and very deep submicron timing accuracy.
Engineers who design with Verilog will receive significant
benefit from these enhancements.

8. About the Author:
Stuart Sutherland is the founder and president of
Sutherland HDL Inc., a company that specializes in Verilog
training and design consulting. Mr. Sutherland is co-
chairman of the IEEE 1364 PLI task force for the Verilog-
2001 standard and editor of the PLI sections of the 1364
Verilog language reference manual. You can contact Mr.
Sutherland at stuart@sutherland-hdl.com.

