ASIC LIBRARY DESIGN

3

Key concepts: Tau, logical effort, and the prediction of delay • Sizes of cells, and their drive strengths • Cell importance • The difference between gate-array macros, standard cells, and datapath cells

ASIC design uses predefined and precharacterized cells from a library—so we need to design or buy a cell library. A knowledge of ASIC library design is not necessary but makes it easier to use library cells effectively.

3.1 Transistors as Resistors

 $-t_{PDf}$ $0.35 V_{DD} = V_{DD} \exp - \frac{-t_{PDf}}{R_{pd} (C_{out} + C_p)}$

An output trip point of 0.35 is convenient because $\ln(1/0.35)=1.04$ 1 and thus $t_{PDf} = R_{pd}(C_{out} + C_p) \ln(1/0.35)$ $R_{pd}(C_{out} + C_p)$ For output trip points of 0.1/0.9 we multiply by $-\ln(0.1) = 2.3$, because exp (-2.3) = 0.100

- Linearize the switch resistance Pull-up resistance, R_{pu} pull-down resistance, R_{pd}
- Measure and compare the input, v(in1) and output, v(out1)
- Input trip point of 0.5 output trip points are 0.35 (falling) and 0.65 (rising)
- The linear prop–ramp model: falling propagation delay, $t_{PDf} R_{pd}(C_p + C_{out})$

- C_{BS} and C_{BD} are the sum of the area (C_{BSJ} , C_{BDJ}), sidewall (C_{BSSW} , C_{BDSW}), and channel edge ($C_{BSJGATE}$, $C_{BDJGATE}$) capacitances
- L_D is the lateral diffusion T_{FOX} is the field-oxide thickness

NAME	ml	m2
MODEL	CMOSN	CMOSP
ID	7.49E-11	-7.49E-11
VGS	0.00E+00	-3.00E+00
VDS	3.00E+00	-4.40E-08
VBS	0.00E+00	0.00E+00
VTH	4.14E-01	-8.96E-01
VDSAT	3.51E-02	-1.78E+00
GM	1.75E-09	2.52E-11
GDS	1.24E-10	1.72E-03
GMB	6.02E-10	7.02E-12
CBD	2.06E-15	1.71E-14
CBS	4.45E-15	1.71E-14
CGSOV	1.80E-15	2.88E-15
CGDOV	1.80E-15	2.88E-15
CGBOV	2.00E-16	2.01E-16
CGS	0.00E+00	1.10E-14
CGD	0.00E+00	1.10E-14
CGB	3.88E-15	0.00E+00

- ID (I_{DS}), VGS, VDS, VBS, VTH (V_t), and VDSAT ($V_{DS(sat)}$) are DC parameters
- GM, GDS, and GMB are small-signal conductances (corresponding to I_{DS}/V_{GS} , I_{DS}/V_{DS} , and I_{DS}/V_{BS} , respectively)

