
The IEEE Verilog 1364-2000 2001 Standard

What’s New, and Why You Need It

by Stuart Sutherland
Sutherland HDL, Inc.

Verilog Training and Consulting Experts

Presented at the HDLCON-2000 Conference
March 10, 2000 San Jose, California

This presentation was updated August, 2001
to clarify some points and make minor corrections in some examples

(my thanks to Cliff Cummings of Sunburst Design for suggesting the changes)

This presentation was updated August, 2001
to clarify some points and make minor corrections in some examples

(my thanks to Cliff Cummings of Sunburst Design for suggesting the changes)

DISCLAIMER:
This presentation is strictly an overview — it is NOT the full IEEE standard,

and does NOT reflect the full details of the enhancements to the Verilog standard!

DISCLAIMER:
This presentation is strictly an overview — it is NOT the full IEEE standard,

and does NOT reflect the full details of the enhancements to the Verilog standard!

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 2

LL
HH DD

SutherlandSutherland

Verilog-2000 2001 Status

The specification of the Verilog-2000 2001
standard is complete

Voting draft completed March 1st, 2000

The final IEEE balloting process has started

Expect Verilog-2000 to be ratified in Q3-2000

The official standard will be IEEE Std. 1364-2000 2001

UPDATE
The IEEE officially ratified the proposed standard in March, 2001.

The official name for the new Verilog standard is IEEE Std. 1364-2001.
The common nickname is “Verilog-2001”.

The original version of this presentation was prepared in 2000.
At that time, it was anticipated that the IEEE would ratify the standard that year.

Therefore, the original version of this presentation used the nickname “Verilog-2000”.

UPDATE
The IEEE officially ratified the proposed standard in March, 2001.

The official name for the new Verilog standard is IEEE Std. 1364-2001.
The common nickname is “Verilog-2001”.

The original version of this presentation was prepared in 2000.
At that time, it was anticipated that the IEEE would ratify the standard that year.

Therefore, the original version of this presentation used the nickname “Verilog-2000”.

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 3

LL
HH DD

SutherlandSutherland

Why a New Standard?

Add enhancements to Verilog
Design methodologies are evolving

System level design, intellectual property models,
design re-use, very deep submicron, etc.

Cliff Cumming’s “Top Five Enhancement Requests”
from HDLCON-1996

Clarify ambiguities in Verilog 1364-1995
The 1364-1995 reference manual came the Gateway
Design Automation Verilog-XL User’s Manual
Verilog-2001 more clearly defines Verilog syntax and
semantics

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 4

LL
HH DD

SutherlandSutherland

Goals for Verilog-2001

Enhance Verilog for
Higher level, abstract system level modeling
Intellectual Property (IP) modeling
Greater timing accuracy for very deep submicron

Make Verilog even easier to use
Correct errata and ambiguities
Maintain backward compatibility — existing
models will work with the new standard
Ensure that EDA vendors will implement all
enhancements!

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 5

LL
HH DD

SutherlandSutherland
The IEEE 1364
Verilog Standards Committee

A main working group
Final approval of all changes to 1364-1995
About 20 active participants

Three task forces
Behavioral Task Force (Cliff Cummings, chair)

RTL and behavioral modeling enhancements
ASIC Task Force (Steve Wadsworth, chair)

ASIC and FPGA library modeling enhancements
PLI Task Force (Drew Lynch, Stu Sutherland, co-chairs)

PLI enhancements

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 6

LL
HH DD

SutherlandSutherland

Overview of HDL Enhancements

33 major enhancements were added to the
Verilog HDL

Brief description and examples
New reserved words

Errata and clarifications
Dozens of corrections were made to 1364-1995
Do not affect Verilog users
Very important to Verilog tool implementors
Not listed in this paper — refer to the 1364-2001
Verilog Language Reference Manual (LRM)

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 7

LL
HH DD

SutherlandSutherland
1:
Verilog Configurations

Verilog-1995 leaves design management up to
the software tools

Every tool has different ways to manage large designs

Verilog-2001 adds configuration blocks
All software tools will have a consistent method
The version for each module instance can be specified

Virtual libraries specified within Verilog source code
Physical file locations specified in a “map” file

New reserved words added: config, endconfig,
design, instance, cell, use, liblist

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 8

LL
HH DD

SutherlandSutherland

Verilog Configuration Notes

Verilog design hierarchy is modeled the same as always
Configurations can be used to specify which module source code
should be used for each instance of a module.

