PROGRAMMABLE ASIC INTERCONNECT

Key concepts: programmable interconnect • raw materials: aluminum-based metallization

and a line capacitance of 0.2pFcm⁻¹

7.1 Actel ACT

• Wire segments • Segmented channel routing • Long lines

7

7.1.1 Routing Resources

7.1.2 Elmore's Constant

$$
V_i(t) = \exp(-t'/D_i)
$$
 ; $D_i = R_{ki}C_k$
 $k = 1$

The time constant \overline{D} is often called the **Elmore delay** and is different for each node.

I call D_i the **Elmore time constant** as a reminder that, if we approximate V_i by an exponential waveform, the delay of the RC tree using 0.35/0.65 trip points is approximately *Di* seconds.

7.1.3 RC Delay in Antifuse Connections

(a) A four-antifuse connection. L0 is an output stub, L1 and L3 are horizontal tracks, L2 is a long vertical track (LVT), and L4 is an input stub

(b) An RC-tree model. Each antifuse is modeled by a resistance and each interconnect segment is modeled by a capacitance.

$$
D4 = R_{14}C_1 + R_{24}C_2 + R_{14}C_1 + R_{44}C_4
$$

= $(R_1 + R_2 + R_3 + R_4)C_4 + (R_1 + R_2 + R_3)C_3 + (R_1 + R_2)C_2 + R_1C_1$

 $D_4 = 4RC_4 + 3RC_3 + 2RC_2 + RC_1$

- Two antifuses will generate a 3*RC* time constant
- Three antifuses a 6*RC* time constant
- Four antifuses gives a 10*RC* time constant
- \bullet Interconnect delay grows quadratically ($\quad n^2)$ as we increase the interconnect length and the number of antifuses, *n*

7.1.4 Antifuse Parasitic Capacitance

7.1.5 ACT 2 and ACT 3 Interconnect channel density • **fast fuse**

Actel interconnect:

An input stub (1 channel) connects to 25 antifuses An output stub (4 channels) connects to 100 (25×4) antifuses An LVT (1010, 8 channels) connects to 200 (25×8) antifuses An LVT (1020, 14 channels) connects to 350 (25×14) antifuses A four-column horizontal track connects to 52 (13×4) antifuses A 44-column horizontal track connects to 572 (13×44) antifuses

7.2 Xilinx LCA

(d) The equivalent circuit for the connection between nets 6 and 20 using the matrix

(e) A view of the interconnect at a Programmable Interconnection Point (PIP)

(f) and **(g)** The equivalent schematic of a PIP connection **(h)** The complete RC delay path

7.3 Xilinx EPLD

(a) A simplified block diagram of the UIM. The UIM bus width, *n*, varies from 68 (XC7236) to 198 (XC73108)

(b) The UIM is actually a large programmable AND array

(c) The parasitic capacitance of the EPROM cell

7.4 Altera MAX 5000 and 7000

7.5 Altera MAX 9000

7.6 Altera FLEX

(a) The row and column FastTrack interconnect. The chip shown, with 4 rows × 21 columns, is the same size as the EPF8820

(b) A simplified diagram of the interconnect architecture showing the connections between the FastTrack buses and a LAB. Boxes A, B, and C represent the bus-to-bus connections

7.7 Summary

The RC product of the parasitic elements of an antifuse and a pass transistor are not too different. However, an SRAM cell is much larger than an antifuse which leads to coarser interconnect architectures for SRAM-based programmable ASICs. The EPROM device lends itself to large wired-logic structures.

These differences in programming technology lead to different architectures:

- The antifuse FPGA architectures are dense and regular.
- The SRAM architectures contain nested structures of interconnect resources.
- The complex PLD architectures use long interconnect lines but achieve deterministic routing. *Key points:*
- The difference between deterministic and nondeterministic interconnect
- Estimating interconnect delay
- Elmore's constant

7.8 Problems