PROGRAMMABLE ASIC INTERCONNECT

Key concepts: programmable interconnect • raw materials: aluminum-based metallization and a line capacitance of $0.2pFcm^{-1}$

7.1 Actel ACT

7.1.1 Routing Resources

Actel FPGA routing resources								
	Horizontal tracks per channel, H	Vertical tracks per column, V	Rows, R	Columns, C	Total antifuses on each chip	$\mathbf{H}{\times}\mathbf{V}{\times}\mathbf{R}~{\times}~\mathbf{C}$		
A1010	22	13	8	44	112,000	100,672		
A1020	22	13	14	44	186,000	176,176		
A1225A	36	15	13	46	250,000	322,920		
A1240A	36	15	14	62	400,000	468,720		
A1280A	36	15	18	82	750,000	797,040		

7.1.2 Elmore's Constant

$$V_i(t) = \exp(-t/D_i)$$
; $D_i = R_{ki}C_k$
 $k = 1$

The time constant _{Di} is often called the **Elmore delay** and is different for each node.

I call D_i the **Elmore time constant** as a reminder that, if we approximate V_i by an exponential waveform, the delay of the RC tree using 0.35/0.65 trip points is approximately D_i seconds.

7.1.3 RC Delay in Antifuse Connections

Actel routing model

(a) A four-antifuse connection. L0 is an output stub, L1 and L3 are horizontal tracks, L2 is a long vertical track (LVT), and L4 is an input stub

(b) An RC-tree model. Each antifuse is modeled by a resistance and each interconnect segment is modeled by a capacitance.

 $_{D4} = 4RC_4 + 3RC_3 + 2RC_2 + RC_1$

- Two antifuses will generate a 3RC time constant
- Three antifuses a 6RC time constant
- Four antifuses gives a 10RC time constant
- Interconnect delay grows quadratically (n^2) as we increase the interconnect length and the number of antifuses, n

7.1.4 Antifuse Parasitic Capacitance

7.1.5 ACT 2 and ACT 3 Interconnect channel density • fast fuse

Actel interconnect parameters							
Parameter	A1010/A1020	A1010B/A1020B					
Technology	2.0µm, =1.0µm	1.2µm, =0.6µm					
Die height (A1010)	240mil	144mil					
Die width (A1010)	360mil	216mil					
Die area (A1010)	86,400mil ² =56M ²	31,104mil ² =56M ²					
Logic Module (LM) height (Y1)	180µm=180	108µm=180					
LM width (X)	150µm=150	90µm=150					
LM area (X×Y1)	27,000µm ² =27k ²	9,720µm²=27k ²					
Channel height (Y2)	25 tracks=287µm	25 tracks=170µm					
Channel area per LM (X×Y2)	43,050µm ² =43k ²	15,300µm²=43k ²					
LM and routing area (X×Y1+X×Y2)	$70,000 \mu m^2 = 70 k^2$	$25,000 \mu m^2 = 70 k^2$					
Antifuse capacitance	—	10 fF					
Metal capacitance	0.2pFmm ⁻¹	0.2pFmm ⁻¹					
Output stub length	1 abannala 1000 m	4 channels=1012µm					
(spans 3 LMs + 4 channels)	4 channeis=1000µm						
Output stub metal capacitance	0.34pF	0.20pF					
Output stub antifuse connec- tions	100	100					
Output stub antifuse capaci- tance	—	1.0pF					
Horiz. track length	4–44 cols.= 600–6600µm	4–44 cols.= 360–3960µm					
Horiz. track metal capacitance	0.1–1.3pF	0.07–0.8pF					
Horiz. track antifuse connec- tions	52–572 antifuses	52–572 antifuses					
Horiz. track antifuse capaci- tance	—	0.52–5.72 pF					
Long vertical track (LVT)	8–14 channels=3760–6580 µm	8–14 channels=2240–3920 µm					
LVT metal capacitance	0.08–0.13pF	0.45–0.8pF					
LVT track antifuse connections	200–350 antifuses	200–350 antifuses					
LVT track antifuse capacitance		2–3.5pF					
Antifuse resistance (ACT 1)		0.5k (typ.), 0.7k (max.)					

Actel interconnect:

An input stub (1 channel) connects to 25 antifuses An output stub (4 channels) connects to 100 (25×4) antifuses An LVT (1010, 8 channels) connects to 200 (25×8) antifuses An LVT (1020, 14 channels) connects to 350 (25×14) antifuses A four-column horizontal track connects to 52 (13×4) antifuses A 44-column horizontal track connects to 572 (13×44) antifuses

7.2 Xilinx LCA

XC3000 interconnect parameters					
Parameter	XC3020				
Technology	1.0μm, =0.5μm				
Die height	220mil				
Die width	180mil				
Die area	39,600mil ² =102M ²				
CLB matrix height (Y)	480µm=960				
CLB matrix width (X)	370µm=740				
CLB matrix area (X×Y)	17,600µm ² =710k ²				
Matrix transistor resistance, R _{P1}	0.5–1k				
Matrix transistor parasitic capacitance, C _{P1}	0.01–0.02pF				
PIP transistor resistance, R _{P2}	0.5–1k				
PIP transistor parasitic capacitance, C _{P2}	0.01–0.02pF				
Single-length line (X, Y)	370µm, 480µm				
Single-length line capacitance: C_{LX} , C_{LY}	0.075pF, 0.1pF				
Horizontal Longline (8X)	8 cols.=2960µm				
Horizontal Longline metal capacitance, C _{LL}	0.6pF				

(d) The equivalent circuit for the connection between nets 6 and 20 using the matrix

(e) A view of the interconnect at a Programmable Interconnection Point (PIP)

(f) and (g) The equivalent schematic of a PIP connection (h) The complete RC delay path

7.3 Xilinx EPLD

(a) A simplified block diagram of the UIM. The UIM bus width, *n*, varies from 68 (XC7236) to 198 (XC73108)

(b) The UIM is actually a large programmable AND array

(c) The parasitic capacitance of the EPROM cell

7.4 Altera MAX 5000 and 7000

7.5 Altera MAX 9000

7.6 Altera FLEX

(a) The row and column FastTrack interconnect. The chip shown, with 4 rows \times 21 columns, is the same size as the EPF8820

(b) A simplified diagram of the interconnect architecture showing the connections between the FastTrack buses and a LAB. Boxes A, B, and C represent the bus-to-bus connections

7.7 Summary

The RC product of the parasitic elements of an antifuse and a pass transistor are not too different. However, an SRAM cell is much larger than an antifuse which leads to coarser interconnect architectures for SRAM-based programmable ASICs. The EPROM device lends itself to large wired-logic structures.

These differences in programming technology lead to different architectures:

- The antifuse FPGA architectures are dense and regular.
- The SRAM architectures contain nested structures of interconnect resources.
- The complex PLD architectures use long interconnect lines but achieve deterministic routing. *Key points:*
- The difference between deterministic and nondeterministic interconnect
- Estimating interconnect delay
- Elmore's constant

7.8 Problems