With Verilog-1995, it is up to the simulator on how to specify which
model version should be used for each instance (if the simulator can do
it at all)

The configuration block is specified outside of all modules
Can be in the same file as the Verilog source code
Can be in a separate file
Verilog model source code does not need to be modified in order to
change the design configuration!

A separate file maps logical library names to physical file locations
Verilog source code does not need to be modified when a design is
moved to a different physical source location!

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 9

LL
HH DD

SutherlandSutherland

Verilog Configuration Example

module test;
...
myChip dut (...);
...

endmodule

module test;
...
myChip dut (...);
...

endmodule

module myChip(...);
...
adder a1 (...);
adder a2 (...);
...

endmodule

module myChip(...);
...
adder a1 (...);
adder a2 (...);
...

endmodule

Verilog Design
/* define a name for this configuration */
config cfg4

/* specify where to find top level modules */
design rtlLib.test

/* set the default search order for finding
instantiated modules */

default liblist rtlLib gateLib;

/* explicitly specify which library to use
for the following module instance */

instance test.dut.a2 liblist gateLib;
endconfig

/* define a name for this configuration */
config cfg4

/* specify where to find top level modules */
design rtlLib.test

/* set the default search order for finding
instantiated modules */

default liblist rtlLib gateLib;

/* explicitly specify which library to use
for the following module instance */

instance test.dut.a2 liblist gateLib;
endconfig

Configuration Block (part of Verilog source code)

/* location of RTL models (current directory) */
library rtlLib ./*.v;

/* Location of synthesized models */
library gateLib ./synth_out/*.v;

/* location of RTL models (current directory) */
library rtlLib ./*.v;

/* Location of synthesized models */
library gateLib ./synth_out/*.v;

Library Map File

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 10

LL
HH DD

SutherlandSutherland
2:
Verilog Generate

Verilog-2001 adds true generate capability
Use for loops to generate any number of instances of:

Modules, primitives, procedures, continuous
assignments, tasks, functions, variables, nets

Use if–else and case decisions to control what
instances are generated

Provides greater control than the VHDL generate
New reserved words added:

generate, endgenerate, genvar, localparam

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 11

LL
HH DD

SutherlandSutherland

Verilog Generate Example

module multiplier (a, b, product);
parameter a_width = 8, b_width = 8;
localparam product_width = a_width + b_width;
input [a_width-1:0] a;
input [b_width-1:0] b;
output [product_width-1:0] product;

generate
if ((a_width < 8) || (b_width < 8))

CLA_multiplier #(a_width, b_width) u1 (a, b, product);
else

WALLACE_multiplier #(a_width, b_width) u1 (a, b, product);
endgenerate

endmodule

module multiplier (a, b, product);
parameter a_width = 8, b_width = 8;
localparam product_width = a_width + b_width;
input [a_width-1:0] a;
input [b_width-1:0] b;
output [product_width-1:0] product;

generate
if ((a_width < 8) || (b_width < 8))

CLA_multiplier #(a_width, b_width) u1 (a, b, product);
else

WALLACE_multiplier #(a_width, b_width) u1 (a, b, product);
endgenerate

endmodule • If the input bus widths are 8-bits or less, generate and
instance of a carry-look-ahead multiplier

• If the input bus widths are greater than 8-bits,
generate an instance of a wallace-tree multiplier

• If the input bus widths are 8-bits or less, generate and
instance of a carry-look-ahead multiplier