PSpice	Equation	Values ¹ for V_{GS} =0V, V_{DS} =3V, V_{SB} =0V
CBD		$C_{BD} = 1.855 \times 10^{-13} + 2.04 \times 10^{-16} = 2.06 \times$
	$C_{BD} = C_{BDJ} + C_{BDSW}$	10 ⁻¹³ F
	$C_{BDJ} + A_D C_J (1 + V_{DB}/B)^{-mJ} (B = PB)$	C_{BDJ} = (4.032 × 10 ⁻¹⁵)(1 + (3/1)) ^{-0.56} = 1.86 × 10 ⁻¹⁵ F
	$C_{BDSW} = P_D C_{JSW} (1 + V_{DB}/B)^{-mJSW}$ (P_D may or may not include channel edge)	C_{BDSW} = (4.2 × 10 ⁻¹⁶)(1 + (3/1)) ^{-0.5} = 2.04 × 10 ⁻¹⁶ F
CBS	$C_{BS} = C_{BSJ} + C_{BSSW}$	$C_{BS} = 4.032 \times 10^{-15} + 4.2 \times 10^{-16} = 4.45 \times 10^{-15} \text{ F}$
	C_{BSJ} + A _S C _J (1 + V _{SB} /B) ^{-mJ}	$A_{S} C_{J} = (7.2 \times 10^{-15})(5.6 \times 10^{-4}) = 4.03 \times 10^{-15} F$
	$C_{BSSW} = P_S C_{JSW} (1 + V_{SB}/B)^{-mJSW}$	$P_{S}C_{JSW} = (8.4 \times 10^{-6})(5 \times 10^{-11}) = 4.2 \times 10^{-16} \text{ F}$
CGSOV	$C_{GSOV}=W_{EFF}C_{GSO}$; $W_{EFF}=W-2W$ D	$C_{GSOV} = (6 \times 10^{-6})(3 \times 10^{-10}) = 1.8 \times 10^{-16} \text{ F}$
CGDOV	$C_{GDOV} = W_{EFF}C_{GSO}$	$C_{GDOV} = (6 \times 10^{-6})(3 \times 10^{-10}) = 1.8 \times 10^{-15} \text{ F}$
CGBOV	$C_{GBOV} = L_{EFF}C_{GBO}$; $L_{EFF} = L - 2L_{D}$	$C_{GDOV} = (0.5 \times 10^{-6})(4 \times 10^{-10}) = 2 \times 10^{-16} \text{ F}$
CGS	$C_{GS}/C_{O} = 0$ (off), 0.5 (lin.), 0.66 (sat.) C_{O} (oxide capacitance) = $W_{EF}L_{EFF}$ ox / T_{ox}	$C_{O} = (6 \times 10^{-6})(0.5 \times 10^{-6})(0.00345) = 1.03 \times 10^{-14} \text{ F}$ $C_{GS} = 0.0 \text{ F}$
CGD	C _{GD} /C _O = 0 (off), 0.5 (lin.), 0 (sat.)	$C_{\rm GD} = 0.0 \; {\rm F}$
CGB	$C_{GB} = 0$ (on), = C _O in series with C_{GS} (off)	$C_{GB} = 3.88 \times 10^{-15}$ F, C_{S} =depletion capacitance
¹ Input	VTO=0.65 DELTA=0.7 + LD=5E-08 KP=2E-04 UO=550 T NSUB=1.4E+17 NFS=6E+11 + VMAX=2E+05 ETA=3.7E-02 KAP CGSO=3.0E-10 CGBO=4.0E-10 + CJ=5.6E-04 MJ=0.56 CJSW=5E	PA=2.9E-02 CGDO=3.0E-10

3.2.1 Junction Capacitance

• Junction capacitances, C_{BD} and C_{BS} , consist of two parts: junction area and sidewall

• Both C_{BD} and C_{BS} have different physical characteristics with parameters: CJ and MJ for the junction, CJSW and MJSW for the sidewall, and PB is common

• C_{BD} and C_{BS} depend on the voltage across the junction (V_{DB} and V_{SB})

• The sidewalls facing the channel ($C_{BSJGATE}$ and $C_{BDJGATE}$) are different from the sidewalls that face the field

• It is a mistake to exclude the gate edge assuming it is in the rest of the model-it is not

• In HSPICE there is a separate mechanism to account for the channel edge capacitance (using parameters ACM and CJGATE)

3.2.2 Overlap Capacitance

- The overlap capacitance calculations for C_{GSOV} and C_{GDOV} account for lateral diffusion
- SPICE parameter LD=5E-08 or LD=0.05 µm

- Not all SPICE versions use the equivalent parameter for width reduction, $\mathtt{WD},$ in calculating C_{GDOV}

Not all SPICE versions subtract W_D to form W_{EFF}

3.2.3 Gate Capacitance

• The gate capacitance depends on the operating region

• The gate–source capacitance C_{GS} varies from zero (off) to $0.5C_{O}$ in the linear region to (2/3) C_{O} in the saturation region

• The gate–drain capacitance C_{GD} varies from zero (off) to 0.5C_O (linear region) and back to zero (saturation region)

• The gate–bulk capacitance C_{GB} is two capacitors in series: the fixed gate-oxide capacitance, C_{O} , and the variable depletion capacitance, C_{S}

• As the transistor turns on the channel shields the bulk from the gate—and C_{GB} falls to zero

• Even with V_{GS} =0V, the depletion width under the gate is finite and thus C_{GB} is less than C_O

3.2.4 Input Slew Rate

Parasitic capacitance measurement

(a) All devices in this circuit include parasitic capacitance

(b) This circuit uses linear capacitors to model the parasitic capacitance of m9/10.

