Programming Embedded Systemsin C and C++

Programming

Embedded
Systems

e € el e

Michael Barr
Publisher: O'Reilly

First Edition January 1999
ISBN: 1-56592-354-5, 191 pages

This book introduces embedded systemsto C and C++ programmers. Topicsinclude testing memory devices,
writing and erasing Flash memory, verifying nonvolatile memory contents, controlling on-chip peripherals, device
driver design and implementation, optimizing embedded code for size and speed, and making the most of C++
without a performance penalty.

Why | Wrote This Book

I once heard an estimate that in the United States there are eight microprocessor-based devices for every person. At
the time, | wondered how this could be. Are therereally that many computers surrounding us? Later, when | had
moretimeto think about it, | started to make alist of the things | used that probably contained a microprocessor.
Within five minutes, my list contained ten items: television, stereo, coffee maker, alarm clock, VCR, microwave,
dishwasher, remote control, bread machine, and digital watch. And those were just my personal possessions-|
quickly came up with ten more devices | used at work.

Therevelation that every one of those products contains not only a processor, but also software, was not far behind.
At last, | knew what | wanted to do with my life. | wanted to put my programming skillsto work developing
embedded computer systems. But how would | acquire the necessary knowledge? At this point, | wasin my last year
of college. There hadn't been any classes on embedded systems programming so far, and | wasn't able to find any
listed in the course catal og.

Fortunately, when | graduated | found a company that |et me write embedded software while | was still learning. But
| was pretty much on my own. The few people who knew about embedded software were usually too busy to explain
thingsto me, so | searched high and low for a book that would teach me. Inthe end, | found | had to learn
everything myself. | never found that book, and | always wondered why no one had written it.

Now I've decided to write that book myself. And in the process, I've discovered why no one had done it before. One
of the hardest things about this subject is knowing when to stop writing. Each embedded system is unique, and |
have |earned that there is an exception to every rule. Nevertheless, | have tried to boil the subject down to its essence
and present only those things that programmers definitely need to know about embedded systems.

Intended Audience

Thisisabook about programming embedded systemsin C and C++. As such, it assumes that the reader already has
some programming experience and is at least familiar with the syntax of these two languages. It also helpsif you
have some familiarity with basic data structures, such aslinked lists. The book does not assume that you have a
great deal of knowledge about computer hardware, but it does expect that you are willing to learn alittle bit about
hardware along theway. Thisis, after all, a part of the job of an embedded programmer.

While writing this book, | had two types of readersin mind. The first reader is abeginner-much as | waswhen |
graduated from college. She has a background in computer science or engineering and afew years of programming
experience. The beginner isinterested in writing embedded software for aliving but is not sure just how to get
started. After reading thefirst five chapters, she will be able to put her programming skillsto work developing
simple embedded programs. The rest of the book will act as her reference for the more advanced topics encountered
in the coming months and years of her career.

The second reader is already an embedded systems programmer. She is familiar with embedded hardware and
knows how to write software for it but islooking for areference book that explains key topics. Perhaps the
embedded systems programmer has experience only with assembly language programming and isrelatively new to
C and C++. In that case, the book will teach her how to use those languages in an embedded system, and the later
chapters will provide the advanced material she requires.

Whether you fall into one of these categories or not, | hope this book provides the information you are looking for in
aformat that isfriendly and easily accessible.

Organization

The book contains ten chapters, one appendix, aglossary, and an annotated bibliography. The ten chapters can be
divided quite nicely into two parts. Thefirst part consists of Chapter 1 through Chapter 5 and isintended mainly for
newcomers to embedded systems. These chapters should be read in their entirety and in the order that they appear.
Thiswill bring you up to speed quickly and introduce you to the basics of embedded software development. After
completing Chapter 5, you will be ready to develop small pieces of embedded software on your own.
The second part of the book consists of Chapter 6 through Chapter 10 and discusses advanced topics that are of
interest to inexperienced and experienced embedded programmers alike. These chapters are mostly self-contained
and can be read in any order. In addition, Chapter 6 through Chapter 9 contain example programs that might be
useful to you on afuture embedded software project.
- Chapter 1 introduces you to embedded systems. It defines the term, gives examples, and explainswhy C
and C++ were selected as the languages of the book.
Chapter 2 walks you through the process of writing a simple embedded program in C. Thisis roughly the
equivalent of the "Hello, World" example presented in most other programming books.
Chapter 3 introduces the software development tools you will be using to prepare your programs for
execution by an embedded processor.
Chapter 4 presents various techniques for loading your executable programs into an embedded system. It
al so describes the debugging tool s and techniques that are available to you.
Chapter 5 outlines a simple procedure for learning about unfamiliar hardware platforms. After completing
this chapter, you will be ready to write and debug simple embedded programs.
Chapter 6 tells you everything you need to know about memory in embedded systems. The chapter includes
source code implementations of memory tests and Flash memory drivers.
Chapter 7 explains device driver design and implementation techniques and includes an example driver for
acommon peripheral called atimer.
Chapter 8 includes avery basic operating system that can be used in any embedded system. It also helps
you decideif you'll need an operating system at all and, if so, whether to buy one or write your own.
Chapter 9 expands on the device driver and operating system concepts presented in the previous chapters. It
explains how to control more complicated peripherals and includes a complete exampl e application that
pullstogether everything you've learned so far.
Chapter 10 explains how to simultaneously increase the speed and decrease the memory requirements of
your embedded software. Thisincludes tips for taking advantage of the most beneficial C++ features
without paying a significant performance penalty.
Throughout the book, | have tried to strike a balance between specific examples and general knowledge. Whenever
possible, | have eliminated minor details in the hopes of making the book more readable. Y ou will gain the most
from the book if you view the examples, as| do, only astools for understanding important concepts. Try not to get
bogged down in the details of any one circuit board or chip. If you understand the general concepts, you should be
able to apply them to any embedded system you encounter.

Conventions, Typographical and Otherwise

The following typographical conventions are used throughout the book:
Italic

is used for the names of files, functions, programs, methods, routines, and options when they

appear in the body of a paragraph. Italic is aso used for emphasis and to introduce new
terms.

Constant Width

is used in the examples to show the contents of files and the output of commands. In the body
of a paragraph, this style is used for keywords, variable names, classes, objects, parameters,
and other code snippets.

Constant Wdth Bold
is used in the examples to show commands and options that you type literaly.
is used in the examples to show commands and options that you type literaly.

This symbol is used to indicate a tip, suggestion, or genera note.

LR
"
1l

Ty

This symboal is used to indicate a warning.

=

Other conventions relate to gender and roles. With respect to gender, | have purposefully
alternated my use of the terms "he" and "she" throughout the book. "He" is used in the odd-
numbered chapters and "she" in al of the even-numbered ones.

With respect to roles, | have occasionally distinguished between the tasks of hardware engineers,
embedded software engineers, and application programmers in my discussion. But these titles
refer only to roles played by individual engineers, and it should be noted that it can and often
does happen that one individual fills more than one of these roles.

Obtaining the Examples Online

This book includes many source code listing, and all but the most trivial one-liners are available online. These
examples are organized by chapter number and include build instructions (makefiles) to help you recreate each of
the executables. The complete archiveisavailable viaFTP, at
ftp://ftp.oreilly.com/pub/examples/nutshell/embedded_c/.

How to Contact Us

We have tested and verified al the information in this book to the best of our ability, but you may find that features
have changed (or even that we have made mistakes!). Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

OReilly & Associates

1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (FAX)

Y ou can also send us messages electronically. To be put on the mailing list or request a catal og, send email to:
info@oreilly.com

To ask technical questions or comment on the book, send email to:
bookqguestions@oreilly.com

We have aweb site for the book, where we'll list examples, errata, and any plans for future editions. Y ou can access
this page at:

http://www.oreilly.com/catal og/embsys/

For more information about this book and others, see the O'Reilly web site:
http://www.oreilly.com

Personal Comments and Acknowledgments

Aslong as| can remember | have been interested in writing a book or two. But now that | have done so, | must
confessthat | was naive when | started. | had no idea how much work it would take, nor how many other people
would have to get involved. Another thing that surprised me was how easy it wasto find awilling publisher. | had
expected that to be the hard part.

From proposal to publication, this project has taken almost two years to complete. But, then, that's mostly because |
worked a full-time job throughout and tried to maintain as much of my social life as possible. Had | known when |
started that 1'd still be agonizing over final drafts at thislate date, | would have probably quit working and finished
the book more quickly. But continuing to work has been good for the book (as well as my bank account!). It has
allowed me the luxury of discussing my ideas regularly with a complete cast of embedded hardware and software
professionals. Many of these same folks have also contributed to the book more directly by reviewing drafts of some
or all of the chapters.

| am indebted to all of the following people for sharing their ideas and reviewing my work: Toby Bennett, Paul
Cabler (and the other great folks at Arcom), Mike Corish, Kevin D'Souza, Don Davis, Steve Edwards, Mike Ficco,
Barbara Flanagan, Jack Ganssle, Stephen Harpster (who christened me "King of the Sentence Fragment" after
reading an early draft), Jonathan Harris, Jim Jensen, Mark Kohler, Andy Kollegger, Jeff Mallory, lan Miller, Henry
Neugauss, Chris Schanck, Brian Silverman, John Snyder, Jason Steinhorn (whose constant stream of grammatical
and technical critiques have made this book worth reading), lan Taylor, Lindsey Vereen, Jeff Whipple, and Greg

Y oung.

I would also like to thank my editor, Andy Oram. Without his enthusiasm for my initial proposal, overabundant
patience, and constant encouragement, this book would never have been completed.

Finally, I'd like to thank Alpa Dhariafor her support and encouragement throughout this long process.

Michael Barr mbarr@netrino.com

Chapter 1.

Introduction
| think thereis a world market for maybe five computers.
-Thomas Watson, Chairman of IBM, 1943
Thereis no reason anyone would want a computer in their home.

-Ken Olson, President of Digital Equipment Corporation, 1977

One of the more surprising devel opments of the last few decades has been the ascendance of computers to a position
of prevalence in human affairs. Today there are more computersin our homes and offices than there are people who
live and work in them. Y et many of these computers are not recognized as such by their users. In this chapter, I'll
explain what embedded systems are and where they are found. | will also introduce the subject of embedded
programming, explain why | have selected C and C++ as the languages for this book, and describe the hardware
used in the examples.

1.1 What |san Embedded System?

An embedded systemis a combination of computer hardware and software, and perhaps additional mechanical or
other parts, designed to perform a specific function. A good exampleis the microwave oven. Almost every
household has one, and tens of millions of them are used every day, but very few people realize that a processor and
software are involved in the preparation of their lunch or dinner.

Thisisin direct contrast to the personal computer in the family room. It too is comprised of computer hardware and
software and mechanical components (disk drives, for example). However, a personal computer is not designed to
perform a specific function. Rather, it is able to do many different things. Many people use the term general-purpose
computer to make this distinction clear. As shipped, a general-purpose computer is a blank slate; the manufacturer
does not know what the customer will do with it. One customer may use it for a network file server, another may use
it exclusively for playing games, and athird may use it to write the next great American novel.

Frequently, an embedded system is a component within some larger system. For example, modern cars and trucks
contain many embedded systems. One embedded system controls the anti-lock brakes, another monitors and
controls the vehicle's emissions, and a third displays information on the dashboard. In some cases, these embedded
systems are connected by some sort of acommunications network, but that is certainly not arequirement.

At the possiblerisk of confusing you, it isimportant to point out that a general-purpose computer isitself made up
of numerous embedded systems. For example, my computer consists of a keyboard, mouse, video card, modem,
hard drive, floppy drive, and sound card-each of which is an embedded system. Each of these devices containsa
processor and software and is designed to perform a specific function. For example, the modem is designed to send
and receive digital dataover an analog telephoneline. That'sit. And all of the other devices can be summarizedin a
single sentence as well.

If an embedded system is designed well, the existence of the processor and software could be completely unnoticed
by a user of the device. Such isthe case for a microwave oven, VCR, or alarm clock. In some cases, it would even
be possible to build an equivalent device that does not contain the processor and software. This could be done by
replacing the combination with a custom integrated circuit that performs the same functions in hardware. However,
alot of flexibility islost when adesign is hard-coded in thisway. It is much easier, and cheaper, to change afew
lines of software than to redesign a piece of custom hardware.

1.1.1 History and Future

Given the definition of embedded systems earlier in this chapter, the first such systems could not possibly have
appeared before 1971. That was the year Intel introduced the world's first microprocessor. This chip, the 4004, was
designed for usein aline of business calculators produced by the Japanese company Busicom. In 1969, Busicom
asked Intel to design a set of custom integrated circuits-one for each of their new calculator models. The 4004 was
Intel's response. Rather than design custom hardware for each calculator, Intel proposed a general-purpose circuit
that could be used throughout the entire line of calculators. This general-purpose processor was designed to read and
execute a set of instructions-software-stored in an external memory chip. Intel's idea was that the software would
give each calculator its unique set of features.

The microprocessor was an overnight success, and its use increased steadily over the next decade. Early embedded
applications included unmanned space probes, computerized traffic lights, and aircraft flight control systems. In the
1980s, embedded systems quietly rode the waves of the microcomputer age and brought microprocessorsinto every
part of our personal and professional lives. Many of the electronic devicesin our kitchens (bread machines, food

processors, and microwave ovens), living rooms (tel evisions, stereos, and remote controls), and workplaces (fax
machines, pagers, laser printers, cash registers, and credit card readers) are embedded systems.

It seems inevitable that the number of embedded systems will continue to increase rapidly. Already there are
promising new embedded devices that have enormous market potential: light switches and thermostats that can be
controlled by acentral computer, intelligent air-bag systems that don't inflate when children or small adults are
present, palm-sized electronic organizers and personal digital assistants (PDAS), digital cameras, and dashboard
navigation systems. Clearly, individuals who possess the skills and desire to design the next generation of embedded
systemswill be in demand for quite sometime.

