# INTRODUCTION TO ASICs

1

Key concepts: The difference between full-custom and semicustom ASICs • The difference between standard-cell, gate-array, and programmable ASICs • ASIC design flow • Design economics • ASIC cell library

An ASIC ("a-sick") is an application-specific integrated circuit

A gate equivalent is a NAND gate  $F = \overline{A \cdot B}$  (IBM uses a NOR gate), or four transistors

History of integration: small-scale integration (SSI, ~10 gates per chip, 60's), medium-scale integration (MSI, ~100–1000 gates per chip, 70's), large-scale integration (LSI, ~1000–10,000 gates per chip, 80's), very large-scale integration (VLSI, ~10,000–100,000 gates per chip, 90's), ultralarge scale integration (ULSI, ~1M–10M gates per chip)

History of technology: bipolar technology and transistor–transistor logic (TTL) preceded metal-oxide-silicon (MOS) technology because it was difficult to make metal-gate n-channel MOS (nMOS or NMOS); the introduction of complementary MOS (CMOS, never cMOS) greatly reduced power

The **feature size** is the smallest shape you can make on a chip and is measured in lambda

Origin of ASICs: the standard parts, initially used to design microelectronic systems, were gradually replaced with a combination of glue logic, custom ICs, dynamic random-access memory (DRAM) and static RAM (SRAM)

History of ASICs: The IEEE Custom Integrated Circuits Conference (CICC) and IEEE International ASIC Conference document the development of ASICs

**Application-specific standard products (ASSPs)** are a cross between standard parts and ASICs

# 1.1 Types of ASICs

ICs are made on a **wafer**. Circuits are built up with successive **mask layers**. The number of **masks** used to define the **interconnect** and other layers is different between **full-custom ICs** and **programmable ASICs** 



#### 1.1.1 Full-Custom ASICs

All mask layers are customized in a full-custom ASIC.

It only makes sense to design a full-custom IC if there are no libraries available.

Full-custom offers the highest performance and lowest part cost (smallest die size) with the disadvantages of increased design time, complexity, design expense, and highest risk.

Microprocessors were exclusively full-custom, but designers are increasingly turning to semicustom ASIC techniques in this area too.

Other examples of full-custom ICs or ASICs are requirements for high-voltage (automobile), analog/digital (communications), or sensors and actuators.

#### 1.1.2 Standard-Cell-Based ASICs

# A cell-based ASIC (CBIC—"sea-bick")

- Standard cells
- Possibly megacells, megafunctions, fullcustom blocks, system-level macros (SLMs), fixed blocks, cores, or Functional Standard Blocks (FSBs)
- All mask layers are customized—transistors and interconnect
- Custom blocks can be embedded
- Manufacturing lead time is about eight weeks.



In datapath (DP) logic we may use a datapath compiler and a datapath library. Cells such as arithmetic and logical units (ALUs) are pitch-matched to each other to improve timing and density.

ASICs... THE COURSE 1.1 Types of ASICs 3



# 1.1.3 Gate-Array-Based ASICs

A gate array, masked gate array, MGA, or prediffused array uses macros (books) to reduce turnaround time and comprises a base array made from a base cell or primitive cell. There are three types:

- Channeled gate arrays
- Channelless gate arrays
- Structured gate arrays



Routing a CBIC (cell-based IC)

- A "wall" of standard cells forms a flexible block
- metal2 may be used in a feedthrough cell to cross over cell rows that use metal1 for wiring
- Other wiring cells: spacer cells, row-end cells, and power cells

A note on the use of hyphens and dashes in the spelling (orthography) of compound nouns: Be careful to distinguish between a "high-school girl" (a girl of high-school age) and a "high school girl" (is she on drugs or perhaps very tall?).

We write "channeled gate array," but "channeled gate-array architecture" because the *gate array* is *channeled;* it is not "channeled-gate array architecture" (which is an array of channeled-gates) or "channeled gate array architecture" (which is ambiguous).

We write gate-array-based ASICs (with a en-dash between array and based) to mean (gate array)-based ASICs.

ASICs... THE COURSE 1.1 Types of ASICs

#### 1.1.4 Channeled Gate Array

#### A channeled gate array

- Only the interconnect is customized
- The interconnect uses predefined spaces between rows of base cells
- Manufacturing lead time is between two days and two weeks



5

## 1.1.5 Channelless Gate Array

A channelless gate array (channel-free gate array, seaof-gates array, or SOG array)

- Only some (the top few) mask layers are customized the interconnect
- Manufacturing lead time is between two days and two weeks.