• If the input bus widths are greater than 8-bits,
generate an instance of a wallace-tree multiplier

localparams are constants,
which cannot be redefined
localparams are constants,
which cannot be redefined

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 12

LL
HH DD

SutherlandSutherland
3:
Constant Functions

Verilog-2001 adds constant functions
Same syntax as standard Verilog functions
Limited to statements that can be evaluated at
compile time
Can be called anywhere a constant expression is
required

Vector width declarations
Array declarations
Replicate operations

Provides for more scalable, re-usable models

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 13

LL
HH DD

SutherlandSutherland

Constant Functions Example

module ram (...);
parameter RAM_SIZE = 1024;
parameter ADDRESS = 12;
input [ADDRESS-1:0] address_bus;

module ram (...);
parameter RAM_SIZE = 1024;
parameter ADDRESS = 12;
input [ADDRESS-1:0] address_bus;

module ram (...);
parameter RAM_SIZE = 1024;
input [clogb2(RAM_SIZE)-1:0] address_bus;
...
function integer clogb2;

input [31:0] depth;
begin

for(clogb2=0; depth>0; clogb2=clogb2+1)
depth = depth >> 1;

end
endfunction
...

module ram (...);
parameter RAM_SIZE = 1024;
input [clogb2(RAM_SIZE)-1:0] address_bus;
...
function integer clogb2;

input [31:0] depth;
begin

for(clogb2=0; depth>0; clogb2=clogb2+1)
depth = depth >> 1;

end
endfunction
...

Verilog 1995:
Vector widths can be calculated
using simple constant expressions

Verilog 1995:
Vector widths can be calculated
using simple constant expressions

Verilog 2001:
Vector widths can be calculated
using complex constant functions

Verilog 2001:
Vector widths can be calculated
using complex constant functions

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 14

LL
HH DD

SutherlandSutherland
4:
Indexed Vector Part Selects

Verilog-2001 adds the capability to use variables
to select a group of bits from a vector

The starting point of the part-select can vary
The width of the part-select remains constant

reg [63:0] word;
reg [3:0] byte_num; //a value from 0 to 7
wire [7:0] byteN = word[byte_num*8 +: 8];

reg [63:0] word;
reg [3:0] byte_num; //a value from 0 to 7
wire [7:0] byteN = word[byte_num*8 +: 8];

The starting point of the
part-select is variable
The starting point of the
part-select is variable

The width of the
part-select is constant
The width of the
part-select is constant

+: indicates the part-select increases from the starting point
-: indicates the part-select decreases from the starting point
+: indicates the part-select increases from the starting point
-: indicates the part-select decreases from the starting point

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 15

LL
HH DD

SutherlandSutherland
5:
Multi-dimensional Arrays

Verilog-1995 allows 1-dimensional arrays of reg,
integer and time variables

Typically used to model RAM and ROM memories

Verilog-2001 adds:
Multidimensional arrays of any variable data type
Multidimensional arrays of any net data type

//declare a 3-dimensional array of 8-bit wire nets
wire [7:0] array3 [0:255][0:255][0:15];

//select one word out of a 3-dimensional array
wire [7:0] out3 = array3[addr1][addr2][addr3];

//declare a 3-dimensional array of 8-bit wire nets
wire [7:0] array3 [0:255][0:255][0:15];

//select one word out of a 3-dimensional array
wire [7:0] out3 = array3[addr1][addr2][addr3];

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 16

LL
HH DD

SutherlandSutherland
6:
Array Bit and Part Selects

Verilog-2001 adds:
Bit-selects out of an array
Part-selects out of an array

//select the high-order byte of one word in a
//2-dimensional array of 32-bit reg variables
reg [31:0] array2 [0:255][0:15];
wire [7:0] out2 = array2[100][7][31:24];