1.1.2 Real-Time Systems

One subclass of embedded systemsisworthy of an introduction at this point. As commonly defined, areal-time
systemis a computer system that has timing constraints. In other words, areal-time system is partly specified in
terms of its ability to make certain calculations or decisions in atimely manner. These important calculations are
said to have deadlines for completion. And, for al practical purposes, a missed deadlineisjust as bad asawrong
answer.

The issue of what happens if adeadlineis missed isacrucia one. For example, if the real-time systemis part of an
airplane'sflight control system, it is possible for the lives of the passengers and crew to be endangered by asingle
missed deadline. However, if instead the system is involved in satellite communication, the damage could be limited
to asingle corrupt data packet. The more severe the consequences, the more likely it will be said that the deadlineis
"hard" and, thus, the system a hard real-time system. Real-time systems at the other end of this continuum are said to
have "soft" deadlines.

All of the topics and examples presented in this book are applicable to the designers of real-time systems. However,
the designer of areal-time system must be more diligent in his work. He must guarantee reliable operation of the
software and hardware under all possible conditions. And, to the degree that human lives depend upon the system's
proper execution, this guarantee must be backed by engineering cal culations and descriptive paperwork.

1.2 Variationson the Theme

Unlike software designed for general -purpose computers, embedded software cannot usually be run on other
embedded systems without significant modification. Thisis mainly because of the incredible variety in the
underlying hardware. The hardware in each embedded system is tailored specifically to the application, in order to
keep system costslow. Asaresult, unnecessary circuitry is eliminated and hardware resources are shared wherever
possible. In this section you will learn what hardware features are common across al embedded systems and why
there is so much variation with respect to just about everything else.

By definition all embedded systems contain a processor and software, but what other features do they havein
common? Certainly, in order to have software, there must be a place to store the executable code and temporary
storage for runtime data manipulation. These take the form of ROM and RAM, respectively; any embedded system
will have some of each. If only a small amount of memory is required, it might be contained within the same chip as
the processor. Otherwise, one or both types of memory will reside in external memory chips.

All embedded systems also contain some type of inputs and outputs. For example, in a microwave oven the inputs
are the buttons on the front panel and atemperature probe, and the outputs are the human-readabl e display and the
microwave radiation. It is almost always the case that the outputs of the embedded system are a function of itsinputs
and several other factors (elapsed time, current temperature, etc.). The inputsto the system usually take the form of
sensors and probes, communication signals, or control knobs and buttons. The outputs are typically displays,
communication signals, or changes to the physical world. See Figure 1-1 for ageneral example of an embedded
system.

Memory

Inpuis Processor Dutputs

Figure 1-1. A generic embedded system

With the exception of these few common features, the rest of the embedded hardware is usually unique. This
variation is the result of many competing design criteria. Each system must meet a completely different set of
reguirements, any or all of which can affect the compromises and tradeoffs made during the development of the
product. For example, if the system must have a production cost of less than $10, then other things-like processing
power and system reliability-might need to be sacrificed in order to meet that goal.

Of course, production cost is only one of the possible constraints under which embedded hardware designers work.
Other common design requirements include the following:

Processing power

The amount of processing power necessary to get the job done. A common way to compare
processing power is the MIPS (millions of instructions per second) rating. If two processors
have ratings of 25 MIPS and 40 MIPS, the latter is said to be the more powerful of the two.
However, other important features of the processor need to be considered. One of these is the
register width, which typically ranges from 8 to 64 bits. Today's general-purpose computers
use 32- and 64-bit processors exclusively, but embedded systems are still commonly built
with older and less costly 8- and 16-bit processors.

Memory

The amount of memory (ROM and RAM) required to hold the executable software and the
data it manipulates. Here the hardware designer must usually make his best estimate up front
and be prepared to increase or decrease the actual amount as the software is being devel oped.
The amount of memory required can also affect the processor selection. In general, the
register width of a processor establishes the upper limit of the amount of memory it can
access (e.g., an 8-bit address register can select one of only 256 unique memory locations).2

1 Of course, the smaller the register width, the more likely it isthat the processor employstricks like
multiple address spaces to support more memory. A few hundred bytesjust isn't enough to do much of
anything. Several thousand bytes is a more likely minimum, even for an 8-bit processor.

Devel opment cost

The cost of the hardware and software design processes. Thisis afixed, one-time cost, so it
might be that money is no object (usually for high-volume products) or that thisis the only
accurate measure of system cost (in the case of a small number of units produced).

Number of units

The tradeoff between production cost and development cost is affected most by the number

of units expected to be produced and sold. For example, it is usualy undesirable to develop
your own custom hardware components for a low-volume product.

Expected lifetime

How long must the system continue to function (on average)? A month, a year, or a decade?
This affects all sorts of design decisions from the selection of hardware components to how
much the system may cost to develop and produce.

Reliability

How reliable must the fina product be? If it is a children's toy, it doesn't dways have to work
right, but if it's a part of a space shuttle or a car, it had sure better do what it is supposed to
each and every time.

In addition to these general requirements, there are the detailed functional requirements of the system itself. These
are the things that give the embedded system its unique identity as a microwave oven, pacemaker, or pager.

Table 1-1 illustrates the range of possible values for each of the previous design requirements. These are only
estimates and should not be taken too seriously. In some cases, two or more of the criteriaare linked. For example,
increasesin processing power could lead to increased production costs. Conversely, we might imagine that the same
increase in processing power would have the effect of decreasing the development costs-by reducing the complexity
of the hardware and software design. So the valuesin a particular column do not necessarily go together.

Table 1-1. Common Design Requirements for Embedded Systems

Criterion Low Medium High
Processor 4- or 8-bit 16-bit 32- or 64-bit
Memory <16 KB 64 KBtolMB >1MB
Development cost < $100,000 $100,000 to $1,000,000 > $1,000,000
Production cost < $10 $10 to $1,000 > $1,000
Number of units < 100 100-10,000 > 10,000
Expected lifetime days, weeks, or months years decades
Reliability may occasionally fail must work reliably must be fail-proof

In order to simultaneously demonstrate the variation from one embedded system to the next and the possible effects
of these design requirements on the hardware, | will now take some time to describe three embedded systemsin
some detail. My goal isto put you in the system designer's shoes for afew moments before beginning to narrow our
discussion to embedded software devel opment.

1.2.1 Digital Watch

At the end of the evolutionary path that began with sundials, water clocks, and hourglassesis the digital watch.
Among its many features are the presentation of the date and time (usually to the nearest second), the measurement
of the length of an event to the nearest hundredth of a second, and the generation of an annoying little sound at the
beginning of each hour. Asit turns out, these are very simple tasks that do not require very much processing power
or memory. In fact, the only reason to employ a processor at all isto support arange of models and features from a
single hardware design.

Thetypical digital watch contains asimple, inexpensive 8-bit processor. Because such small processors cannot
address very much memory, thistype of processor usually contains its own on-chip ROM. And, if there are
sufficient registers available, this application may not require any RAM at all. In fact, all of the electronics-
processor, memory, counters and real-time clocks-are likely to be stored in asingle chip. The only other hardware
elements of the watch are the inputs (buttons) and outputs (LCD and speaker).

The watch designer's goal isto create areasonably reliable product that has an extraordinarily low production cost.
If, after production, some watches are found to keep more reliable time than most, they can be sold under a brand
name with a higher markup. Otherwise, a profit can still be made by selling the watch through a discount sales
channel. For lower-cost versions, the stopwatch buttons or speaker could be eliminated. Thiswould limit the
functionality of the watch but might not even require any software changes. And, of course, the cost of all this
development effort may befairly high, sinceit will be amortized over hundreds of thousands or even millions of
watch sales.

1.2.2 Video Game Player

When you pull the Nintendo-64 or Sony Playstation out from your entertainment center, you are preparing to use an
embedded system. In some cases, these machines are more powerful than the comparable generation of personal
computers. Y et video game players for the home market are relatively inexpensive compared to personal computers.
It isthe competing requirements of high processing power and low production cost that keep video game designers
awake at night (and their children well-fed).

The companies that produce video game players don't usually care how much it coststo develop the system, so long
asthe production costs of the resulting product are low-typically around a hundred dollars. They might even
encourage their engineersto design custom processors at a development cost of hundreds of thousands of dollars
each. So, although there might be a 64-bit processor inside your video game player, it is not necessarily the same
type of processor that would be found in a 64-bit personal computer. In al likelihood, the processor is highly
specialized for the demands of the video gamesit isintended to play.

Because production cost is so crucial in the home video game market, the designers also use tricks to shift the costs
around. For example, one common tactic is to move as much of the memory and other peripheral electronics as
possible off of the main circuit board and onto the game cartridges. This helpsto reduce the cost of the game player,
but increases the price of each and every game. So, while the system might have a powerful 64-bit processor, it
might have only afew megabytes of memory on the main circuit board. Thisis just enough memory to bootstrap the
machine to a state from which it can access additional memory on the game cartridge.

1.2.3 MarsExplorer

In 1976, two unmanned spacecraft arrived on the planet Mars. As part of their mission, they were to collect samples
of the Martian surface, analyze the chemical makeup of each, and transmit the results to scientists back on Earth.
Those Viking missions are amazing to me. Surrounded by personal computers that must be rebooted almost daily, |
find it remarkable that more than 20 years ago ateam of scientists and engineers successfully built two computers
that survived ajourney of 34 million miles and functioned correctly for half a decade. Clearly, reliability was one of
the most important requirements for these systems.

What if amemory chip had failed? Or the software had bugs that caused it to crash? Or an electrical connection
broke during impact? There is no way to prevent such problems from occurring. So, all of these potential failure
points and many others had to be eliminated by adding redundant circuitry or extrafunctionality: an extra processor
here, special memory diagnostics there, a hardware timer to reset the system if the software got stuck, and so on.
More recently, NASA launched the Pathfinder mission. Its primary goal was to demonstrate the feasibility of getting
to Mars on abudget. Of course, given the advances in technol ogy made since the mid-70s, the designers didn't have
to give up too much to accomplish this. They might have reduced the amount of redundancy somewhat, but they still
gave Pathfinder more processing power and memory than Viking ever could have. The Mars Pathfinder was actually
two embedded systems: alanding craft and arover. The landing craft had a 32-bit processor and 128 MB of RAM;
the rover, on the other hand, had only an 8-bit processor and 512K B. These choices probably reflect the different
functional requirements of the two systems. But I'm sure that production cost wasn't much of an issue in either case.

1.3 C: The Least Common Denominator

One of the few constants across all these systemsisthe use of the C programming language. M ore than any other, C
has become the language of embedded programmers. This has not always been the case, and it will not continue to
be so forever. However, at thistime, C isthe closest thing there isto a standard in the embedded world. In this
section I'll explain why C has become so popular and why | have chosen it and its descendent C++ as the primary
languages of this book.

Because successful software development is so frequently about selecting the best language for agiven project, itis
surprising to find that one language has proven itself appropriate for both 8-bit and 64-bit processors; in systems
with bytes, kilobytes, and megabytes of memory; and for development teams that consist of from oneto a dozen or
more people. Yet thisis precisely the range of projectsin which C has thrived.

Of course, C is not without advantages. It is small and fairly simpleto learn, compilers are available for almost
every processor in use today, and thereis avery large body of experienced C programmers. In addition, C hasthe
benefit of processor-independence, which allows programmers to concentrate on algorithms and applications, rather
than on the details of a particular processor architecture. However, many of these advantages apply equally to other
high-level languages. So why has C succeeded where so many other languages have largely failed?

Perhaps the greatest strength of C-and the thing that setsit apart from languages like Pascal and FORTRAN-isthat it
isavery "low-level" high-level language. Aswe shall see throughout the book, C gives embedded programmers an
extraordinary degree of direct hardware control without sacrificing the benefits of high-level languages. The "low-
level" nature of C was a clear intention of the language's creators. In fact, Kernighan and Ritchie included the
following comment in the opening pages of their book The C Programming Language :

Cisardatively "low level" language. This characterization is not pejorative; it Ssmply
means that C deals with the same sort of objects that most computers do. These may be
combined and moved about with the arithmetic and logical operators implemented by real
machines.

Few popular high-level languages can compete with C in the production of compact, efficient code for almost all
processors. And, of these, only C allows programmers to interact with the underlying hardware so easily.

1.3.1 Other Embedded L anguages

Of course, C isnot the only language used by embedded programmers. At least three other languages-assembly,
C++, and Ada-are worth mentioning in greater detail.

In the early days, embedded software was written exclusively in the assembly language of the target processor. This
gave programmers compl ete control of the processor and other hardware, but at a price. Assembly languages have
many disadvantages, not the least of which are higher software development costs and alack of code portability. In
addition, finding skilled assembly programmers has become much more difficult in recent years. Assembly is now
used primarily as an adjunct to the high-level language, usually only for those small pieces of code that must be
extremely efficient or ultra-compact, or cannot be written in any other way.

C++ isan object-oriented superset of C that isincreasingly popular among embedded programmers. All of the core
language features are the same as C, but C++ adds new functionality for better data abstraction and a more object-
oriented style of programming. These new features are very helpful to software devel opers, but some of them do

reduce the efficiency of the executable program. So C++ tends to be most popular with large devel opment teams,
where the benefits to devel opers outweigh the loss of program efficiency.

Adais also an object-oriented language, though it is substantially different than C++. Adawas originally designed
by the U.S. Department of Defense for the development of mission-critical military software. Despite being twice
accepted as an international standard (Ada83 and Ada95), it has not gained much of afoothold outside of the
defense and aerospace industries. And it islosing ground there in recent years. Thisis unfortunate because the Ada
language has many features that would simplify embedded software development if used instead of C++.