## 1.1.6 Structured Gate Array

# An embedded gate array or structured gate array (masterslice or masterimage)

- Only the interconnect is customized
- Custom blocks (the same for each design) can be embedded
- Manufacturing lead time is between two days and two weeks.



#### 1.1.7 Programmable Logic Devices

Examples and types of PLDs: read-only memory (ROM) • programmable ROM or PROM • electrically programmable ROM, or EPROM • An erasable PLD (EPLD) • electrically erasable PROM, or EEPROM • UV-erasable PROM, or UVPROM • mask-programmable ROM

• A mask-programmed PLD usually uses bipolar technology

**Logic arrays** may be either a **Programmable Array Logic** (PAL<sup>®</sup>, a registered trademark of AMD) or a **programmable logic array** (PLA); both have an **AND plane** and an **OR plane** 

# A programmable logic device (PLD)

- No customized mask layers or logic cells
- Fast design turnaround
- A single large block of programmable interconnect
- A matrix of logic macrocells that usually consist of programmable array logic followed by a flip-flop or latch



ASICs... THE COURSE 1.2 Design Flow 7

#### 1.1.8 Field-Programmable Gate Arrays

# A field-programmable gate array (FPGA) or complex PLD

- None of the mask layers are customized
- A method for programming the basic logic cells and the interconnect
- The core is a regular array of programmable basic logic cells that can implement combinational as well as sequential logic (flip-flops)
- A matrix of programmable interconnect surrounds the basic logic cells
- Programmable I/O cells surround the core
- Design turnaround is a few hours



# **1.2** Design Flow

A design flow is a sequence of steps to design an ASIC

- 1. **Design entry**. Using a **hardware description language** (**HDL**) or schematic entry.
- 2. Logic synthesis. Produces a netlist—logic cells and their connections.
- 3. **System partitioning**. Divide a large system into ASIC-sized pieces.
- 4. Prelayout simulation. Check to see if the design functions correctly.
- 5. Floorplanning. Arrange the blocks of the netlist on the chip.
- 6. **Placement**. Decide the locations of cells in a block.
- 7. Routing. Make the connections between cells and blocks.
- 8. **Extraction**. Determine the resistance and capacitance of the interconnect.
- 9. **Postlayout simulation**. Check to see the design still works with the added loads of the interconnect.

# **1.3** Case Study

SPARCstation 1: Better performance at lower cost • Compact size, reduced power, and quiet operation • Reduced number of parts, easier assembly, and improved reliability



| The | The ASICs in the Sun Microsystems SPARCstation 1 |                 |  |  |  |  |
|-----|--------------------------------------------------|-----------------|--|--|--|--|
|     | SPARCstation 1 ASIC                              | Gates (k-gates) |  |  |  |  |
| 1   | SPARC integer unit (IU)                          | 20              |  |  |  |  |
| 2   | SPARC floating-point unit (FPU)                  | 50              |  |  |  |  |
| 3   | Cache controller                                 | 9               |  |  |  |  |
| 4   | Memory-management unit (MMU)                     | 5               |  |  |  |  |
| 5   | Data buffer                                      | 3               |  |  |  |  |
| 6   | Direct memory access (DMA) controller            | 9               |  |  |  |  |
| 7   | Video controller/data buffer                     | 4               |  |  |  |  |
| 8   | RAM controller                                   | 1               |  |  |  |  |
| 9   | Clock generator                                  | 1               |  |  |  |  |

ASICs... THE COURSE 1.4 Economics of ASICs 9

| The CAD tools used in the design of the Sun Microsystems SPARCstation 1 |                      |                                       |  |  |  |
|-------------------------------------------------------------------------|----------------------|---------------------------------------|--|--|--|
| Design level                                                            | Function             | Tool                                  |  |  |  |
| ASIC design                                                             | ASIC physical design | LSI Logic                             |  |  |  |
|                                                                         | ASIC logic synthesis | Internal tools and UC Berkeley tools  |  |  |  |
|                                                                         | ASIC simulation      | LSI Logic                             |  |  |  |
| Board design                                                            | Schematic capture    | Valid Logic                           |  |  |  |
|                                                                         | PCB layout           | Valid Logic Allegro                   |  |  |  |
|                                                                         | Timing verification  | Quad Design Motive and internal tools |  |  |  |
| Mechanical design                                                       | Case and enclosure   | Autocad                               |  |  |  |
|                                                                         | Thermal analysis     | Pacific Numerix                       |  |  |  |
|                                                                         | Structural analysis  | Cosmos                                |  |  |  |
| Management                                                              | Scheduling           | Suntrac                               |  |  |  |
|                                                                         | Documentation        | Interleaf and FrameMaker              |  |  |  |

# **1.4** Economics of ASICs

We'll compare the most popular types of ASICs: an FPGA, an MGA, and a CBIC. The figures in the following sections are approximate and used to illustrate the different components of cost.

