ASIC LIBRARY DESIGN

$$
\bigotimes
$$

Key concepts: Tau, logical effort, and the prediction of delay • Sizes of cells, and their drive strengths • Cell importance • The difference between gate-array macros, standard cells, and datapath cells

ASIC design uses predefined and precharacterized cells from a library—so we need to design or buy a cell library. A knowledge of ASIC library design is not necessary but makes it easier to use library cells effectively.

3.1 Transistors as Resistors

 $-t_{PDF}$ 0.35*VDD* = *VDD* exp ––––––––––––––––– *Rpd* (*Cout* + *C^p*)

An output trip point of 0.35 is convenient because $ln(1/0.35)=1.04$ 1 and thus $t_{PDF} = R_{pd}(C_{out} + C_p)$ ln (1/0.35) $R_{pd}(C_{out} + C_p)$ For output trip points of 0.1/0.9 we multiply by $-\ln(0.1) = 2.3$, because exp $(-2.3) = 0.100$

- Input trip point of 0.5 output trip points are 0.35 (falling) and 0.65 (rising)
- The linear prop–ramp model: falling propagation delay, t_{PDF} $R_{pd}(C_p+C_{out})$

3.2 Transistor Parasitic Capacitance

Transistor parasitic capacitance

- \bullet Constant overlap capacitances C_{GSOV} , C_{GDOV} , and C_{GBOV}
- Variable capacitances C_{GS} , C_{GB} , and C_{GD} depend on the operating region
- C_{BS} and C_{BD} are the sum of the area (C_{BSJ} , C_{BDJ}), sidewall (C_{BSSW} , C_{BDSW}), and channel edge (*CBSJ*GATE, *CBDJ*GATE) capacitances

(e) (f) (h)

(g)

• L_D is the lateral diffusion • T_{FOX} is the field-oxide thickness

- \bullet ID ($l_{D\text{S}}$), VGS, VDS, VBS, VTH (V_t), and VDSAT ($V_{D\text{S}(\text{sat})}$) are DC parameters
- GM, GDS, and GMB are small-signal conductances (corresponding to *IDS*/ *VGS*, *IDS*/ *VDS*, and *IDS*/ *VBS*, respectively)

3.2.1 Junction Capacitance

• Junction capacitances, C_{BD} and C_{BS} , consist of two parts: junction area and sidewall

• Both C_{BD} and C_{BS} have different physical characteristics with parameters: CJ and MJ for the junction, CJSW and MJSW for the sidewall, and PB is common

• C_{BD} and C_{BS} depend on the voltage across the junction (V_{DB} and V_{SB})

• The sidewalls facing the channel ($C_{BS,IGATE}$ and $C_{BD,IGATE}$) are different from the sidewalls that face the field

• It is a mistake to exclude the gate edge assuming it is in the rest of the model—it is not

• In HSPICE there is a separate mechanism to account for the channel edge capacitance (using parameters ACM and CJGATE)

3.2.2 Overlap Capacitance

- The overlap capacitance calculations for C_{GSOV} and C_{GDOV} account for lateral diffusion
- SPICE parameter $LD=5E-08$ or $L_D=0.05 \mu m$

• Not all SPICE versions use the equivalent parameter for width reduction, WD, in calculating C_{GDOV}

• Not all SPICE versions subtract W_D to form W_{FFF}

3.2.3 Gate Capacitance

• The gate capacitance depends on the operating region

• The gate–source capacitance C_{GS} varies from zero (off) to 0.5C_O in the linear region to $(2/3)C_{\Omega}$ in the saturation region

• The gate–drain capacitance C_{GD} varies from zero (off) to 0.5C_O (linear region) and back to zero (saturation region)

• The gate–bulk capacitance C_{GB} is two capacitors in series: the fixed gate-oxide capacitance, C_{Ω} , and the variable depletion capacitance, C_{S}

• As the transistor turns on the channel shields the bulk from the gate—and *C_{GB}* falls to zero

• Even with V_{GS} =0V, the depletion width under the gate is finite and thus C_{GB} is less than $C_{\rm O}$

3.2.4 Input Slew Rate

Parasitic capacitance measurement

(a) All devices in this circuit include parasitic capacitance

(b) This circuit uses linear capacitors to model the parasitic capacitance of m9/10.