1.3.2 Choosing a Language for the Book

A magjor question facing the author of abook like thisis, which programming languages should be included in the
discussion? Attempting to cover too many languages might confuse the reader or detract from more important
points. On the other hand, focusing too narrowly could make the discussion unnecessarily academic or (worse for
the author and publisher) limit the potential market for the book.

Certainly, C must be the centerpiece of any book about embedded programming-and this book will be no exception.
More than half of the sample code iswritten in C, and the discussion will focus primarily on C-related programming
issues. Of course, everything that is said about C programming applies equally to C++. In addition, | will cover
those features of C++ that are most useful for embedded software development and use them in the later examples.
Assembly language will be discussed in certain limited contexts, but will be avoided whenever possible. In other
words, | will mention assembly language only when a particular programming task cannot be accomplished in any
other way.

| feel that this mixed treatment of C, C++, and assembly most accurately reflects how embedded softwareis actually
developed today and how it will continue to be developed in the near-term future. | hope that this choice will keep
the discussion clear, provide information that is useful to people developing actual systems, and include aslarge a
potential audience as possible.

1.4 A Few Words About Hardware

It isthe nature of programming that books about the subject must include examples. Typically, these examples are
selected so that they can be easily experimented with by interested readers. That means readers must have accessto
the very same software development tools and hardware platforms used by the author. Unfortunately, in the case of
embedded programming, thisisunrealistic. It simply does not make sense to run any of the example programs on
the platforms available to most readers-PCs, Macs, and Unix workstations.

Even selecting a standard embedded platform is difficult. Asyou have already learned, there is no such thing asa
"typical” embedded system. Whatever hardware is selected, the majority of readerswill not have accessto it. But
despite this rather significant problem, | do feel it isimportant to select areference hardware platform for usein the
examples. In so doing, | hope to make the examples consistent and, thus, the entire discussion more clear.

In order to illustrate as many points as possible with asingle piece of hardware, | have found it necessary to select a
middle-of-the-road platform. This hardware consists of a 16-bit processor (Intel's 80188EB2), a decent amount of
memory (128KB of RAM and 256 KB of ROM), and some common types of inputs, outputs, and peripheral
components. The board I've chosen is called the Target188EB and is manufactured and sold by Arcom Control
Systems. More information about the Arcom board and instructions for obtaining one can be found in Appendix A.

(2 | ntel's 80188EB processor is a special version of the 80186 that has been redesigned for use in embedded systems.
The original 80186 was a successor to the 8086 processor that IBM used in their very first personal computer-the
PC/XT. The 80186 was never the basis of any PC because it was passed over (in favor of the 80286) when IBM
designed their next model-the PC/AT. Despite that early failure, versions of the 80186 from Intel and AMD have

enjoyed tremendous success in embedded systems in recent years.

If you have access to the reference hardware, you will be able to work through the examples in the book exactly as
they are presented. Otherwise, you will need to port the example code to an embedded platform that you do have
accessto. Toward that end, every effort has been made to make the example programs as portable as possible.
However, the reader should bear in mind that the hardware in each embedded system is different and that some of
the examples might be meaningless on his hardware. For example, it wouldn't make sense to port the Flash memory
driver presented in Chapter 6to aboard that had no Flash memory devices.

Anyway I'll have alot more to say about hardware in Chapter 5. But first we have a number of software issues to
discuss. So let's get started.

Chapter 2.
Your First Embedded Program

ACHTUNG! Das machineis nicht fur gefinger poken und mittengrabben. Ist easy
schnappen der springenwerk, blowenfusen und corkenpoppen mit spitzensparken. Ist
nicht fur gewerken by das dummkopfen. Das rubber necken sightseeren keepen hands in
das pockets. Relaxen und vatch das blinkenlights!

In this chapter we'll dive right into embedded programming by way of an example. The program we'll look at is
similar in spirit to the "Hello, World!" example found in the beginning of most other programming books. Aswe
discuss the code, I'll provide justification for the selection of the particular program and point out the parts of it that
are dependent on the target hardware. This chapter contains only the source code for thisfirst program. We'll discuss
how to create the executable and actually run it in the two chapters that follow.

2.1 Hello, World!

It seems like every programming book ever written begins with the same example-a program that prints "Hello,
World!" on the user's screen. An overused example like this might seem abit boring. But it does help readersto
quickly assess the ease or difficulty with which simple programs can be written in the programming environment at
hand. In that sense, "Hello, World!" serves as a useful benchmark of programming languages and computer
platforms. Unfortunately, by this measure, embedded systems are among the most difficult computer platforms for
programmers to work with. In some embedded systems, it might even be impossible to implement the "Hello,
World!" program. And in those systems that are capable of supporting it, the printing of text stringsis usually more
of an endpoint than a beginning.

Y ou see, the underlying assumption of the "Hello, World!" exampleisthat there is some sort of output device on
which strings of characters can be printed. A text window on the user's monitor often serves that purpose. But most
embedded systems lack a monitor or analogous output device. And those that do have one typically require a special
piece of embedded software, called a display driver, to be implemented first-arather challenging way to begin one's
embedded programming career.

It would be much better to begin with asmall, easily implemented, and highly portable embedded program in which
thereislittle room for programming mistakes. After all, the reason my book-writing counterparts continue to use the
"Hello, World!" exampleisthat it is ano-brainer to implement. This eliminates one of the variablesif the reader's
program doesn't work right the first time: it isn't abug in their code; rather, it is a problem with the development
tools or process that they used to create the executable program.

Embedded programmers must be self-reliant. They must always begin each new project with the assumption that
nothing works-that all they can rely onisthe basic syntax of their programming language. Even the standard library
routines might not be avail able to them. These are the auxiliary functions-like printf and scanf -that most other
programmers take for granted. In fact, library routines are often as much a part of the language standard as the basic
syntax. However, that part of the standard is more difficult to support across all possible computing platformsand is
occasionally ignored by the makers of compilers for embedded systems.

So you won't find an actual "Hello, World!" program in this chapter. Instead, we will assume only the basic syntax
of Cisavailablefor our first example. Aswe progress through the book, we will gradually add C++ syntax, standard
library routines, and the equivalent of a character output device to our repertoire. Then, in Chapter 9, we'll finally
implement a"Hello, World!" program. By that time you'll be well on your way to becoming an expert in the field of
embedded systems programming.

2.2 Das Blinkenlights

Every embedded system that |'ve encountered in my career has had at |east one LED that could be controlled by
software. So my substitute for the "Hello, World!" program has been one that blinksan LED at arate of 1 Hz (one
complete on-off cycle per second).l! Typically, the code required to turn an LED on and off islimited to afew lines
of C or assembly, so thereisvery little room for programming errors to occur. And because almost all embedded
systems have LEDs, the underlying concept is extremely portable.

[Of course, the rate of blink is completely arbitrary. But one of the things | like about the 1 Hz rate is that it's easy to

confirm with a stopwatch. Simply start the stopwatch, count off some number of blinks, and seeif the number of

elapsed seconds is the same as the number of blinks. Need greater accuracy? Simply count off more blinks.

The superstructure of the Blinking LED program is shown below. This part of the program is hardware-independent.
However, it relies on the hardware-dependent functionstoggleled and delay to change the state of the LED and
handle the timing, respectively.

/**

*

Functi on: mai n()

Not es: This outer |oop is hardware-i ndependent. However,

*

*

* Description: Blink the green LED once a second.

*

*

* it depends on two hardware-dependent functions.

*

* Returns: This routine contains an infinite | oop.

*

**/

voi d

mai n(voi d)
while (1)
{
t oggl eLed(LED_GREEN) ; /* Change the state of the LED. */
del ay(500); /* Pause for 500 m|liseconds. */
}
} /[* main() */
2.2.1togglel ed

In the case of the Arcom board, there are actually two LEDs: onered and one green. The state of each LED is
controlled by abit in aregister called the Port 2 1/0 Latch Register (P2LTCH, for short). Thisregister islocated
within the very same chip as the CPU and takes its name from the fact that it contains the latched state of eight I/O
pins found on the exterior of that chip. Collectively, these pins are known as I/O Port 2. And each of the eight bitsin
the P2L TCH register is associated with the voltage on one of the I/O pins. For example, bit 6 controls the voltage
going to the green LED:

#define LED GREEN 0x40 /* The green LED is controlled by bit 6. */
By modifying this bit, it is possible to change the voltage on the external pin and, thus, the state of the green LED.
Asshown inFigure 2-1, when bit 6 of the P2LTCH register is 1 the LED is off; whenitisthe LED ison.

Figure 2-1. LED wiring on the Arcom board

Intel Intel
80158EB 80158EB
Embedded Embedded
Processor Frocessor

P2LTCH: [01oo oooo P2LTCH: [cocn oooo

L 4
Gregn LED: O Green LED *

The P2LTCH register islocated in a special region of memory called the 1/0 space, at offset OXFF5E. Unfortunately,
registers within the I/O space of an 80x86 processor can be accessed only by using the assembly language
instructionsin and out. The C language has no built-in support for these operations. Its closest replacements are the
library routinesinport and outport, which are declared in the PC-specific header filedos.h. Ideally, we would just
include that header file and call those library routines from our embedded program. However, because they are part
of the DOS programmer's library, we'll have to assume the worst: that they won't work on our system. At the very
least, we shouldn't rely on them in our very first program.

An implementation of the toggleLed routine that is specific to the Arcom board and does not rely on any library
routines is shown below. The actual algorithm is straightforward: read the contents of the P2L TCH register, toggle
the bit that controls the LED of interest, and write the new value back into the register. Y ou will notice that although
thisroutineiswritten in C, the functional part is actually implemented in assembly language. Thisis a handy
technique, known as inline assembly, that separates the programmer from the intricacies of C's function calling and
parameter passing conventions but still gives her the full expressive power of assembly language.l2

12 Unfortunately, the exact syntax of inline assembly varies from compiler to compiler. In the example, I'm using the
format preferred by the Borland C++ compiler. Borland's inline assembly format is one of the best because it supports
references to variables and constants that are defined within the C code.

#define P2LTCH OXFF5E /* The offset of the P2LTCH register. */

/**
*

* Function: t oggl eLed()
*
* Description: Toggle the state of one or both LEDs.
*
* Not es: This function is specific to Arcom s Target 188EB board
*
* Returns: None defi ned.
*
**/
voi d
t oggl eLed(unsi gned char | edMask)
{
asm {
mov dx, P2LTCH /* Load the address of the register. */
in al, dx /* Read the contents of the register. */
nmov ah, | edMask /* Move the | edMask into a register. */
xor al, ah /* Toggle the requested bits. */
out dx, al /* Wite the new register contents. */
b

} /* toggleLed() */

2.2.2 delay

We also need to implement a half-second (500 ms) delay between LED toggles. Thisis done by busy-waiting within
the delay routine shown below. This routine accepts the length of the requested delay, in milliseconds, asits only
parameter. It then multiplies that number by the constant CY CLES _PER_MSto obtain the total number of while-
loop iterations required to delay for the requested time period.

/**

*

* Functi on: del ay()

*

* Description: Busy-wait for the requested nunber of mlliseconds.

*

* Not es: The nunber of decrenment-and-test cycles per mllisecond
* was determ ned through trial and error. This value is
* dependent upon the processor type and speed.

*

* Returns: None defi ned.

*

**/
voi d
del ay(unsigned int nMIIliseconds)

{
#define CYCLES PER Ms 260 /* Nunmber of decrenent-and-test cycles. */

unsi gned long nCycles = nMI1liseconds * CYCLES_PER Ms;
while (nCycles--);

} /* delay() */

The hardware-specific constant CY CLES _PER_M S represents the number of decrement-and-test cycles (nCycles--
I=0) that the processor can perform in a single millisecond. To determine this number | used trial and error. | made
an approximate calculation (I think it came out to around 200), then wrote the remainder of the program, compiled
it, and ran it. The LED wasindeed blinking but at arate faster than 1 Hz. So | used my trusty stopwatch to make a
series of small changesto CYCLES PER_MS until the rate of blink was as closeto 1 Hz as| cared to test.
That'sit! That'sall thereisto the Blinking LED program. The three functionsmain, toggleLed, and delay do the
whole job. If you want to port this program to some other embedded system, you should read the documentation that
came with your hardware, rewrite toggleled as necessary, and change the value of CYCLES _PER_MS. Of course,
we do still need to talk about how to build and execute this program. We'll examine those topics in the next two
chapters. But first, | have alittle something to say about infinite loops and their role in embedded systems.

2.3 TheRoleof the Infinite L oop

One of the most fundamental differences between programs devel oped for embedded systems and those written for
other computer platformsis that the embedded programs almost always end with an infinite loop. Typically, this
loop surrounds a significant part of the program's functionality-asit doesin the Blinking LED program. The infinite
loop is hecessary because the embedded software'sjob is never done. It isintended to be run until either the world
comesto an end or the board is reset, whichever happensfirst.

In addition, most embedded systems have only one piece of software running on them. And although the hardware is
important, it is not adigital watch or a cellular phone or a microwave oven without that embedded software. If the
software stops running, the hardware is rendered useless. So the functional parts of an embedded program are almost
always surrounded by an infinite loop that ensures that they will run forever.

This behavior is so common that it's almost not worth mentioning. And | wouldn't, except that 1've seen quite afew
first-time embedded programmers get confused by this subtle difference. So if your first program appearsto run, but
instead of blinking the LED simply changes its state once, it could be that you forgot to wrap the callstotogglelLed
and delay in an infinite loop.

Chapter 3.
Compiling, Linking, and L ocating

| consider that the golden rule requiresthat if | like a program | must share it with other
people who like it. Software sellers want to divide the users and conquer them, making
each user agree not to share with others. | refuse to break solidarity with other usersin
thisway. | cannot in good conscience sign a nondisclosure agreement or a software
license agreement. So that | can continue to use computer s without dishonor, | have
decided to put together a sufficient body of free software so that | will be able to get
along without any software that is not free.