### 1.4.1 Comparison Between ASIC Technologies

Example of an ASIC **part cost**: A  $0.5\,\mu m$ , 20k-gate array might cost 0.01-0.02 cents/gate (for more than 10,000 parts) or \$2-\$4 per part, but an equivalent FPGA might be \$20.

When does it make sense to use a more expensive part? This is what we shall examine next.

#### 1.4.2 Product Cost

In a product cost there are **fixed costs** and **variable costs** (the number of products sold is the **sales volume**):

total product cost = fixed product cost + variable product cost × products sold

In a product made from parts the total cost for any part is

total part cost = fixed part cost + variable cost per part × volume of parts

For example, suppose we have the following (imaginary) costs:

- FPGA: \$21,800 (fixed) \$39 (variable)
- MGA: \$86,000 (fixed) \$10 (variable)
- CBIC \$146,000 (fixed) \$8 (variable)

Then we can calculate the following **break-even volumes**:

- FPGA/MGA 2000 parts
- FPGA/CBIC 4000 parts
- MGA/CBIC 20,000 parts



ASICs... THE COURSE 1.4 Economics of ASICs

11

#### 1.4.3 ASIC Fixed Costs

Examples of fixed costs: training cost for a new electronic design automation (EDA) system • hardware and software cost • productivity • production test and design for test • programming costs for an FPGA • nonrecurring-engineering (NRE) • test vectors and test-program development cost • pass (turn or spin) • profit model represents the profit flow during the product lifetime • product velocity • second source

|                   | FPG      | 4      | MGA      |          | CBIC      |          |
|-------------------|----------|--------|----------|----------|-----------|----------|
|                   | \$800    |        | \$2,000  |          | \$2,000   |          |
| Days              |          | 2      |          | 5        |           | ;        |
| Cost/day          |          | \$400  |          | \$400    |           | \$400    |
| Hardware          | \$10,000 |        | \$10,000 |          | \$10,000  |          |
| Software          | \$1,000  |        | \$20,000 |          | \$40,000  |          |
| Design:           | \$8,000  |        | \$20,000 |          | \$20,000  |          |
| Size (gates)      |          | 10,000 |          | 10,000   |           | 10,000   |
| Gates/day         |          | 500    |          | 200      |           | 200      |
| Days              |          | 20     |          | 50       |           | 50       |
| Cost/day          |          | \$400  |          | \$400    |           | \$400    |
| Design for test:  |          |        | \$2,000  |          | \$2,000   |          |
| Days              |          |        |          | 5        |           | ;        |
| Cost/day          |          |        |          | \$400    |           | \$400    |
| NRE:              |          |        | \$30,000 |          | \$70,000  |          |
| Masks             |          |        |          | \$10,000 |           | \$50,000 |
| Simulation        |          |        |          | \$10,000 |           | \$10,000 |
| Test program      |          |        |          | \$10,000 |           | \$10,000 |
| Second source:    | \$2,000  |        | \$2,000  |          | \$2,000   |          |
| Days              |          | 5      |          | 5        |           | ;        |
| Cost/day          |          | \$400  |          | \$400    |           | \$400    |
| Total fixed costs | \$21,800 |        | \$86,000 |          | \$146,000 |          |

Spreadsheet, "Fixed Costs"



ASICs... THE COURSE 1.4 Economics of ASICs 13

#### 1.4.4 ASIC Variable Costs

Factors affecting fixed costs: wafer size • wafer cost • Moore's Law (Gordon Moore of Intel)