• The load formed by the inverter (m5 and m6) is modeled by a 0.0335pF capacitor (c2)

• The parasitic capacitance due to the overlap of the gates of m_3 and m_4 with their source, drain, and bulk terminals is modeled by a 0.01pF capacitor (c3)

• The effect of the parasitic capacitance at the drain terminals of m3 and m4 is modeled by a 0.025pF capacitor (c4)

(c) Comparison of (a) and (b). The delay (1.22-1.135=0.085ns) is equal to t_{PDf} for the inverter m3/4

(d) An exact match would have both waveforms equal at the 0.35 trip point (1.05V).

3.3 Logical Effort

We extend the prop-ramp model with a "catch all" term, t_{q} , that includes:

- delay due to internal parasitic capacitance
- the time for the input to reach the switching threshold of the cell
- the dependence of the delay on the slew rate of the input waveform

 $t_{PD} = R(C_{out} + C_p) + t_q$ We can **scale** any logic cell by a scaling factor s: $t_{PD} = (R/s) \cdot (C_{out} + sC_p) + st_q$

$$t_{PD} = RC - C_{out} + RC_p + st_q$$
$$C_{in}$$

The time constant **tau**, $= R_{inv} C_{inv}$, is a basic property of any CMOS technology

The delay equation is the sum of three terms, d = f + p + q or delay = effort delay + parasitic delay + nonideal delay

The effort delay f is the product of **logical effort**, g, and **electrical effort**, h: f = gh

Thus, delay = logical effort × electrical effort + parasitic delay + nonideal delay

• R and C will change as we scale a logic cell, but the RC product stays the same

• Logical effort is independent of the size of a logic cell

• We can find logical effort by scaling a logic cell to have the same drive as a 1X minimum-size inverter

• Then the logical effort, g, is the ratio of the input capacitance, C_{in} , of the 1X logic cell to C_{inv}

(a) Find the input capacitance, C_{inv} , looking into the input of a minimum-size inverter in terms of the gate capacitance of a minimum-size device

(b) Size a logic cell to have the same drive strength as a minimum-size inverter (assuming a logic ratio of 2). The input capacitance looking into one of the logic-cell terminals is then C_{in}

(c) The logical effort of a cell is C_{in}/C_{inv}

The *h* depends only on the load capacitance C_{out} connected to the output of the logic cell and the input capacitance of the logic cell, C_{in} ; thus

electrical effort $h = C_{out} / C_{in}$

parasitic delay $p = RC_p$ (the parasitic delay of a minimum-size inverter is: $p_{inv} = C_p / C_{inv}$)

nonideal delay $q = st_q / dt_q$

Cell effort, paras	sitic delay, and no	nideal delay (in ur	nits of) for single-	stage CMOS cells
Cell	Cell effort (logic ratio=2)	Cell effort (logic ratio=r)	Parasitic delay/	Nonideal delay/
inverter	1 (by definition)	1 (by definition)	p_{inv} (by definition)	q_{inv} (by definition)
n-input NAND	(<i>n</i> +2)/3	(<i>n</i> + <i>r</i>)/(<i>r</i> +1)	np _{inv}	nq _{inv}
n-input NOR	(2 <i>n</i> +1)/3	(<i>nr</i> +1)/(<i>r</i> +1)	np _{inv}	nq _{inv}

ASICS... THE COURSE

3.3.1 Predicting Delay

- Example: predict the delay of a three-input NOR logic cell
- 2X drive
- driving a net with a fanout of four

 0.3pF total load capacitance (input capacitance of cells we are driving plus the interconnect)

- $p=3p_{inv}$ and $q=3q_{inv}$ for this cell
- the input gate capacitance of a 1X drive, three-input NOR logic cell is equal to gCinv
- for a 2X logic cell, $C_{in} = 2gC_{inv}$

 $gh = g \quad \frac{C_{\text{out}}}{C_{\text{in}}} = \frac{g \cdot (0.3 \text{ pF})}{2gC_{\text{inv}}} = \frac{(0.3 \text{ pF})}{(2) \cdot (0.036 \text{ pF})}$ (Notice g cancels out in this equation)