-Richard Stallman, Founder of the GNU Project, The GNU Manifesto

In this chapter, we'll examine the stepsinvolved in preparing your software for execution on an embedded system.
We'll also discuss the associated development tools and see how to build the Blinking LED program shown in
Chapter 2. But before we get started, | want to make it clear that embedded systems programming is not
substantially different from the programming you've done before. The only thing that hasreally changed is that each
target hardware platform is unique. Unfortunately, that one difference leads to alot of additional software
complexity, and it's also the reason you'll need to be more aware of the software build process than ever before.

3.1 The Build Process

There are alot of things that software development tools can do automatically when the target platform iswell
defined 22! This automation is possible because the tools can exploit features of the hardware and operating system
on which your program will execute. For example, if all of your programs will be executed on IBM-compatible PCs
running DOS, your compiler can automate-and, therefore, hide from your view-certain aspects of the software build
process. Embedded software development tools, on the other hand, can rarely make assumptions about the target
platform. Instead, the user must provide some of his own knowledge of the system to the tools by giving them more
explicit instructions.

[Used this way, the term "target platform” is best understood to include not only the hardware but also the operating

system that forms the basic runtime environment for your software. If no operating system is present-as is sometimes

the case in an embedded system-the target platform is simply the processor on which your program will be run.

The process of converting the source code representation of your embedded software into an executable binary
image involves three distinct steps. First, each of the source files must be compiled or assembled into an object file.
Second, all of the object filesthat result from the first step must be linked together to produce a single object file,
called the relocatable program. Finally, physical memory addresses must be assigned to the relative offsets within
the rel ocatable program in a process called relocation. The result of thisthird step isafile that contains an
executable binary image that is ready to be run on the embedded system.

The embedded software development process just described isillustrated in Figure 3-1. In this figure, the three steps
are shown from top to bottom, with the tools that perform them shown in boxes that have rounded corners. Each of
these development tools takes one or more files as input and produces a single output file. More specific information
about these tools and the files they produce is provided in the sections that follow.

Figure 3-1. The embedded softwar e development process

C/C++ C/C++ Assembly
¥ ¥ ¥
Object Object Object
¥
o
Relocatable

Executable

Each of the steps of the embedded software build processis atransformation performed by software running on a
general-purpose computer. To distinguish this development computer (usually a PC or Unix workstation) from the
target embedded system, it isreferred to as the host computer. In other words, the compiler, assembler, linker, and
locator are all pieces of software that run on ahost computer, rather than on the embedded system itself. Y et, despite
the fact that they run on some other computer platform, these tools combine their efforts to produce an executable
binary image that will execute properly only on the target embedded system. This split of responsihilitiesis shown

in Figure 3-2.
Figure 3-2. The split between host and tar get

> compile foo.e
> pesgsemble Dar.asm
> link foo.o bar.o
> locate foo.oxae
Embedded Sysiam
[
. 8 e g
Target
The devefopment toals that buid The embedded soffwarne that is
the embedded software run on a buiit by those lools runs on the
general-purnose compuler gmbedded system

In this chapter and the next I'll be using the GNU tools (compiler, assembler, linker, and debugger) as examples.
These tools are extremely popular with embedded software devel opers because they are freely available (even the
source codeis free) and support many of the most popular embedded processors. | will use features of these specific
toolsasillustrations for the general concepts discussed. Once understood, these same basic concepts can be applied
to any equivalent development tool.

3.2 Compiling

The job of acompiler is mainly to translate programs written in some human-readabl e language into an equivalent
set of opcodes for a particular processor. In that sense, an assembler is also acompiler (you might call it an
"assembly language compiler") but one that performs a much simpler one-to-one translation from one line of
human-readable mnemonics to the equivalent opcode. Everything in this section applies equally to compilers and
assembl ers. Together these tools make up thefirst step of the embedded software build process.

Of course, each processor has its own unique machine language, so you need to choose a compiler that is capable of
producing programs for your specific target processor. In the embedded systems case, this compiler almost always
runs on the host computer. It simply doesn't make sense to execute the compiler on the embedded system itself. A
compiler such as this-that runs on one computer platform and produces code for another-is called a cross-compiler.
The use of across-compiler is one of the defining features of embedded software development.

The GNU C/C++ compiler (gcc) and assembler (as) can be configured as either native compilers or cross-
compilers. As cross-compilers these tool s support an impressive set of host-target combinations. Table 3-1 lists
some of the most popular of the supported hosts and targets. Of course, the selections of host platform and target
processor are independent; these tools can be configured for any combination.

Table 3-1. Hosts and Targets Supported by the GNU Compiler

Host Platforms Target Processors

AMD/Intel x86 (32-bit only)

DEC Alpha Digital Unix Fujitsu SPARClite

HP 9000/700 HP-UX Hitachi H8/300, H8/300H, H8/S

IBM Power PC AlX Hitachi SH

IBM RS6000 AlX IBM/M otorola PowerPC

SGI IrisIRIX Intel 1960

Sun SPARC Solaris MIPS R3xxx, R4xx0

Sun SPARC SunOS Mitsubishi D10V, M32R/D

X 86 Windows 95/NT M otorola 68k

X86 Red Hat Linux Sun SPARC, MicroSPARC
ToshibaTX39

Regardless of the input language (C/C++, assembly, or any other), the output of the cross-compiler will be an object
file. Thisisaspecially formatted binary file that contains the set of instructions and data resulting from the language
translation process. Although parts of thisfile contain executable code, the object file is not intended to be executed
directly. Infact, theinternal structure of an object file emphasi zes the incompl eteness of the larger program.

The contents of an object file can be thought of asavery large, flexible data structure. The structure of thefileis
usually defined by a standard format like the Common Object File Format (COFF) or Extended Linker Format
(ELF). If you'll be using more than one compiler (i.e., you'll be writing parts of your program in different source
languages), you need to make sure that each is capable of producing object filesin the same format. Although many
compilers (particularly those that run on Unix platforms) support standard object file formats like COFF and ELF (
gcc supports both), there are also some others that produce object files only in proprietary formats. If you're using
one of the compilersin the latter group, you might find that you need to buy all of your other development tools
from the same vendor.

Most object files begin with a header that describes the sections that follow. Each of these sections contains one or
more blocks of code or datathat originated within the original source file. However, these blocks have been
regrouped by the compiler into related sections. For example, all of the code blocks are collected into a section
called text, initialized global variables (and their initial values) into a section called data, and uninitialized global
variablesinto asection called bss.

Thereisalso usually asymbol table somewhere in the object file that contains the names and locations of all the
variables and functions referenced within the source file. Parts of this table may be incomplete, however, because
not all of the variables and functions are always defined in the samefile. These are the symbols that refer to
variables and functions defined in other sourcefiles. And it is up to the linker to resolve such unresolved references.

3.3 Linking

All of the object files resulting from step one must be combined in a special way before the program can be
executed. The object files themselves are individually incomplete, most notably in that some of the internal variable
and function references have not yet been resolved. The job of the linker isto combine these object files and, in the
process, to resolve al of the unresolved symbols.

The output of the linker isanew object file that contains all of the code and data from the input object filesand isin
the same object file format. It does this by merging the text, data, and bss sections of the input files. So, when the
linker is finished executing, all of the machine language code from all of the input object fileswill be in the text
section of the new file, and all of the initialized and uninitialized variables will reside in the new data and bss
sections, respectively.

Whilethe linker isin the process of merging the section contents, it is also on the lookout for unresolved symbols.
For example, if one object file contains an unresolved reference to a variable named foo and a variable with that
same nameis declared in one of the other object files, the linker will match them up. The unresolved reference will
be replaced with areference to the actual variable. In other words, if foo islocated at offset 14 of the output data
section, its entry in the symbol table will now contain that address.

The GNU linker (Id) runson al of the same host platforms as the GNU compiler. It is essentially acommand-line
tool that takes the names of all the object files to be linked together as arguments. For embedded development, a
special object file that contains the compiled startup code must also be included within thislist. (See Startup Code
later in this chapter.) The GNU linker also has a scripting language that can be used to exercise tighter control over
the object file that is output.

Startup Code

One of the things that traditional software development tools do automatically isto insert startup code.
Startup codeisasmall block of assembly language code that prepares the way for the execution of
software written in a high-level language. Each high-level language has its own set of expectations

about the runtime environment. For example, C and C++ both utilize an implicit stack. Space for the
stack has to be allocated and initialized before software written in either language can be properly
executed. That isjust one of the responsibilities assigned to startup code for C/C++ programs.

[Most cross-compilers for embedded systemsinclude an assembly language file called startup.asm,

crt0.s (short for C runtime), or something similar. The location and contents of thisfile are usually

described in the documentation supplied with the compiler.

Startup code for C/C++ programs usually consists of the following actions, performed in the order

described:

Disable all interrupts.

Copy any initialized datafrom ROM to RAM.

Zero the uninitialized data area.

Allocate space for and initialize the stack.

Initialize the processor's stack pointer.

Create and initialize the heap.

Execute the constructors and initializersfor all global variables (C++ only).

Enable interrupts.

Call main.

Typically, the startup code will also include afew instructions after the call to main. These instructions

will be executed only in the event that the high-level language program exits (i.e., the call tomain

returns). Depending on the nature of the embedded system, you might want to use these instructions to
halt the processor, reset the entire system, or transfer control to a debugging tool.

Because the startup code is not inserted automatically, the programmer must usually assemble it himself

and include the resulting object file among the list of input filesto the linker. He might even need to

give the linker a special command-line option to prevent it from inserting the usual startup code.

\Working startup code for avariety of target processors can be found in a GNU package called libgloss.

©CONSOOA~WNE

If the same symbol is declared in more than one object file, the linker is unable to proceed. It will likely appeal to
the programmer-by displaying an error message-and exit. However, if a symbol reference instead remains
unresolved after all of the object files have been merged, the linker will try to resolve the reference on its own. The
reference might be to afunction that is part of the standard library, so the linker will open each of the libraries
described to it on the command line (in the order provided) and examine their symbol tables. If it finds afunction
with that name, the reference will be resolved by including the associated code and data sections within the output
object file2

121 Beware that | am only talking about static linking here. In non-embedded environments, dynamic linking of libraries

isvery common. In that case, the code and data associated with the library routine are not inserted into the program

directly.

Unfortunately, the standard library routines often require some changes before they can be used in an embedded
program. The problem hereisthat the standard libraries provided with most software devel opment tool suites arrive
only in object form. So you only rarely have accessto the library source code to make the necessary changes
yourself. Thankfully, acompany called Cygnus has created a freeware version of the standard C library for usein
embedded systems. This package is called newlib. Y ou need only download the source code for this library from the
Cygnus web site, implement a few target-specific functions, and compile the whole lot. The library can then be
linked with your embedded software to resolve any previously unresolved standard library calls.

After merging all of the code and data sections and resolving all of the symbol references, the linker produces a
special "relocatable” copy of the program. In other words, the program is complete except for one thing: no memory
addresses have yet been assigned to the code and data sections within. If you weren't working on an embedded
system, you'd be finished building your software now.

But embedded programmers aren't generally finished with the build process at this point. Even if your embedded
system includes an operating system, you'll probably still need an absolutely located binary image. In fact, if thereis
an operating system, the code and data of which it consists are most likely within the relocatable program too. The
entire embedded application-including the operating system-is almost always statically linked together and executed
asasingle binary image.

3.4 Locating

Thetool that performs the conversion from rel ocatable program to executable binary imageis called alocator. It
takes responsihility for the easiest step of the three. In fact, you will have to do most of the work in this step
yourself, by providing information about the memory on the target board as input to the locator. The locator will use
thisinformation to assign physical memory addresses to each of the code and data sections within the relocatable
program. It will then produce an output file that contains a binary memory image that can be loaded into the target
ROM.

In many cases, the locator is a separate development tool. However, in the case of the GNU tools, this functionality
isbuilt right into the linker. Try not to be confused by this one particul ar implementation. Whether you are writing
software for a general-purpose computer or an embedded system, at some point the sections of your relocatable
program must have actual addresses assigned to them. In the first case, the operating system doesit for you at load
time. In the second, you must perform the step with a special tool. Thisistrue even if the locator is a part of the
linker, asitisin the case of Id.

The memory information required by the GNU linker can be passed to it in the form of alinker script. Such scripts
are sometimes used to control the exact order of the code and data sections within the relocatable program. But here,
we want to do more than just control the order; we also want to establish the location of each section in memory.
What follows is an example of alinker script for a hypothetical embedded target that has 512 KB each of RAM and
ROM:

MEMORY
{
ram: ORIG@ N = 0x00000, LENGTH = 512K
rom: ORIG N = 0x80000, LENGTH = 512K
}
SECTI ONS
{
data ram: /* Initialized data. */
{
_DataStart = . ;
*(.data)

_Dat aknd .

} >rom

bss : /* Uninitialized data. */
{
_BssStart = . ;
*(. bss)
_BssEnd = .
}
_BottomOfHeap = . ; /* The heap starts here. */
_TopOf Stack = 0x80000; /* The stack ends here. */
text rom: /* The actual instructions. */
*(.text)
}

}

This script informs the GNU linker's built-in locator about the memory on the target board and instructsit to locate
the data and bss sectionsin RAM (starting at address 0x00000) and the text section in ROM (starting at 0x80000).
However, theinitial values of the variablesin the data segment will be made a part of the ROM image by the
addition of >rom at the end of that section's definition.

All of the names that begin with underscores (_TopOf Stack, for example) are variables that can be referenced from
within your source code. The linker will use these symbolsto resolve referencesin the input object files. So, for
example, there might be a part of the embedded software (usually within the startup code) that copies the initial
values of theinitialized variables from ROM to the data section in RAM. The start and stop addresses for this
operation can be established symbolically, by referring to theinteger variables _DataStart and _DataEnd .
Theresult of thisfinal step of the build processis an absolutely located binary image that can be downloaded to the
embedded system or programmed into a read-only memory device. In the previous example, this memory image
would be exactly 1 MB in size. However, because the initial values for the initialized data section are stored in
ROM, the lower 512 kilobytes of thisimage will contain only zeros, so only the upper half of thisimageis
significant. You'll see how to download and execute such memory imagesin the next chapter.