//select the high-order byte of one word in a
//2-dimensional array of 32-bit reg variables
reg [31:0] array2 [0:255][0:15];
wire [7:0] out2 = array2[100][7][31:24];

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 17

LL
HH DD

SutherlandSutherland
7:
Signed Arithmetic Extensions

Verilog-2001 adds:
reg and net data types can be declared as signed

Function returns can be declared as signed

Literal integer numbers can be declared as signed

New arithmetic shift operators, <<< and >>>,
maintain the sign of a value
New $signed() and $unsigned() system functions
can “cast” a value to signed or unsigned

reg signed [63:0] data;
wire signed [11:0] address;
reg signed [63:0] data;
wire signed [11:0] address;

function signed [128:0] alu;function signed [128:0] alu;

16'shC501 //a signed 16-bit hex value16'shC501 //a signed 16-bit hex value

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 18

LL
HH DD

SutherlandSutherland
8:
Power Operator

Verilog-2001 add an exponential power operator
Represented by the ** token
Similar to the C pow() function
If either operand is real, a real value is returned
If both operands are integers, an integer value is
returned

module ram (...);
parameter WORD_SIZE = 64;
parameter ADDR_SIZE = 24;

reg [WORD_SIZE-1:0] core [0:(2**ADDR_SIZE)-1];
...

module ram (...);
parameter WORD_SIZE = 64;
parameter ADDR_SIZE = 24;

reg [WORD_SIZE-1:0] core [0:(2**ADDR_SIZE)-1];
...

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 19

LL
HH DD

SutherlandSutherland
9: Re-entrant Tasks
and Recursive Functions

Verilog-2001 adds automatic tasks and functions
Each call to the task/function allocates unique storage

In Verilog-1995, tasks and functions are static;
each call shares the same storage space

Concurrent task calls will not interfere with each other
Recursive calls to a function are stacked
New reserved word added: automatic

function automatic [63:0] factorial;
input [31:0] n;
if (n == 1)

factorial = 1;
else

factorial = n * factorial(n-1);
endfunction

function automatic [63:0] factorial;
input [31:0] n;
if (n == 1)

factorial = 1;
else

factorial = n * factorial(n-1);
endfunction

Recursive function callRecursive function call

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 20

LL
HH DD

SutherlandSutherland
10:
Comma-separated Sensitivity List

Verilog-2001 adds a second syntax style for
listing signals in a sensitivity list

Signals in the list can be separated with a comma
The old “or” separated list will still work

always @(sel or a or b or c or d)
case (sel)

2’b00: y = a;
2’b01: y = b;
2’b10: y = c;
2’b11: y = d;

endcase

always @(sel or a or b or c or d)
case (sel)

2’b00: y = a;
2’b01: y = b;
2’b10: y = c;
2’b11: y = d;

endcase

Verilog-1995

always @(sel, a, b, c, d)
case (sel)

2’b00: y = a;
2’b01: y = b;
2’b10: y = c;
2’b11: y = d;

endcase

always @(sel, a, b, c, d)
case (sel)

2’b00: y = a;
2’b01: y = b;
2’b10: y = c;
2’b11: y = d;

endcase

Verilog-2001

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 21

LL
HH DD

SutherlandSutherland
11:
Combinational Logic Sensitivity

Verilog-2001 adds a “wildcard” token to indicate
a combinational logic sensitivity list

The @* token indicates automatic sensitivity to any
change on any signal that is read by the following
statement or statement group

always @(sel or a or b or c or d)
case (sel)

2’b00: y = a;
2’b01: y = b;
2’b10: y = c;
2’b11: y = d;

endcase

always @(sel or a or b or c or d)
case (sel)

2’b00: y = a;
2’b01: y = b;
2’b10: y = c;
2’b11: y = d;

endcase

Verilog-1995

always @*
case (sel)

2’b00: y = a;
2’b01: y = b;
2’b10: y = c;
2’b11: y = d;

endcase

always @*
case (sel)