• The load formed by the inverter ($m5$ and $m6$) is modeled by a 0.0335pF capacitor ($c2$)

• The parasitic capacitance due to the overlap of the gates of m3 and m4 with their source, drain, and bulk terminals is modeled by a $0.01pF$ capacitor ($c3$)

• The effect of the parasitic capacitance at the drain terminals of m3 and m4 is modeled by a 0.025pF capacitor $(c4)$

(c) Comparison of (a) and (b). The delay (1.22–1.135=0.085ns) is equal to *tPDf* for the inverter m3/4

(d) An exact match would have both waveforms equal at the 0.35 trip point (1.05V).

3.3 Logical Effort

We extend the prop–ramp model with a "catch all" term, t_q , that includes:

- delay due to internal parasitic capacitance
- the time for the input to reach the switching threshold of the cell
- the dependence of the delay on the slew rate of the input waveform

 $t_{PD} = R(C_{\text{out}} + C_p) + t_q$ We can **scale** any logic cell by a scaling factor *s*: *tPD* = (*R*/*s*)·(*C*out + *sC^p*) + *st^q*

$$
t_{PD} = RC \xrightarrow{C_{\text{out}}} + RC_p + st_q
$$

$$
C_{\text{in}}
$$

 $(RC)(C_{\text{out}}/C_{\text{in}}) + RC_p + st_q$ Normalizing the delay: $d =$ —————————————————————————— = $f + p + q$

The time constant **tau**, $= R_{inv} C_{inv}$, is a basic property of any CMOS technology

The delay equation is the sum of three terms, $d = f + p + q$ or delay =**effort delay** + **parasitic delay** + **nonideal delay**

The effort delay *f* is the product of **logical effor**t, *g*, and **electrical effort**, *h: f* = *gh*

Thus, delay = logical effort \times electrical effort + parasitic delay + nonideal delay

- *R* and *C* will change as we scale a logic cell, but the *RC* product stays the same
- Logical effort is independent of the size of a logic cell
- We can find logical effort by scaling a logic cell to have the same drive as a 1X minimum-size inverter
- Then the logical effort, g, is the ratio of the input capacitance, C_{in}, of the 1X logic cell to *C*inv

(a) Find the input capacitance, C_{inv}, looking into the input of a minimum-size inverter in terms of the gate capacitance of a minimum-size device

(b) Size a logic cell to have the same drive strength as a minimum-size inverter (assuming a logic ratio of 2). The input capacitance looking into one of the logic-cell terminals is then *C*in

(c) The logical effort of a cell is *C*in/ *C*inv

The *h* depends only on the load capacitance C_{out} connected to the output of the logic cell and the input capacitance of the logic cell, *C*in; thus

electrical effort $h = C_{\text{out}} / C_{\text{in}}$

parasitic delay $p = RC_p'$ (the parasitic delay of a minimum-size inverter is: $p_{\text{inv}} = C_p'$ *C*inv)

nonideal delay $q = st_q/$

3.3.1 Predicting Delay

- Example: predict the delay of a three-input NOR logic cell
- 2X drive
- driving a net with a fanout of four

• 0.3pF total load capacitance (input capacitance of cells we are driving plus the interconnect)

- $p=3p_{\text{inv}}$ and $q=3q_{\text{inv}}$ for this cell
- the input gate capacitance of a 1X drive, three-input NOR logic cell is equal to gC_{inv}
- for a 2X logic cell, $C_{\text{in}} = 2gC_{\text{inv}}$

Cout *g*·(0.3 pF) (0.3 pF) *gh* =*g* ––––– = ––––––––––– = –––––––––––– (Notice *g* cancels out in this equation) C_{in} 2*g*C_{inv} (2)·(0.036 pF)

The delay of the NOR logic cell, in units of , is thus

$$
d = gh + p + q = 0.3 \times 10^{-12} + (3) \cdot (1) + (3) \cdot (1.7)
$$

(2) \cdot (0.036 × 10⁻¹²)