3.5 Building das Blinkenlights

Unfortunately, because we're using the Arcom board as our reference platform, we won't be able to use the GNU
tools to build the examples. Instead we'll be using Borland's C++ Compiler and Turbo Assembler. These tools can
be run on any DOS or Windows-based PC.2 If you have an Arcom board to experiment with, this would be agood
timeto set it up and install the Borland devel opment tools on your host computer. (See Appendix A for ordering
information). | used version 3.1 of the compiler, running on a Windows 95-based PC. However, any version of the
Borland tools that can produce code for the 80186 processor will do.

(3 1t is interesting to note that Borland's C++ compiler was not specifically designed for use by embedded software
developers. It was instead designed to produce DOS and Windows-based programs for PCs that had 80x86 processors.
However, the inclusion of certain command-line options allows us to specify a particular 80x86 processor-the 80186,

for example-and, thus, use this tool as a cross-compiler for embedded systems like the Arcom board.

As| haveimplemented it, the Blinking LED example consists of three source modules: led.c, blink.c, and
startup.asm. Thefirst step in the build processis to compile these two files. The command-line options we'll need
are-c for "compile, but don't link," -v for "include symbolic debugging information in the output,” -m for "use the
large memory model," and -1 for “the target is an 80186 processor." Here are the actual commands:

bcc -c -v -m -1 led.c

bcc -c -v -m -1 blink.c

Of course, these commands will work only if the bcc.exe programisin your PATH and the two sourcefilesarein
the current directory. In other words, you should be in the Chapter2 subdirectory. The result of each of these
commands is the creation of an object file that has the same prefix asthe .c file and the extension .obj. So if all goes
well, there will now be two additional files-ed.obj and blink.obj -in the working directory.

Although it would appear that there are only these two object files to be linked together in our example, there are
actually three. That's because we must also include some startup code for the C program. (See Startup Code earlier
in this chapter.) Example startup code for the Arcom board is provided in the file startup.asm, which isincluded in

the Chapter3 subdirectory. To assemble this code into an object file, change to that directory and issue the following
command:

tasm/nx startup.asm

The result should be the file startup.obj in that directory. The command that's actually used to link the three object
filestogether is shown here. Beware that the order of the object files on the command line does matter in this case:
the startup code must be placed first for proper linkage.

tlink /m/v /s ..\Chapter3\startup.obj |ed.obj blink.obj,

bl i nk. exe, blink.mp
Asaresult of thetlink command, Borland's Turbo Linker will produce two new files: blink.exe and blink.map in the
working directory. Thefirst file contains the relocatable program and the second contains a human-readable
program map. If you have never seen such amap file before, be sure to take alook at this one before reading on. It
provides information similar to the contents of the linker script described earlier. However, these are results and,
therefore, include the lengths of the sections and the names and locations of the public symbolsfound in the
relocatable program.
One more tool must be used to make the Blinking LED program executable: alocator. The locating tool we'll be
using is provided by Arcom, as part of the SourceVIEW devel opment and debugging package included with the
board. Because thistool is designed for this one particular embedded platform, it does not have as many optionsasa
more general locator .4

(4 However, being free, it is also alot cheaper than a more general locator.

Infact, there are just three parameters: the name of the relocatabl e binary image, the starting address of the ROM (in
hexadecimal) and the total size of the destination RAM (in kilobytes):
tcrom bl ink. exe CO00 128
Sour ceVI EW Bor| and C ROM Rel ocat or v1. 06
Copyright (c) Arcom Control Systens Ltd 1994
Rel ocating code to ROM segnent COOOH, data to RAM segnent 100H
Changi ng target RAM size to 128 Kbytes
Opening 'blink.exe'...

Startup stack at 0102: 0402

PSP Program si ze 550H byt es (2K)

Target RAM size 20000H bytes (128K)

Target data size 20H bytes (1K)
Creating 'blink.rom...

ROM i mage size 550H byt es (2K)
The tcromlocator massages the contents of the relocatabl e input file-assigning base addresses to each section-and
outputsthe file blink.rom Thisfile contains an absolutely located binary image that is ready to be loaded directly
into ROM. But rather than load it into the ROM with a device programmer, we'll create a special ASCII version of
the binary image that can be downloaded to the ROM over a serial port. For thiswe will use autility provided by
Arcom, called bin2hex. Here is the syntax of the command:
bi n2hex bl i nk.rom / A=1000
This extra step creates anew file, called blink.hex, that contains exactly the same information asblink.rom, but in an
ASCII representation called Intel Hex Format.

Chapter 4.
Downloading and Debugging

| can remember the exact instant when | realized that a large part of my life from then on
was going to be spent in finding mistakes in my own programs.

-Maurice Wilkes, Head of the Computer Laboratory of the University of Cambridge,
1949

Once you have an executable binary image stored as afile on the host computer, you will need away to download
that image to the embedded system and execute it. The executable binary image is usually loaded into a memory
device on the target board and executed from there. And if you have the right tools at your disposal, it will be
possible to set breakpoints in the program or to observeits execution in lessintrusive ways. This chapter describes
various techniques for downloading, executing, and debugging embedded software.

4.1 When in ROM ...

One of the most obvious ways to download your embedded software isto load the binary image into aread-only
memory device and insert that chip into a socket on the target board. Obviously, the contents of atruly read-only
memory device could not be overwritten. However, as you'll seein Chapter 6, embedded systems commonly employ
special read-only memory devices that can be programmed (or reprogrammed) with the help of a special piece of
equipment called adevice programmer. A device programmer is a computer system that has several memory sockets
on the top-of varying shapes and sizes-and is capabl e of programming memory devices of all sorts.

In anideal development scenario, the device programmer would be connected to the same network as the host
computer. That way, filesthat contain executable binary images could be easily transferred to it for ROM
programming. After the binary image has been transferred to the device programmer, the memory chip is placed into
the appropriately sized and shaped socket and the device typeis selected from an on-screen menu. The actual device
programming process can take anywhere from afew seconds to several minutes, depending on the size of the binary
image and the type of memory device you are using.

After you program the ROM, it is ready to be inserted into its socket on the board. Of course, this shouldn't be done
while the embedded system is still powered on. The power should be turned off and then reapplied only after the
chip has been carefully inserted.

As soon as power isapplied to it, the processor will begin to fetch and execute the code that is stored inside the
ROM. However, beware that each type of processor hasits own rules about the location of itsfirst instruction. For
example, when the Intel 80188EB processor isreset, it begins by fetching and executing whatever is stored at
physical address FFFFOh. Thisis called the reset address, and the instructions located there are collectively known
asthereset code.

If your program doesn't appear to be working, it could be there is something wrong with your reset code. Y ou must
always ensure that the binary image you've loaded into the ROM satisfies the target processor's reset rules. During
product development, | often find it useful to turn on one of the board's LEDs just after the reset code has been
completed. That way, | know at a glance that my new ROM either does or doesn't satisfy the processor's most basic
requirements.

o a

A':_
' da
i '*
Debugging Tip #1: One of the most primitive debugging techniques availableisthe use of an LED asindicator of
you first begin with the LED enable code at the reset address. If the LED turns on, then you can edit the program,
moving the LED enable code to just after the next execution milestone, rebuild, and test. This works best for very
simple, linearly executed programs like the startup code. But if you don't have access to aremote debugger or any of
the other debugging tools described | ater in this chapter, this type of debugging might be your only choice.

The Arcom board includes a special in-circuit programmable memory, called Flash memory, that does not have to
be removed from the board to be reprogrammed. In fact, software that can perform the device programming function
isaready installed in another memory device on the board. Y ou see, the Arcom board actually has two read-only
memory devices-one (atrue ROM) contains a simple program that allows the user to in-circuit program the other (a
Flash memory device). All the host computer needs to talk to the monitor program is a serial port and aterminal

program. Instructions for loading an Intel Hex Format file, like blink.hex, into the Flash memory device are provided
in the "Target188EB Monitor User's Manual," which is included with the board.

The biggest disadvantage of this download technique isthat there is no easy way to debug software that is executing
out of ROM. The processor fetches and executes the instructions at a high rate of speed and provides no way for you
to view the internal state of the program. This might be fine once you know that your software works and you're
ready to deploy the system, but it's not very helpful during software development. Of course, you can still examine
the state of the LEDs and other externally visible hardware but thiswill never provide as much information and
feedback as a debugger.

4.2 Remote Debuggers

If available, aremote debugger can be used to download, execute, and debug embedded software over a serial port
or network connection between the host and target. The frontend of aremote debugger looks just like any other
debugger that you might have used. It usually has atext or GUI-based main window and several smaller windows
for the source code, register contents, and other relevant information about the executing program. However, in the
case of embedded systems, the debugger and the software being debugged are executing on two different computer
systems.

A remote debugger actually consists of two pieces of software. The frontend runs on the host computer and provides
the human interface just described. But thereis also a hidden backend that runs on the target processor and
communicates with the frontend over a communications link of some sort. The backend provides for low-level
control of thetarget processor and is usually called the debug monitor. Figure 4-1 shows how these two components
work together.

Figure4-1. A remote debugging session

main() f{
int a=5%8,b;
-»b=a-32
}b=:+5.f; o)) Embedded system
) el Communications Link [= |—
e _| J Al
Target
Host

The debug monitor residesin ROM-having been placed there in the manner described earlier (either by you or at the
factory)-and is automatically started whenever the target processor is reset. It monitors the communicationslink to
the host computer and responds to regquests from the remote debugger running there. Of course, these requests and
the monitor's responses must conform to some predefined communications protocol and aretypically of avery low-
level nature. Examples of requests the remote debugger can make are "read register x," "modify register y," "read n
bytes of memory starting at address," and "modify the data at address.” The remote debugger combines sequences
of these low-level commands to accomplish high-level debugging tasks like downloading a program, single-stepping
through it, and setting breakpoints.

One such debugger isthe GNU debugger (gdb). Like the other GNU tools, it was originally designed for use as a
native debugger and was later given the ability to perform cross-platform debugging. So you can build aversion of
the GDB frontend that runs on any supported host and yet understands the opcodes and register names of any
supported target. Source code for a compatible debug monitor isincluded within the GDB package and must be
ported to the target platform. However, beware that this port can be tricky, particularly if you only have LED
debugging at your disposal (see Debugging Tip #1).

Communication between the GDB frontend and the debug monitor is byte-oriented and designed for transmission
over aseria connection. The command format and some of the major commands are shown inTable 4-1. These
commands exemplify the type of interactions that occur between the typical remote debugger frontend and the
debug monitor.

Table 4-1. GDB Debug M onitor Commands

Command Request Format Response For mat
Read registers g data
\Write registers Gdata OK
Read data at address maddress,| ength data
\Write data at address IMaddress,length:data OK
Start/restart execution C Ssignal
Start execution from address caddress Ssignal
Single step S Ssignal
Single step from address saddress Ssignal
Reset/kill program k no response

Remote debuggers are one of the most commonly used downloading and testing tools during devel opment of
embedded software. Thisis mainly because of their low cost. Embedded software devel opers already have the
requisite host computer. In addition, the price of aremote debugger frontend does not add significantly to the cost of
asuite of cross-development tools (compiler, linker, locator, etc.). Finally, the suppliers of remote debuggers often
desire to give away the source code for their debug monitors, in order to increase the size of their installed user base.
As shipped, the Arcom board includes afree debug monitor in Flash memory. Together with host software provided
by Arcom, this debug monitor can be used to download programs directly into target RAM and execute them. To do
this, you can use the tload utility. Simply connect the SourceVIEW serial communications adapter to the target and
host asinstructed in the "SourceVIEW for Target188EB User's Manual" and issue the following command on the
host PC:

tload -g blink.exe

Sour ceVi ew Target Loader v1.4

Copyright (c) Arcom Control Systens Ltd 1994

Qpening 'blink.exe' ... download size 750H bytes (2K)

Checking COML (press ESC key to exit)...

Renote ident: TDR188EB version 1.02

Downl oad successf ul

Sending ' GO conmmand to target system

The -g option tells the debug monitor to start executing the program as soon as the download is complete. So, thisis
the RAM equivalent of execution directly out of ROM. In this case, though, we want to start with the relocatable
program. Thetload utility will automatically locate the program for us, at the first available location in RAM.

For remote debugging purposes, Arcom's debug monitor can be used with Borland's Turbo Debugger asthe
frontend. Turbo Debugger can then be used to step through your C/C++ and assembly language programs, set
breakpoints in them, and monitor variables, registers, and the stack as they execute.X

W The actual interaction with Turbo Debugger is no different than if you were debugging a DOS or Windows
application.

Here's the command you would use to start a debugging session for the Blinking LED program:
tdr blink. exe

tver -3.1

Tar get Debugger Version Changer vl1.2

Copyright (c) Arcom Control Systens Ltd 1994

Checking COML (press ESC key to exit)...

Renote ident: TDR188EB version 1.02

TDR88 set for TD version 3.1

td -rpl -rs3 blink.exe

Turbo Debugger Version 3.1 Copyright (c) 1988,92 Borl and | nternational

Waiting for handshake fromrenote driver (Cirl-Break to quit)

Thetdr command is actually a batch file that invokes two other commands. Thefirst tells the on-board debug
monitor which version of Turbo Debugger you will be using, and the second actually invokes it. Both of these
commands need to be issued each time you want to start aremote debugging session with the Arcom board. The
tdr.bat batch file exists solely to combine them into a single command line. Again we use the relocatable version of
the program because we will be downloading the program into RAM and executing it from there.