2’b00: y = a;
2’b01: y = b;
2’b10: y = c;
2’b11: y = d;

endcase

Verilog-2001

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 22

LL
HH DD

SutherlandSutherland
12:
Enhanced File I/O

Verilog-1995 has limited built-in file I/O tasks
Up to 31 files can be opened for writing

Only ASCII characters can be written to files
More complex file I/O is done using the Verilog
Programming Language Interface (PLI)

Verilog-2001 adds:
The ability to open up to 230 files
New file I/O tasks: $ferror, $fgetc, $fgets, $fflush,
$fread, $fscanf, $fseek, $ftel, $rewind, $ungetc
New string tasks: $sformat, $swrite, $swriteb,
$swriteh, $swriteo

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 23

LL
HH DD

SutherlandSutherland
13:
Automatic Width Extension Past 32 bits

In Verilog-1995:
Verilog assignments zero fill when the left-hand side is
wider than the right-hand side
Unsized integers default to 32-bits wide; therefore,
the widths of integers must be hard-coded

Verilog-2001 will automatically extend a logic Z
or X to the full width of the left-hand side

parameter WIDTH = 64;
reg [WIDTH-1:0] data;
data = 'bz; //fills with 'h00000000zzzzzzzz
data = 64'bz; //fills with 'hzzzzzzzzzzzzzzzz

parameter WIDTH = 64;
reg [WIDTH-1:0] data;
data = 'bz; //fills with 'h00000000zzzzzzzz
data = 64'bz; //fills with 'hzzzzzzzzzzzzzzzz

Verilog-1995

parameter WIDTH = 64;
reg [WIDTH-1:0] data;
data = 'bz; //fills with 'hzzzzzzzzzzzzzzzz

parameter WIDTH = 64;
reg [WIDTH-1:0] data;
data = 'bz; //fills with 'hzzzzzzzzzzzzzzzz

Verilog-2001

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 24

LL
HH DD

SutherlandSutherland
14:
Default Nets with Continuous Assigns

Verilog-2001 will default to a net data type on
the left-hand side of any continuous assignment

The net will be scalar (1-bit), if not connected to a
port of the module
In Verilog-1995, the left-hand side must be explicitly
declared, if not connected to a port of the module

module mult32 (y, a, b);
output [63:0] y;
input [31:0] a, b;
assign y = a * b; //defaults to wire, width of port y
assign eq = (a == b); //ERROR: ‘eq’ not declared

endmodule

module mult32 (y, a, b);
output [63:0] y;
input [31:0] a, b;
assign y = a * b; //defaults to wire, width of port y
assign eq = (a == b); //ERROR: ‘eq’ not declared

endmodule

Verilog-1995

assign eq = (a == b); //defaults to 1-bit wireassign eq = (a == b); //defaults to 1-bit wireVerilog-2001

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 25

LL
HH DD

SutherlandSutherland
15:
Disable Default Net Declarations

In Verilog-1995, undeclared signals can default
to a wire data type

The default data type can be changed to another net
data type using `default_nettype <data_type>

Verilog-2001 provides a means to disable default
net declarations

`default_nettype none
Any undeclared signals will be a syntax error

Prevents hard-to-debug wiring errors due to a
mistyped name

none is not a new reserved word

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 26

LL
HH DD

SutherlandSutherland
16:
Explicit In-line Parameter Passing

Verilog-2001 adds the ability to explicitly name
parameters when passing parameter values

Provides better self-documenting code
Parameter values can be passed in any order

module my_chip (...);
...
RAM #(8,1023) ram2 (...);

endmodule

module my_chip (...);
...
RAM #(8,1023) ram2 (...);

endmodule

Verilog-1995
module my_chip (...);

...
RAM #(.SIZE(1023)) ram2 (...);

endmodule

module my_chip (...);
...
RAM #(.SIZE(1023)) ram2 (...);

endmodule

Verilog-2001

module ram (...);
parameter WIDTH = 8;
parameter SIZE = 256;
...