The delay of the NOR logic cell, in units of , is thus

$$d = gh + p + q = \frac{0.3 \times 10^{-12}}{(2) \cdot (0.036 \times 10^{-12})} + (3) \cdot (1) + (3) \cdot (1.7)$$

= 4.1666667 + 3 + 5.1

= 12.266667 equivalent to an absolute delay, t_{PD} 12.3×0.06ns=0.74ns

The delay for a 2X drive, three-input NOR logic cell is $t_{PD} = (0.03 + 0.72C_{out} + 0.60)$ ns

With C_{out} =0.3pF, t_{PD} = 0.03 + (0.72)·(0.3) + 0.60 = 0.846 ns compared to our prediction of 0.74ns

3.3.2 Logical Area and Logical Efficiency

3.3.3 Logical Paths

path delay $D = g_i h_i + (p_i + q_i)$ *i* path *i* path

3.3.4 Multistage Cells

3.3.5 Optimum Delay

path logical effort G = gi i path C_{out} h_i path electrical effort H =Cin i path C_{out} is the load and C_{in} is the first input capacitance on the path path effort F = GH $f^{n}_{i} = g_{i}h_{i} \qquad = F^{1/N}$ optimum effort delay $D^{\Lambda} = NF^{1/N} = N(GH)^{1/N} + P + Q$ optimum path delay P + Q = $p_i + h_i$

> i path

3.3.6 Optimum Number of Stages

• Chain of *N* inverters each with equal stage effort, *f=gh*

• Total path delay is Nf=Ngh=Nh, since g=1 for an inverter

- To drive a path electrical effort H, $h^N = H$, or $N \ln h = \ln H$
- Delay, Nh = hln H/ln h
- Since In*H* is fixed, we can only vary *h*/In(*h*)
- $h/\ln(h)$ is a shallow function with a minimum at h=e 2.718
- Total delay is *N*e=eIn *H*

3.4 Library-Cell Design

- A big problem in library design is dealing with design rules
- Sometimes we can **waive** design rules
- **Symbolic layout**, **sticks** or **logs** can decrease the library design time (9 months for Virtual Silicon–currently the most sophisticated standard-cell library)
- Mapping symbolic layout uses 10–20 percent more area (5–10 percent with compaction)
- Allowing 45° layout decreases silicon area (some companies do not allow 45° layout)

3.5 Library Architecture

3.6 Gate-Array Design

Key words: gate-array base cell (or base cell) • gate-array base (or base) • horizontal tracks • vertical track • gate isolation • isolator transistor • oxide isolation • oxide-isolated gate array

(c) The base cell is 21 tracks high (high for a modern cell library)

3.7 Standard-Cell Design

- A D flip-flop standard cell
- Performance-optimized library Area-optimized library
- Wide power buses and transistors for a performance-optimized cell
- Double-entry cell intended for a 2LM process and channel routing
- Five connectors run vertically through the cell on m2
- The extra short vertical metal line is an internal crossover
- bounding box (BB) abutment box (AB) physical connector abut

3.8 Datapath-Cell Design

(b)

1			S ALL AND	is in the			and shares	Street als	the second se
			George 1 (* aussi i conficio		galer singeriger Diserte di Jurian			-	-11.18
-	1.0	- Speakers			all ^{e 1} Shaderholes	ning block		(Station)	1.Sat
for a r	ifter berter frig	111 2 1	r start	n-1 -1	ije na zipne s	- Carlinsian - S		P-212-977-1	215 12
. Winderstein wiederstein	an a		i i stille Startyt (s		in the later Later 94, Auto	in de la compañía de Compañía de la compañía de la compañí	and There parts (Joan)		
					ann an stàite Ann an stàite	interation second and an analysis	n da arten Konere (Kone		

A narrow datapath

(a) Implemented in a two-level metal process

(b) Implemented in a three-level metal process

3.9 Summary

Key concepts:

- Tau, logical effort, and the prediction of delay
- Sizes of cells, and their drive strengths
- Cell importance
- The difference between gate-array macros, standard cells, and datapath cells