The debugger startup options-rpl and -rs3 establish the parameters for the communications link to the debug
monitor. -rpl means "remote-port=1" (COM1) and -rs3 means "remote-speed=3" (38,400 baud). These are the
parameters required to communicate with Arcom's debug monitor. After establishing a connection to the debug
monitor, Turbo Debugger should start running. If it does not, there might be a problem with the serial link. Compare
your setup of the link to the one in the SourceVIEW user's manual .

Onceyou'rein Turbo Debugger, you will see adialog box that says: "Program out of date on remote, send over
link?' When you select "Yes," the contents of the fileblink.exe will be downloaded to the target RAM. The
debugger will then set an initial breakpoint at main and instruct the debug monitor to execute the program until that
point isreached. So the next thing you should see is the C source code for main, with a cursor indicating that the
embedded processor'sinstruction pointer is at the entry point to that routine.

Using normal Turbo Debugger commands, you can step through the program, set breakpoints, monitor the values
stored in variables and registers, and do all of the other things debuggers allow. Or you can simply press the F9 key
to immediately execute the rest of the program. If you do this, you should then see the green LED on the front of the
board start blinking. When you are satisfied that the program and the debugger are both working properly, press the
reset switch attached to the Arcom board. Thiswill cause the embedded processor to be reset, the LED to stop
blinking, and Turbo Debugger to again respond to your commands.

4.3 Emulators

Remote debuggers are helpful for monitoring and controlling the state of embedded software, but only an in-circuit
emulator (ICE) allows you to examine the state of the processor on which that program isrunning. In fact, an ICE
actually takes the place of-or emul ates-the processor on your target board. It isitself an embedded system, with its
own copy of the target processor, RAM, ROM, and its own embedded software. As aresult, in-circuit emulators are
usually pretty expensive-often more expensive than the target hardware. But they are a powerful tool, and in atight
debugging spot nothing else will help you get the job done better.

Like adebug monitor, an emulator uses aremote debugger for its human interface. In some cases, it is even possible
to use the same debugger frontend for both. But because the emulator has its own copy of the target processor it is
possible to monitor and control the state of the processor in real time. This allows the emulator to support such
powerful debugging features as hardware breakpoints and real-time tracing, in addition to the features provided by
any debug monitor.

With a debug monitor, you can set breakpoints in your program. However, these software breakpoints are restricted
to instruction fetches-the equivalent of the command "stop execution if thisinstruction is about to be fetched.”
Emulators, by contrast, also support hardware breakpoints. Hardware breakpoints allow you to stop execution in
response to awide variety of events. These events include not only instruction fetches, but also memory and 1/0
reads and writes, and interrupts. For example, you might set a hardware breakpoint on the event "variable foo
contains 15 and register AX becomes0."

Another useful feature of an in-circuit emulator is real-timetracing. Typically, an emulator incorporates alarge
block of special-purpose RAM that is dedicated to storing information about each of the processor cyclesthat are
executed. Thisfeature allows you to seein exactly what order things happened, so it can help you answer questions,
such as, did the timer interrupt occur before or after the variable bar became 947 In addition, it is usually possible to
either restrict the information that is stored or post-process the data prior to viewing it in order to cut down on the
amount of trace data to be examined.

4.3.1 ROM Emulators

One other type of emulator isworth mentioning at this point. A ROM emulator is adevice that emulates aread-only
memory device. Like an ICE, it is an embedded system that connects to the target and communicates with the host.
However, thistime the target connection isviaa ROM socket. To the embedded processor, it looks like any other
read-only memory device. But to the remote debugger, it looks like a debug monitor.

ROM emulators have several advantages over debug monitors. First, no one hasto port the debug monitor code to
your particular target hardware. Second, the ROM emulator suppliesits own serial or network connection to the
host, so it is not necessary to use the target's own, usually limited, resources. And finally, the ROM emulator isa
true replacement for the original ROM, so none of the target's memory is used up by the debug monitor code.

4.4 Simulatorsand Other Tools

Of course, many other debugging tools are available to you, including simulators, logic analyzers, and oscilloscopes.
A simulator is acompletely host-based program that simulates the functionality and instruction set of the target
processor. The human interface is usually the same as or similar to that of the remote debugger. In fact, it might be
possible to use one debugger frontend for the simulator backend as well, as shown in Figure 4-2. Although
simulators have many disadvantages, they are quite valuable in the earlier stages of a project when thereis not yet
any actual hardware for the programmers to experiment with.

Figure4-2. Theideal situation: a common debugger frontend

Embedded System
 ressssssnunsaasas B | |
main() { : | |—|—|—|| ;

int a=9%8,h; :

- h' '32; lall!!-ll!lulll!!l-ll!!":
}h;;+519.¢; E1|I|£r:r System

¥ s imssinisssusseisuevaie M-CINeUlt
Emulator |_|:|:||_
Host

Simulator
RN [{H“" I'Iil'lg on “IE HUSHJ

L

r
wh ..
IS

Debugging Tip #2: If you ever encounter a situation in which the target processor is behaving differently from how
you think it should from reading the data book, try running the same software in asimulator. If your program works
fine there, then you know it's a hardware problem of some sort. But if the simulator exhibits the same weirdness as
the actual chip, you'll know you've been misinterpreting the processor documentation all along.

By far, the biggest disadvantage of asimulator isthat it only simulates the processor. And embedded systems
frequently contain one or more other important peripherals. Interaction with these devices can sometimes be
imitated with simulator scripts or other workarounds, but such workarounds are often more trouble to create than the
simulation is valuable. So you probably won't do too much with the simulator once you have the actual embedded
hardware available to you.

Once you have access to your target hardware-and especially during the hardware debugging-logic analyzers and
oscilloscopes can be indispensable debugging tools. They are most useful for debugging the interactions between the
processor and other chips on the board. Because they can only view signals that lie outside the processor, however,
they cannot control the flow of execution of your software like a debugger or an emulator can. This makes these
tools significantly less useful by themselves. But coupled with a software debugging tool like a remote debugger or
an emulator, they can be extremely valuable.

A logic analyzer is apiece of laboratory equipment that is designed specifically for troubleshooting digital hardware.
It can have dozens or even hundreds of inputs, each capable of detecting only one thing: whether the electrical signal
itisattachedtoiscurrently at logic level 1 or 0. Any subset of the inputs that you select can be displayed against a
timeline asillustrated in Figure 4-3. Most logic analyzers will also let you begin capturing data, or "trigger,” on a
particular pattern. For example, you might make this request: "Display the values of input signals 1 through 10, but
don't start recording what happens until inputs 2 and 5 are both zero at the same time.”

Figure 4-3. A typical logic analyzer display

fnput 7
lnput 2
lnput 3
lnput &
fnput 9 —
fnput 4

o a

.
L
[l '*
Debugging Tip #3: Occasionally it is desirable to coordinate your observation of some set of electrical signalson the
target with the embedded software that is running there. For example, you might want to observe the businteraction
between the processor and one of the peripherals attached to it. A handy trick isto add an output statement to the
softwarejust prior to the start of the interaction you're interested in. This output statement should cause a unique
logic pattern to appear on one or more processor pins. For example, you might cause aspare 1/0 pin to change from
azeroto aone. Thelogic analyzer can then be set up to trigger on the occurrence of that event and capture
everything that follows.

An oscilloscope is another piece of laboratory equipment for hardware debugging. But this oneis used to examine
any electrical signal, analog or digital, on any piece of hardware. Oscilloscopes are sometimes useful for quickly
observing the voltage on a particular pin or, in the absence of alogic analyzer, for something slightly more complex.
However, the number of inputsis much smaller (there are usually about four) and advanced triggering logic is not
often available. Asaresult, it'll be useful to you only rarely as a software debugging tool.

Most of the debugging tools described in this chapter will be used at some point or another in every embedded
project. Oscilloscopes and logic analyzers are most often used to debug hardware problems - simulators during early
stages of the software development, and debug monitors and emulators during the actual software debugging. To be
most effective, you should understand what each tool isfor and when and where to apply it for the greatest impact.

Chapter 5.
Getting to Know the Hardware

hardware n. The part of a computer system that can be kicked.

As an embedded software engineer, you'll have the opportunity to work with many different pieces of hardwarein
your career. In this chapter, | will teach you a simple procedure that | use to familiarize myself with any new board.
In the process, I'll guide you through the creation of a header file that describes the board's most important features
and a piece of software that initializes the hardware to a known state.

5.1 Understand the Big Picture

Before writing software for an embedded system, you must first be familiar with the hardware on which it will run.
At first, you just need to understand the general operation of the system. Y ou do not need to understand every little
detail of the hardware; that kind of knowledge will not be needed right away and will come with time.
Whenever you receive a new board, you should take some time to read whatever documents have been provided
with it. If the board is an off-the-shelf product, it might arrive with a"User's Guide" or "Programmer's Manual" that
has been written with the software developer in mind. However, if the board was custom designed for your project,
the documentation might be more cryptic or written mainly for the reference of the hardware designers. Either way,
thisisthe single best place for you to start.
While you are reading the documentation, set the board itself aside. Thiswill help you to focus on the big picture.
Therewill be plenty of time to examine the actual board more closely when you have finished reading. Before
picking up the board, you should be able to answer two basic questions about it:

What isthe overall purpose of the board?

How does data flow through it?
For example, imagine that you are a member of a modem design team. Y ou are a software devel oper who has just
received an early prototype board from the hardware designers. Because you are already familiar with modems, the
overall purpose of the board and the data-flow through it should be fairly obviousto you. The purpose of the board
isto send and receive digital data over an analog telephone line. The hardware reads digital datafrom one set of
electrical connections and writes an analog version of the data to an attached telephone line. Data also flowsin the
opposite direction, when analog datais read from the telephone line jack and output digitally.
Though the purpose of most systemsisfairly obvious, the flow of the data might not be. | often find that a data-flow
diagram is helpful in achieving rapid comprehension. If you are lucky, the documentation provided with your
hardware will contain a superset of the block diagram you need. However, you might still find it useful to create
your own data-flow diagram. That way, you can leave out those hardware components that are unrelated to the basic
flow of datathrough the system.
In the case of the Arcom board, the hardware was not designed with a particular application in mind. So for the
remainder of this chapter, we'll have to imagine that it does have a purpose. We shall assume the board was designed
for use as a printer-sharing device. A printer-sharing device allows two computers to share a single printer. The user
of the device connects one computer to each serial port and a printer to the parallel port. Both computers can then
send documents to the printer, though only one of them can do so at agiven time.
In order to illustrate the flow of data through the printer-sharing device, |'ve drawn the diagramin Figure 5-1. (Only
those hardware devices that are involved in this application of the Arcom board are shown.) By looking at the block
diagram, you should be able to quickly visualize the flow of the data through the system. Datato be printed is
accepted from either serial port, held in RAM until the printer is ready for more data, and delivered to the printer via
the parallel port. The software that makes all of this happen is stored in ROM.

ROM
(256K)
Serial
Computer Port A
Dala Bus Intel
Elli:s%:gfﬁll B0188EB 1/0 Bus P?;::.:Bl Prinfer
Controller | Address Bus Processor

Serial
Computer | oo+ g

RAM
{128K)

Figure 5-1. Data-flow diagram for the printer-sharing device

Once you've created a block diagram, don't just crumpleit up and throw it away. Y ou should instead put it where
you can refer to it throughout the project. | recommend creating a project notebook or binder, with this data-flow
diagram on the first page. Asyou continue working with this piece of hardware, write down everything you learn
about it in your notebook. Y ou might also want to keep notes about the software design and implementation. A
project notebook is valuable not only while you are devel oping the software, but also once the project is complete.
Y ou will appreciate the extraeffort you put into keeping a notebook when you need to make changes to your
software, or work with similar hardware, months or years later.

If you still have any big-picture questions after reading the hardware documents, ask a hardware engineer for some
help. If you don't already know the hardware's designer, take a few minutes to introduce yourself. If you have some
time, take him out to lunch or buy him a beer after work. (Y ou don't even have to talk about the project the whole
timel) | have found that many software engineers have difficulty communicating with hardware engineers, and vice
versa. In embedded systems development, it is especially important that the hardware and software teams be able to
communicate with one another.

5.2 Examine the Landscape

Itis often useful to put yourself in the processor's shoes for awhile. After all, the processor is only going to do what
you ultimately instruct it to do with your software. Imagine what it is like to be the processor: what does the
processor'sworld look like? If you think about it from this perspective, one thing you quickly realizeisthat the
processor has alot of compatriots. These are the other pieces of hardware on the board, with which the processor
can communicate directly. In this section you will learn to recognize their names and addresses.

Thefirst thing to notice is that there are two basic types: memories and peripherals. Obviously, memories are for
data and code storage and retrieval. But you might be wondering what the peripherals are. These are specialized
hardware devices that either coordinate interaction with the outside world (1/0O) or perform a specific hardware
function. For example, two of the most common peripherals in embedded systems are serial ports and timers. The
former isan I/O device, and the latter is basically just a counter.

Members of Intel's 80x86 and some other processor families have two distinct address spaces through which they
can communicate with these memories and peripherals. The first address space is called the memory space and is
intended mainly for memory devices; the second is reserved exclusively for peripherals and is called the I/O space.
However, peripherals can also be located within the memory space, at the discretion of the hardware designer. When
that happens, we say that those peripheral s are memory-mapped.

From the processor's point of view, memory-mapped peripherals ook and act very much like memory devices.
However, the function of a peripheral isobviously quite different from that of amemory. Instead of simply storing
the datathat is provided to it, a peripheral might instead interpret it as a command or as data to be processed in some
way. If peripherals are |ocated within the memory space, we say that the system has memory-mapped 1/0.