endmodule

module ram (...);
parameter WIDTH = 8;
parameter SIZE = 256;
...

endmodule

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 27

LL
HH DD

SutherlandSutherland
17:
Combined Port/Data Type Declarations

Verilog-2001 permits combining port declarations
and data type declarations into one statement

module mux8 (y, a, b, en);
output [7:0] y;
input [7:0] a, b;
input en;

reg [7:0] y;
wire [7:0] a, b;
wire en;
...

module mux8 (y, a, b, en);
output [7:0] y;
input [7:0] a, b;
input en;

reg [7:0] y;
wire [7:0] a, b;
wire en;
...

Verilog-1995
module mux8 (y, a, b, en);

output reg [7:0] y;
input wire [7:0] a, b;
input wire en;
...

module mux8 (y, a, b, en);
output reg [7:0] y;
input wire [7:0] a, b;
input wire en;
...

Verilog-2001

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 28

LL
HH DD

SutherlandSutherland
18:
ANSI-style Port Lists

Verilog-2001 adds ANSI C style input and output
declarations

For modules, tasks and functions

module mux8 (y, a, b, en);
output [7:0] y;
input [7:0] a, b;
input en;

reg [7:0] y;
wire [7:0] a, b;
wire en;
...

module mux8 (y, a, b, en);
output [7:0] y;
input [7:0] a, b;
input en;

reg [7:0] y;
wire [7:0] a, b;
wire en;
...

Verilog-1995
module mux8 (output reg [7:0] y,

input wire [7:0] a,
input wire [7:0] b,
input wire en);

...

module mux8 (output reg [7:0] y,
input wire [7:0] a,
input wire [7:0] b,
input wire en);

...

Verilog-2001

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 29

LL
HH DD

SutherlandSutherland
19:
Reg Declaration With Initialization

Verilog-2001 permits initializing variables at the
time they are declared

The initialization is executed in time-step zero, just
like initial procedures

reg clock;

initial
clk = 0;

reg clock;

initial
clk = 0;

Verilog-1995
reg clock = 0;reg clock = 0;

Verilog-2001

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 30

LL
HH DD

SutherlandSutherland
20:
“Register” Changed To “Variable”

The Verilog-2001 standard changes the term
“register” to “variable”

“register” is not a reserved word; it is just a term
Since its inception in 1984, Verilog manuals have used
the term “register” to describe a class of data types

reg (unsigned variable), integer (signed variable),
real (double precision variable), etc.

The term “register” often confuses new Verilog users
register is a hardware term for storage elements
Verilog registers do not imply a hardware register

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 31

LL
HH DD

SutherlandSutherland
21:
Enhanced Conditional Compilation

Verilog-1995 supports limited conditional
compilation

`ifdef, `else, `endif and `undef compiler directives

Verilog-2001 adds more extensive conditional
compilation control

New directives: `ifndef and `elsif

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 32

LL
HH DD

SutherlandSutherland
22:
File and Line Compiler Directive

Verilog-2001 adds a `line file and line compiler
directive

Documents the original location of Verilog source code

Verilog tools often include file name and line
number information in error and warning messages

If a pre-process utility program modifies the Verilog
source code, the original file and line information
could be lost

The preprocessor can add a `line directive to the
modified code to preserve the original source file
location

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 33

LL
HH DD

SutherlandSutherland
23:
Attributes

Verilog-2001 adds “attribute” properties
A standard means to specify non-Verilog tool specific
information to Verilog models
Adds new tokens (* and *)
Eliminates need to hide commands in comments
The standard does not define any specific attributes

Software vendors can define proprietary attributes
Other standards might define standard attributes

case (1'b1) /* synopsys parallel_case */ //1-hot FSMcase (1'b1) /* synopsys parallel_case */ //1-hot FSMVerilog-1995

(* rtl_synthesis, parallel_case *) case (1'b1) //1-hot FSM(* rtl_synthesis, parallel_case *) case (1'b1) //1-hot FSMVerilog-2001