 $= 4.1666667 + 3 + 5.1$

 $= 12.266667$ equivalent to an absolute delay, t_{PD} 12.3 \times 0.06ns=0.74ns

The delay for a 2X drive, three-input NOR logic cell is $t_{PD} = (0.03 + 0.72C_{out} + 0.60)$ ns

With $C_{\text{out}} = 0.3pF$, $t_{PD} = 0.03 + (0.72) \cdot (0.3) + 0.60 = 0.846$ ns compared to our prediction of 0.74ns

3.3.2 Logical Area and Logical Efficiency

3.3.3 Logical Paths

path delay $D = g_i h_i +$ $+ q_i$ *i* path *i* path

3.3.5 Optimum Delay

path logical effort *G* = *gⁱ i* path *Cout* **path electrical effort** $H = h_i$ *i* **path** C_{in} *C*out is the load and *C*in is the first input capacitance on the path **path effort** *F* = *GH* **optimum effort delay** $f^{\wedge}{}_{i} = g_{i}h_{i}$ $= F^{1/N}$ **optimum path delay** *D^* = *NF*1/*^N* = *N*(*GH*) 1/*N* + *P* + *Q* $P + Q =$ $p_i + h_i$ *i* path

Stage effort **h h/(ln h)** 1.5 3.7 2 2.9 2.7 2.7 3 2.7 4 2.9 5 3.1 10 4.3 0 2 4 6 8 10 12 1 2 3 4 5 6 7 8 9 10 = *h*/(ln *h*) stage electrical effort, *h=H* 1/*^N* Delay of *N* inverter stages driving a path effort of $H = C_{\text{out}}/C_{\text{in}}$. C_{in} $\overline{\mathsf{T}}$ $\overline{\mathsf{T}}$ $\overline{\mathsf{T}}$ $\overline{\mathsf{C}}$ $\overline{\mathsf{C}}$ $\overline{\mathsf{T}}$ $\overline{\mathsf{C}}$ $\overline{\mathsf{C}}$ 1 2 N N *h* delay/(ln *H*) *h*

3.3.6 Optimum Number of Stages

• Chain of *N* inverters each with equal stage effort, *f=gh*

• Total path delay is *Nf=Ngh=Nh*, since *g*=1 for an inverter

- \bullet To drive a path electrical effort *H, h^N=H*, or *N*n*h=\nH*
- Delay, *Nh* = *h*ln*H*/ln*h*
- Since ln*H* is fixed, we can only vary *h*/ln(*h*)
- *h*/ln(*h*) is a shallow function with a minimum at *h*=e 2.718
- Total delay is *N*e=eln *H*

3.4 Library-Cell Design

- A big problem in library design is dealing with design rules
- Sometimes we can **waive** design rules
- **Symbolic layout**, **sticks** or **logs** can decrease the library design time (9 months for Virtual Silicon–currently the most sophisticated standard-cell library)
- Mapping symbolic layout uses 10–20 percent more area (5–10 percent with compaction)
- Allowing 45° layout decreases silicon area (some companies do not allow 45° layout)

3.5 Library Architecture

3.6 Gate-Array Design

Key words: gate-array base cell (or base cell) • gate-array base (or base) • horizontal tracks • vertical track • gate isolation • isolator transistor • oxide isolation • oxide-isolated gate array

3.7 Standard-Cell Design

- A D flip-flop standard cell
- **Performance-optimized library Area-optimized library**
- Wide **power buses** and transistors for a performance-optimized cell
- **Double-entry cell** intended for a 2LM process and channel routing
- Five **connectors** run vertically through the cell on m2
- The extra short vertical metal line is an internal **crossover**
- **bounding box** (BB) **abutment box** (AB) **physical connector abut**

3.8 Datapath-Cell Design

(a)

A narrow datapath

(a) Implemented in a two-level metal process

(b) Implemented in a three-level metal process

(b)

3.9 Summary

Key concepts:

- Tau, logical effort, and the prediction of delay
- Sizes of cells, and their drive strengths
- Cell importance
- The difference between gate-array macros, standard cells, and datapath cells