The designers of embedded hardware often prefer to use memory-mapped /O exclusively, because it has advantages
for both the hardware and software developers. It is attractive to the hardware devel oper because he might be able to
eliminate the I/O space, and some of its associated wires, altogether. This might not significantly reduce the
production cost of the board, but it might reduce the complexity of the hardware design. Memory-mapped
peripherals are al so better for the programmer, who is able to use pointers, data structures, and unions to interact
with the peripherals more easily and efficiently &

[The toggleled function wouldn't have required a single line of assembly code if the P2LTCH register had been
memory-mapped.

5.2.1Memory Map

All processors store their programs and datain memory. In some cases this memory resides on the very same chip as
the processor, but more often it islocated in external memory chips. These chips are located in the processor's
memory space, and the processor communicates with them by way of two sets of electrical wires called the address
bus and the data bus. To read or write a particular location in memory, the processor first writes the desired address
onto the address bus. The dataisthen transferred over the data bus.

Asyou are reading about a new board, create atable that shows the name and address range of each memory device
and peripheral that islocated in the memory space. Organize the table so that the lowest addressis at the bottom and
the highest addressis at the top. Each time you add a device to the memory map, placeit in its approximate location
in memory and label the starting and ending addresses, in hexadecimal. After you have finished inserting all of the
devicesinto the memory map, be sure to label any unused memory regions as such.

If you look back at the block diagram of the Arcom board in Figure 5-1, you will seethat there are three devices
attached to the address and data buses. These devices are the RAM and ROM and a mysterious device labeled
"Zilog 85230 Serial Controller." The documentation provided by Arcom says that the RAM islocated at the bottom

of memory and extends upward for the first 128 KB of the memory space. The ROM islocated at the top of memory
and extends downward for 256 KB. But this area of memory actually contains two ROMs-an EPROM and a Flash
memory device-each of size 128 KB. The third device, the Zilog 85230 Serial Communications Controller, isa
memory-mapped peripheral whose registers are accessible between the addresses 70000h and 72000h.

The memory map in Figure 5-2 shows what these devices ook like to the processor. In a sense, thisisthe
processor's "address book." Just as you maintain alist of names and addresses in your personal life, you must
maintain asimilar list for the processor. The memory map contains one entry for each of the memories and
peripherals that are accessible from the processor's memory space. This diagram is arguably the most important
piece of information about the system and should be kept up-to-date and as part of the permanent records associated
with the project.

Figure 5-2. Memory map for the Arcom board

EPROM FFFFFh
(128K) E0000h
Flash Memaory
(128K) ©0000h
Unused
T2000h
Zilog SCC FO000h
Unused
20000R
SRAM
(128K) 00000k

For each new board, you should create a header file that describesits most important features. Thisfile providesan
abstract interface to the hardware. In effect, it allows you to refer to the various devices on the board by name, rather
than by address. This has the added benefit of making your application software more portable. If the memory map
ever changes-for example, if the 128 KB of RAM is moved-you need only change the affected lines of the board-
specific header file and recompile your application.

Asthis chapter progresses, | will show you how to create a header file for the Arcom board. The first section of this
fileislisted below. The part of the header file below describes the memory map. The most notable difference
between the memory map in the header file and that in Figure 5-2 is the format of the addresses. Pointers Versus
Addresses explainswhy.

/**

*

* Menory Map
*
* Base Address Si ze Description
K m e -
* 0000: 0000h 128K SRAM
* 2000: 0000h Unused
* 7000: 0000h Zil og SCC Regi sters
* 7000: 1000h Zilog SCC Interrupt Acknow edge
* 7000: 2000h Unused
* C000: 0000h 128K Fl ash
* E000: 0000h 128K EPROM
*
**/
#defi ne SRAM BASE (void *) 0x00000000
#defi ne SCC_BASE (void *) 0x70000000
#defi ne SCC_| NTACK (void *) 0x70001000
#def i ne FLASH_BASE (void *) 0xC0000000

#defi ne EPROM BASE (void *) OxE0000000

PointersVersus Addresses

In both C and C++, the value of apointer is an address. So when we say that we have a pointer to some
data, we really mean that we have the address at which the datais stored. But programmers don't usually
set or examine these addresses directly. The exception to thisrule are the devel opers of operating
systems, device drivers, and embedded software, who sometimes need to set the value of apointer
explicitly in their code.

Unfortunately, the exact representation of an address can change from processor to processor or can
even be compiler dependent. This means that a physical address like 12345h might not be stored in
exactly that form, or might even be stored differently by different compilers2 The issue that then arises
ishow aprogrammer can set the value of a pointer explicitly so that it pointsto the desired location in
the memory map.

[Most C/C++ compilers for 80x86 processors use 32-bit pointers. However, the older processors don't
have asimple linear 32-bit address space. For example, Intel's 80188EB processor has only a 20-bit
address space. And, in addition, none of itsinternal registers can hold more than 16 bits. So on this
processor, two 16-bit registers-a segment register and an offset register-are combined to create the 20-
bit physical address. (The physical address computation involves left-shifting the contents of the
segment register by four bits and adding the contents of the offset register to the result. Any overflow
into the 21 bit isignored.)

To declare and initialize a pointer to aregister located at physical address 12345h we therefore write:
int * pRegister = (int *) 0x10002345;

where the leftmost 16 bits contain the segment value and the rightmost 16 bits contain the offset value.
For convenience, 80x86 programmers sometimes write addresses as segment:offset pairs. Using this
notation, the physical address 12345h would be written as 0x1000:2345. Thisis precisely the value-sans
colon-that we used to initialize the pointer above. However, for each possible physical addressthere are
4096 distinct segment:offset pairs that point to a given physical address. For example, the pairs
0x1200:0345 and 0x1234:0005 (and 4093 others) also refer to physical address 12345h.

12 This situation gets even more complicated if you consider the various memory models provided by some processors.
All of the examplesin this book assume that the 80188's large memory model is used. In this memory model all of the
specifics I'm about to tell you hold for all pointer types. But in the other memory models, the format of the address
stored in a pointer differs depending upon the type of code or data pointed to!

5.2.21/0 Map

If aseparate |/O spaceis present, it will be necessary to repeat the memory map exercise to create an 1/0O map for the
board aswell. The processis exactly the same. Simply create atable of peripheral names and address ranges,
organized in such away that the lowest addresses are at the bottom. Typically, alarge percentage of the /O space
will be unused because most of the peripheralslocated there will have only a handful of registers.

The 1/O map for the Arcom board is shown in Figure 5-3. It includes three devices: the peripheral control block
(PCB), parallel port, and debugger port. The PCB is a set of registers within the 80188EB that are used to control the
on-chip peripherals. The chipsthat control the parallel port and debugger port reside outside of the processor. These
ports are used to communicate with the printer and a host-based debugger, respectively.

Figure 5-3. I/O map for the Arcom board

Peripheral FEFFh
Control Block FFOOR
Unuged FEQDhR
Parallel Port
FDOOR
Debugger Port
9 FCOOh
Unuged
0000h

The I/O map is also useful when creating the header file for your board. Each region of the 1/O space maps directly
to a constant, called the base address. The translation of the above 1/0 map into a set of constants can be found in the
following listing:

/**

*

* 1/0 Map

*

* Base Address Descri ption

K o o e 2
* 0000h Unused

* FCOOh Sour ceVl EW Debugger Port (SVIEW
* FDOOh Parallel 1/0O Port (PIO

* FEOOh Unused

* FFOOh Peri pheral Control Bl ock (PCB)

*

*

***/

#define SVIEWBASE OxFCOO
#defi ne Pl O BASE OxFDOO
#defi ne PCB_BASE OxFF0O0

5.3 Learn How to Communicate

Now that you know the names and addresses of the memory and peripheral s attached to the processor, it istimeto
learn how to communicate with the latter. There are two basic communication techniques: polling and interrupts. In
either case, the processor usually issues some sort of commands to the device-by way of the memory or 1/O space-
and waits for the device to complete the assigned task. For example, the processor might ask atimer to count down
from 1000 to 0. Once the countdown begins, the processor isinterested in just one thing: is the timer finished
counting yet?

If polling is used, then the processor repeatedly checksto seeif the task has been completed. Thisis analogousto the
small child who repeatedly asks "are we there yet?" throughout along trip. Like the child, the processor spends a
large amount of otherwise useful time asking the question and getting a negative response. To implement pollingin

software, you need only create aloop that reads the status register of the devicein question. Here is an example:
do

/1 Play games, read, listen to music, etc.

/1 Poll to see if we're there yet.
status = areWeThereYet () ;

} while (status == NO;
The second communication technique uses interrupts. An interrupt is an asynchronous electrical signal from a
peripheral to the processor. When interrupts are used, the processor issues commands to the peripheral exactly as
before, but then waits for an interrupt to signal completion of the assigned work. While the processor iswaiting for
the interrupt to arrive, it is free to continue working on other things. When the interrupt signal is finally asserted, the
processor temporarily sets aside its current work and executes a small piece of software called the interrupt service
routine (ISR). When the ISR compl etes, the processor returns to the work that was interrupted.
Of course, thisisn't all automatic. The programmer must write the ISR himself and "install" and enable it so that it
will be executed when the relevant interrupt occurs. Thefirst few timesyou do this, it will be asignificant challenge.
But, even so, the use of interrupts generally decreases the complexity of one's overall code by giving it a better
structure. Rather than device polling being embedded within an unrelated part of the program, the two pieces of
code remain appropriately separate.
On the whole, interrupts are a much more efficient use of the processor than polling. The processor is ableto use a
larger percentage of its waiting time to perform useful work. However, there is some overhead associated with each
interrupt. It takes agood bit of time-relative to the length of time it takes to execute an opcode-to put aside the
processor's current work and transfer control to the interrupt service routine. Many of the processor's registers must
be saved in memory, and lower-priority interrupts must be disabled. So in practice both methods are used frequently.
Interrupts are used when efficiency is paramount or multiple devices must be monitored simultaneously. Polling is
used when the processor must respond to some event more quickly than is possible using interrupts.

5.3.1Interrupt Map

Most embedded systems have only a handful of interrupts. Associated with each of these are an interrupt pin (on the
outside of the processor chip) and an ISR. In order for the processor to execute the correct ISR, a mapping must
exist between interrupt pins and 1SRs. This mapping usually takes the form of an interrupt vector table. The vector
tableis usually just an array of pointers to functions, located at some known memory address. The processor uses
the interrupt type (a unique number associated with each interrupt pin) asitsindex into this array. The value stored
at that location in the vector table isusually just the address of the ISR to be executed &

(31 A few processors actually have the first few instructions of the ISR stored there, rather than a pointer to the routine.

It isimportant to initialize the interrupt vector table correctly. (If it is done incorrectly, the ISR might be executed in
response to the wrong interrupt or never executed at all.) Thefirst part of this processisto create an interrupt map
that organizesthe relevant information. An interrupt map is atable that contains alist of interrupt types and the
devicesto which they refer. Thisinformation should be included in the documentation provided with the board.
Table 5-1 showstheinterrupt map for the Arcom board.

Table 5-1. Interrupt Map for the Arcom Board

Interrupt Type Generating Device
te] Timer/Counter #0
17 Zilog 85230 SCC
18 Timer/Counter #1
19 Timer/Counter #2
20 Serial Port Receive
21 Serial Port Transmit

Once again, our goal isto translate the information in the table into aform that is useful for the programmer. After
constructing an interrupt map like the one above, you should add athird section to the board-specific header file.
Each line of the interrupt map becomes a single #define within the file, as shown:

/**
*
* Interrupt Map
*

**[

/*

* Zilog 85230 SCC

*/
#define SCC_I NT 17
/*

* On-Chip Tinmer/Counters

*/
#define TIMERO_I NT 8
#define TIMERL_I NT 18
#define TI MER2_I NT 19
/*

* On-Chip Serial Ports

*/
#define RX_INT 20

#define TX_INT 21

5.4 Get to Know the Processor

If you haven't worked with the processor on your board before, you should take some time to get familiar with it
now. This shouldn't take very long if you do all of your programming in C or C++. To the user of ahigh-level
language, most processors look and act pretty much the same. However, if you'll be doing any assembly language
programming, you will need to familiarize yourself with the processor's architecture and basic instruction set.
Everything you need to know about the processor can be found in the databooks provided by the manufacturer. If
you don't have adatabook or programmer’s guide for your processor already, you should obtain one immediately. If
you are going to be a successful embedded systems programmer, you must be able to read databooks and get
something out of them. Processor databooks are usually well written-as databooks go-so they are an ideal placeto
start. Begin by flipping through the databook and noting the sections that are most relevant to the tasks at hand.
Then go back and begin reading the processor overview section.

5.4.1 Processorsin General

Many of the most common processors are members of families of related devices. In some cases, the members of
such a processor family represent points along an evolutionary path. The most obvious exampleis Intel's 80x86
family, which spans from the original 8086 to the Pentium I1-and beyond. In fact, the 80x86 family has been so
successful that it has spawned an entire industry of imitators.

Asitisused inthisbook, theterm processor refersto any of three types of devices known as microprocessors,
microcontrollers, and digital signal processors. The name microprocessor is usually reserved for achip that contains
apowerful CPU that has not been designed with any particular computation in mind. These chips are usually the
foundation of personal computers and high-end workstations. The most common microprocessors are members of
Motorola's 68k-found in older Macintosh computers-and the ubiquitous 80x86 families.

A microcontroller is very much like a microprocessor, except that it has been designed specifically for usein
embedded systems. Microcontrollers typically include a CPU, memory (a small amount of RAM, ROM, or both),
and other peripheralsin the sameintegrated circuit. If you purchase all of these items on asingle chip, it is possible
to reduce the cost of an embedded system substantially. Among the most popular microcontrollers are the 8051 and
its many imitators and Motorola's 68BHCxx series. It is also common to find microcontroller versions of popular
microprocessors. For example, Intel's 386EX is amicrocontroller version of the very successful 80386

Mi Croprocessor.