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 34

LL
HH DD

SutherlandSutherland
24:
Standard Random Number Generator

Verilog-2001 defines the C source code for the
generator used by $random

All simulators can generate the same random number
sequence when given the same seed value

Simulation results from different simulators can be
compared
New products do not need to re-invent the wheel

Uses the random number generator from Verilog-XL

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 35

LL
HH DD

SutherlandSutherland
25:
Enhanced Invocation Option Tests

Verilog-1995 contains a true/false test to see if
simulation was invoked with a specific option

$test$plusargs

Verilog-2001 adds the ability to read arguments
of invocation options

New system function: $value$plusargs

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 36

LL
HH DD

SutherlandSutherland
26:
Enhanced PLA Modeling

Verilog-2001 extends the capability of the PLA
system tasks ($async$or$array, $async$and$array, etc.)

In Verilog-1995, arguments had to be scalar

In Verilog-2001, arguments can be vectors

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 37

LL
HH DD

SutherlandSutherland
27:
Accurate BNF, with Subsections

The Verilog-1995 BNF (Backus-Naur Form) had
errors and inconsistencies

Verilog-2001 contains a much stronger BNF
definition of the Verilog language

Consistent terminology
More definitive terms
Divided into sub-sections to make it easier to find
specific definitions
Checked for accuracy

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 38

LL
HH DD

SutherlandSutherland
28:
On-detect Pulse Error Propagation

Verilog-1995 has on-event pulse error propagation
A pulse is a glitch on the inputs of a module path that
is less than the delay of the path
An input pulse propagates to a path output as an X,
with the same delay as if a valid input change had
propagated to the output

Verilog-2001 adds on-detect pulse error propagation
As soon as an input pulse is detected, a logic X is
propagated to a path output, without the path delay
New reserved words added:

pulsestyle_onevent, pulsestyle_ondetect

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 39

LL
HH DD

SutherlandSutherland
29:
Negative Pulse Detection

Verilog-2001 adds negative pulse detections
Due to different rising-transition and falling-transition
delays, it is possible for the trailing edge of a glitch to
propagate before the leading edge has propagated

In Verilog-1995, a negative pulse is cancelled
Negative pulse detection will propagate a logic X for
the duration of the negative pulse
New reserved words added:

showcancelled, noshowcancelled

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 40

LL
HH DD

SutherlandSutherland
30:
New Timing Constraint Checks

Verilog-2001 adds new timing constraint checks
More accurately model very deep submicron input
constraints:
New timing constraint tasks added:

$removal
$recrem
$timeskew
$fullskew

Refer to the proposed IEEE 1364-2001 Verilog
standard for details on these tasks

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 41

LL
HH DD

SutherlandSutherland
31:
Negative Timing Constraints

Verilog-2001 adds the ability to specify negative
values for:

$setuphold setup and hold times
Adds new, optional arguments to the Verilog-1995
$setuphold task

$recrem recovery and removal times
A new timing check task in Verilog-2001

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 42

LL
HH DD

SutherlandSutherland
32:
Enhanced SDF support

The Verilog-2001 standard defines:
How timing objects in SDF map to objects in Verilog
Based on the latest SDF standard, IEEE 1497-1999

Verilog-2001 changes the syntax of the
specparam constant

Can now be declared at the module level as well as
within a specify block (to support SDF labels)

Verilog-2001 adds a standard $sdf_annotate
system task

Already a de-facto standard in all simulators

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 43

LL
HH DD

SutherlandSutherland
33:
Extended VCD Files

Verilog-2001 adds new Value Change Dump
(VCD) capabilities

Dump port change values
Dump strength level changes
Dump the time at which simulation finishes
New system tasks added:

$dumpports, $dumpportsall, $dumpportsoff,
$dumpportson, $dumpportslimit and
$dumpportsflush

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 44

LL
HH DD

SutherlandSutherland

PLI Enhancements

Several enhancements added to the VPI library
Simulation control

Stop, finish, save, restart, etc.
Support for new Verilog-2001 HDL constructs

Array of instances, attributes, signed arithmetic,
recursive functions, enhanced file I/O, etc.