- gate density gate utilization die size die per wafer defect density yield die cost
- profit margin (depends on fab or fabless) price per gate part cost

| _              | FPGA   | MGA    | CBIC   | Units         |
|----------------|--------|--------|--------|---------------|
| Wafer size     | 6      | 6      | 6      | inches        |
| Wafer cost     | 1,400  | 1,300  | 1,500  | \$            |
| Design         | 10,000 | 10,000 | 10,000 | gates         |
| Density        | 10,000 | 20,000 | 25,000 | gates/sq.cm   |
| Utilization    | 60     | 85     | 100    | %             |
| Die size       | 1.67   | 0.59   | 0.40   | sq.cm         |
| Die/wafer      | 88     | 248    | 365    |               |
| Defect density | 1.10   | 0.90   | 1.00   | defects/sq.cm |
| Yield          | 65     | 72     | 80     | %             |
| Die cost       | 25     | 7      | 5      | \$            |
| Profit margin  | 60     | 45     | 50     | %             |
| Price/gate     | 0.39   | 0.10   | 0.08   | cents         |
| Part cost      | \$39   | \$10   | \$8    |               |



ASICs... THE COURSE 1.5 ASIC Cell Libraries 15

# 1.5 ASIC Cell Libraries

You can:

- (1) use a design kit from the ASIC vendor
- (2) buy an ASIC-vendor library from a library vendor
- (3) you can build your own cell library
- (1) is usually a **phantom library**—the cells are empty boxes, or **phantoms**, you **hand off** your design to the ASIC vendor and they perform **phantom instantiation** (Synopsys CBA)
- (2) involves a **buy-or-build decision**. You need a **qualified cell library** (qualified by the **ASIC foundry**) If you own the masks (the **tooling**) you have a **customer-owned tooling** (**COT**, pronounced "see-oh-tee") solution (which is becoming very popular)
- (3) involves a complex library development process: cell layout behavioral model Verilog/VHDL model timing model test strategy characterization circuit extraction process control monitors (PCMs) or drop-ins cell schematic cell icon layout versus schematic (LVS) check cell icon logic synthesis retargeting wire-load model routing model phantom

# 1.6 Summary

#### Key concepts:

- We could define an ASIC as a design style that uses a cell library
- The difference between full-custom and semicustom ASICs
- The difference between standard-cell, gate-array, and programmable ASICs
- The ASIC design flow
- Design economics including part cost, NRE, and breakeven volume
- The contents and use of an ASIC cell library

| Types of ASIC |                                      |                       |                    |
|---------------|--------------------------------------|-----------------------|--------------------|
| ASIC type     | Family member                        | Custom<br>mask layers | Custom logic cells |
| Full-custom   | Analog/digital                       | All                   | Some               |
| Semicustom    | Cell-based (CBIC)                    | All                   | None               |
|               | Masked gate array (MGA)              | Some                  | None               |
| Programmable  | Field-programmable gate array (FPGA) | None                  | None               |
|               | Programmable logic device (PLD)      | None                  | None               |

# 1.7 Problems

Suggested homework: 1.4, 1.5, 1.9 (from ASICs... the book)

# **1.8** Bibliography

EE Times (ISSN 0192-1541, http://techweb.cmp.com/eet, EDN (ISSN 0012-7515, http://www.ednmag.com, EDAC (Electronic Design Automation Companies) (http://www.edac.ord, The Electrical Engineering page on the World Wide Web (E2W3) (http://www.e2w3.com, SEMATECH (Semiconductor Manufacturing Technology) (http://www.sematech.ord, The MIT Semiconductor Subway (http://www-mtl.mit.edu), EDA companies at http://www.yahoo.comunder Business\_and\_Economyin Companies/Computers/Software/Graph-ics/CAD/IC\_Design, The MOS Implementation Service (MOSIS) (http://www.isi.edu), The Microelectronic Systems Newsletter at http://www-ece.engr.utk.edu/ece NASA (http://nppp.jpl.nasa.gov/dmg/jpl/loc/asi)c

ASICs... THE COURSE 1.9 References 17

# 1.9 References

Glasser, L. A., and D. W. Dobberpuhl. 1985. *The Design and Analysis of VLSI Circuits*. Reading, MA: Addison-Wesley, 473 p. ISBN 0-201-12580-3. TK7874.G573. Detailed analysis of circuits, but largely nMOS.

- Mead, C. A., and L. A. Conway. 1980. *Introduction to VLSI Systems*. Reading, MA: Addison-Wesley, 396 p. ISBN 0-201-04358-0. TK7874.M37.
- Weste, N. H. E., and K. Eshraghian. 1993. *Principles of CMOS VLSI Design: A Systems Perspective*. 2nd ed. Reading, MA: Addison-Wesley, 713 p. ISBN 0-201-53376-6. TK7874.W46. Concentrates on full-custom design.