Maintenance updates to TF and ACC libraries
Corrected errata
Clarified ambiguities

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 45

LL
HH DD

SutherlandSutherland

The VPI Library Is The Future!

All enhancements to the Verilog language
will only be supported in the VPI
library of the PLI

The TF and ACC libraries (“PLI 1.0”)
are only being maintained

Warning To Simulator Vendors:
“PLI 1.0” is OVI’s 1990 Verilog PLI standard; It isn’t 1990 anymore!

Your customers do not want prehistoric simulators!

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 46

LL
HH DD

SutherlandSutherland
When Will These
Enhancements Be Available?

The “official” word from several EDA vendors is:
They will not comment on future product plans
They will not begin to implement Verilog-2001 until it
is ratified

The “unofficial” word from EDA vendors is:
Some have already started implementing Verilog-2001
One essentially says they do not see any need to

implement the new features in Verilog-2001
Tell you simulator, synthesis and other

Verilog tools providers that you want
these Verilog-2001 enhancements NOW!

UPDATE
Many of the Verilog-2001 features are now in

shipping products, and every vendor has
plans to support Verilog-2001

UPDATE
Many of the Verilog-2001 features are now in

shipping products, and every vendor has
plans to support Verilog-2001

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 47

LL
HH DD

SutherlandSutherland
Summary

Verilog-2001 is complete
The proposed IEEE 1364-2000 Verilog standard is now
in the final balloting phase

Verilog-2001 contains
Over 30 major enhancements
Many clarifications and errata corrections

Verilog-2001 adds powerful capabilities
Greater deep submicron accuracy
More abstract system level modeling
Scalable, re-usable modeling

Final approval is expected in late 2000
UPDATE: The definition of the new Verilog standard was completed in 2000,
but the IEEE did not finishing ratifying the standard until March, 2001.
UPDATE: The definition of the new Verilog standard was completed in 2000,
but the IEEE did not finishing ratifying the standard until March, 2001.

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 48

LL
HH DD

SutherlandSutherland

For More Information

The book “Verilog-2001: A Guide to the New
Features of the Verilog HDL” covers the
enhancements in Verilog-2001 in more detail

Author: Stuart Sutherland
Publisher: Kluwer Academic Publishers, www.wkap.com

ISBN: 07923-7568-8
Price: $72.00 US (suggested retail price)
152 pages

Special Offer: Sutherland HDL, Inc. is selling this book for $60.00 US (plus S&H).
call 1+503-692-0898 to order

Special Offer: Sutherland HDL, Inc. is selling this book for $60.00 US (plus S&H).
call 1+503-692-0898 to order

original: 10 Mar 2000
updated: 18 Oct 2001 © 2000, 2001 by Sutherland HDL, Inc., www.sutherland-hdl.com 49

LL
HH DD

SutherlandSutherland

About The Author

Stuart Sutherland
President of Sutherland HDL, Inc., Portland, Oregon
Provides expert Verilog design consulting and training
More than 15 years design experience, and over 12
years working with Verilog
Author of “Verilog-2001: A Guide to the New Features
of the Verilog HDL”, “The Verilog HDL Quick Reference
Guide”, “The Verilog PLI Quick Reference Guide” and
“The Verilog PLI Handbook”
Member of the IEEE 1364 Verilog standards
committee since 1993; co-chair of the PLI task force

UPDATE: Verilog-2001 versions of the Verilog HDL and PLI Quick
Reference Guides are now available at www.sutherland-hdl.com.
UPDATE: Verilog-2001 versions of the Verilog HDL and PLI Quick
Reference Guides are now available at www.sutherland-hdl.com.