Thefinal type of processor isadigital signal processor, or DSP. The CPU within aDSP is specially designed to
perform discrete-time signal processing cal culations-like those required for audio and video communications-
extremely fast. Because DSPs can perform these types of cal culations much faster than other processors, they offer a
powerful, low-cost microprocessor alternative for designers of modems and other telecommunications and
multimedia equipment. Two of the most common DSP families are the TM S320Cxx and 5600x series from Tl and
Motorola, respectively.

5.4.2 Intel's 80188EB Pr ocessor

The processor on the Arcom board is an Intel 80188EB-a microcontroller version of the 80186. In addition to the
CPU, the 80188EB contains an interrupt control unit, two programmable 1/O ports, three timer/counters, two serial
ports, aDRAM controller, and a chip-select unit. These extra hardware devices are located within the same chip and
are referred to as on-chip peripherals. The CPU is able to communicate with and control the on-chip peripherals
directly, viainternal buses.

Although the on-chip peripherals are distinct hardware devices, they act like little extensions of the 80186 CPU. The
software can control them by reading and writing a 256-byte block of registers known as the peripheral control
block (PCB). Y ou may recall that we encountered this block when we first discussed the memory and I/O maps for
the board. By default the PCB islocated in the 1/O space, beginning at address FFOOh. However, if so desired, the
PCB can be relocated to any convenient address in either the I/O or memory space.

The control and status registers for each of the on-chip peripherals are located at fixed offsets from the PCB base
address. The exact offset of each register can be found in atable in the 80188EB Microprocessor User's Manual. To
isolate these detail s from your application software, it is good practice to include the offsets of any registers you will
be using in the header file for your board. | have done this for the Arcom board, but only those registers that will be
discussed in later chapters of the book are shown here:

/**
*
* On-Chip Peripherals
*

**/

/*
* Interrupt Control Unit

*/
#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i

/*
* 7]
%
#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i

/*

ne EQ (PCB_BASE + 0x02)
ne POLL (PCB_BASE + 0x04)
ne POLLSTS (PCB_BASE + 0x06)

ne | MASK (PCB_BASE + 0x08)
ne PRI MSK (PCB_BASE + 0x0A)

ne | NSERV (PCB_BASE + 0x0C)
ne REQST (PCB_BASE + OxOE)
ne I NSTS (PCB_BASE + 0x10)

mer / Count er s

ne TCUCON (PCB_BASE + 0x12)

ne TOCNT (PCB_BASE + 0x30)
ne TOCMPA (PCB_BASE + 0x32)
ne TOCMPB (PCB_BASE + 0x34)
ne TOCON (PCB_BASE + 0x36)
ne T1CNT (PCB_BASE + 0x38)
ne TICMPA (PCB_BASE + 0x3A)
ne TICMPB (PCB_BASE + 0x3C)
ne TICON (PCB_BASE + O0x3E)
ne T2CNT (PCB_BASE + 0x40)
ne T2CMPA (PCB_BASE + 0x42)

ne T2CON (PCB_BASE + 0x46)

* Programmable |1/0O Ports

*/
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

ne P1IDIR (PCB_BASE + 0x50)
ne P1IPIN (PCB_BASE + 0x52)
ne PICON (PCB_BASE + 0x54)
ne P1LTCH (PCB_BASE + 0x56)
ne P2DIR (PCB_BASE + 0x58)
ne P2PIN (PCB_BASE + 0x5A)
ne P2CON (PCB_BASE + 0x5C)

ne P2LTCH (PCB_BASE + OX5E)

Other things you'll want to learn about the processor from its databook are;

Where should the interrupt vector table be located? Does it have to be located at a specific addressin
memory? If not, how does the processor know where to find it?

What isthe format of the interrupt vector table? Isit just atable of pointersto ISR functions?

Arethere any special interrupts, sometimes called traps, that are generated within the processor itself? Must
an | SR be written to handle each of these?

How are interrupts enabled and disabled (globally and individually)?

How are interrupts acknowledged or cleared?

5.6 Initializethe Hardware

Thefinal step in getting to know your new hardware is to write some initialization software. Thisisyour best
opportunity to devel op a close working relationship with the hardware-especially if you will be developing the
remainder of the software in ahigh-level language. During hardware initialization it will be impossible to avoid
using assembly language. However, after completing this step, you will be ready to begin writing small programsin
Cor C++14

[|n order to make the example in Chapter 2, alittle easier to understand, | didn't show any of the initialization code
there. However, it is necessary to get the hardware initialization code working before you can write even simple
programs like Blinking LED.

o

il w
LT
[N

If you are one of the first software engineersto work with a new board-especially a prototype-the hardware might
not work as advertised. All processor-based boards require some amount of software testing to confirm the
correctness of the hardware design and the proper functioning of the various peripherals. Thisputsyouin an
awkward position when something is not working properly. How do you know if the hardware or your software isto
blame? If you happen to be good with hardware or have access to a simulator, you might be able to construct some
experiments to answer this question. Otherwise, you should probably ask a hardware engineer to join you in the lab
for ajoint debugging session.

The hardware initialization should be executed before the startup code described in Chapter 3. The code described
there assumes that the hardware has already been initialized and concernsitself only with creating a proper runtime
environment for high-level language programs. Figure 5-4 provides an overview of the entire initialization process,
from processor reset through hardware initialization and C/C++ startup code tomain.

Figure 5-4. The hardware and softwar e initialization process

rasaf 1

; Resat Code
;i assembly)

imp fwe_init it 2
. Hardware
: Initialization
{in assembly)
jmp startup SaD: 3
; Startup Code
; (in assembly)
I.::;'Ill main
i) 4

|
{*The C/C++ program starts hare, =/

Thefirst stage of the initialization processisthe reset code. Thisisasmall piece of assembly (usually only two or
three instructions) that the processor executesimmediately after it is powered on or reset. The sole purpose of this
codeisto transfer control to the hardware initialization routine. The first instruction of the reset code must be placed
at aspecific location in memory, usually called the reset address, that is specified in the processor databook. The
reset address for the 80188EB is FFFFOh.

Most of the actual hardware initialization takes place in the second stage. At this point, we need to inform the
processor about its environment. Thisis also agood place to initialize the interrupt controller and other critical
peripherals. Less critical hardware devices can be initialized when the associated device driver is started, usually
from within main.

Intel's 80188EB has several internal registers that must be programmed before any useful work can be done with the
processor. These registers are responsible for setting up the memory and I/O maps and are part of the processor's
internal chip-select unit. By programming the chip-select registers, you are essentially waking up each of the
memory and /O devicesthat are connected to the processor. Each chip-select register is associated with asingle
"chip enable" wire that runs from the processor to some other chip. The association between particular chip-selects
and hardware devices must be established by the hardware designer. All you need to do is get alist of chip-select
settings from him and load those settings into the chip-select registers.

Upon reset, the 80188EB assumes a worst-case scenario. It assumes there are only 1024 bytes of ROM-located in
the address range FFCOOh to FFFFFh-and that no other memory or I/O devices are present. Thisisthe processor's
"fetal position," and it implies that the hw_init routine must be located at address FFCOOh (or higher). It must also
not require the use of any RAM. The hardware initialization routine should start by initializing the chip-select
registersto inform the processor about the other memory and 1/0O devices that are installed on the board. By the time
thistask is complete, the entire range of ROM and RAM addresses will be enabled, so the remainder of your
software can be located at any convenient addressin either ROM or RAM.

The third initialization stage contains the startup code. Thisis the assembly-language code that we saw back in
Chapter 3. In case you don't remember, itsjob is to the prepare the way for code written in a high-level language. Of
importance hereis only that the startup code callsmain. From that point forward, all of your other software can be
writtenin C or C++.

Hopefully, you are starting to understand how embedded software gets from processor reset to your main program.
Admittedly, the very first time you try to pull all of these components together (reset code, hardware initialization,
C/C++ startup code, and application) on a new board there will be problems. So expect to spend sometime
debugging each of them. Honestly, thiswill be the hardest part of the project. Y ou will soon see that once you have
aworking Blinking LED program to fall back on, the work just gets easier and easier-or at least more similar to
ordinary computer programming.

Up to this point in the book we have been building the infrastructure for embedded programming. But the topics
we're going to talk about in the remaining chapters concern higher-level structures: memory tests, device drivers,
operating systems, and actually useful programs. These are pieces of software you've probably seen before on other
computer systems projects. However, there will still be some new twists related to the embedded programming
environment.

Chapter 6.

Memory

Tyrell: If we give them a past, we create a cushion for their emotions and, consequently,
we can control them better.

Deckard: Memories. You're talking about memories.

-the movie Blade Runner

In this chapter, you will learn everything you need to know about memory in embedded systems. In particular, you
will learn about the types of memory you are likely to encounter, how to test memory devicesto seeif they are
working properly, and how to use Flash memory.

6.1 Typesof Memory

Many types of memory devices are available for usein modern computer systems. As an embedded software
engineer, you must be aware of the differences between them and understand how to use each type effectively. In
our discussion, we will approach these devices from a software viewpoint. Asyou are reading, try to keep in mind
that the development of these devices took several decades and that there are significant physical differencesin the
underlying hardware. The names of the memory types frequently reflect the historical nature of the development
process and are often more confusing than insightful.

Most software devel opers think of memory as being either random-access (RAM) or read-only (ROM). But, in fact,
there are subtypes of each and even athird class of hybrid memories. In aRAM device, the data stored at each
memory location can be read or written, as desired. In aROM device, the data stored at each memory location can
beread at will, but never written. In some cases, it is possible to overwrite the datain aROM-like device. Such
devices are called hybrid memories because they exhibit some of the characteristics of both RAM and ROM. Figure
6-1 provides aclassification system for the memory devices that are commonly found in embedded systems.

Figure 6-1. Common memory typesin embedded systems

Memory

-~ -, - -, -~

. -

-

- - g - - .H‘-\-\.
DRAM SRAM NVRAM Flash EEPROM EPROM PROM Masked

6.1.1 Types of RAM

There are two important memory devices in the RAM family: SRAM and DRAM. The main difference between
them isthe lifetime of the data stored. SRAM (static RAM) retains its contents as long as electrical power is applied
to the chip. However, if the power isturned off or lost temporarily then its contents will be lost forever. DRAM
(dynamic RAM), on the other hand, has an extremely short data lifetime-usually less than a quarter of a second. This
istrue even when power is applied constantly.

In short, SRAM has all the properties of the memory you think of when you hear the word RAM. Compared to that,
DRAM sounds kind of useless. What good is amemory device that retainsits contents for only afraction of a
second? By itself, such avolatile memory isindeed worthless. However, a simple piece of hardware called aDRAM
controller can be used to make DRAM behave more like SRAM. (See DRAM Controllers later in this chapter.) The
job of the DRAM controller isto periodically refresh the data stored in the DRAM. By refreshing the data several
times a second, the DRAM controller keeps the contents of memory alive for aslong as they are needed. So, DRAM
isasuseful as SRAM after all.

DRAM Controllers

If your embedded system includes DRAM, thereis probably a DRAM controller on board (or on-chip)
aswell. The DRAM controller is an extra piece of hardware placed between the processor and the
memory chips. Its main purpose is to perform the refresh operations required to keep your data alivein
the DRAM. However, it cannot do this properly without some help from you.
One of the first things your software must do isinitialize the DRAM controller. If you do not have any
other RAM in the system, you must do this before creating the stack or heap. Asaresult, this
initialization code is usually written in assembly language and placed within the hardware initialization
module.
IAlmost all DRAM controllers require a short initialization sequence that consists of one or more setup
commands. The setup commandstell the controller about the hardware interface to the DRAM and how
frequently the data there must be refreshed. To determine the initialization sequence for your particular
system, consult the designer of the board or read the databooks that describe the DRAM and DRAM
controller. If the DRAM in your system does not appear to be working properly, it could be that the
DRAM controller either isnot initialized or has been initialized incorrectly.

When deciding which type of RAM to use, a system designer must consider access time and cost. SRAM devices
offer extremely fast access times (approximately four times faster than DRAM) but are much more expensive to
produce. Generally, SRAM is used only where access speed is extremely important. A lower cost per byte makes
DRAM attractive whenever large amounts of RAM are required. Many embedded systems include both types: a
small block of SRAM (afew hundred kilobytes) along a critical data path and a much larger block of DRAM (in the
megabytes) for everything else.

6.1.2 Types of ROM

Memoriesin the ROM family are distinguished by the methods used to write new data to them (usually called
programming) and the number of timesthey can be rewritten. This classification reflects the evolution of ROM
devices from hardwired to one-time programmabl e to erasable-and-programmable. A common feature across all
these devicesistheir ability to retain data and programs forever, even during a power failure.

The very first ROMswere hardwired devices that contained a preprogrammed set of data or instructions. The
contents of the ROM had to be specified before chip production, so the actual data could be used to arrange the
transistorsinside the chip! Hardwired memories are still used, though they are now called "masked ROMSs" to
distinguish them from other types of ROM. The main advantage of a masked ROM is alow production cost.
Unfortunately, the cost islow only when hundreds of thousands of copies of the sasme ROM are required.

One step up from the masked ROM is the PROM (programmable ROM), which is purchased in an unprogrammed
state. If you wereto look at the contents of an unprogrammed PROM, you would see that the datais made up
entirely of 1's. The process of writing your datato the PROM involves a special piece of equipment called a device
programmer. The device programmer writes data to the device one word at atime, by applying an electrical charge
to theinput pins of the chip. Once a PROM has been programmed in this way, its contents can never be changed. If
the code or data stored in the PROM must be changed, the current device must be discarded. Asaresult, PROMs are
also known asone-time programmable (OTP) devices.

An EPROM (erasable-and-programmable ROM) is programmed in exactly the same manner as a PROM. However,
EPROM s can be erased and reprogrammed repeatedly. To erase an EPROM, you simply expose the deviceto a
strong source of ultraviolet light. (Thereisa"window" in the top of the device to let the ultraviolet light reach the
silicon.) By doing this, you essentially reset the entire chip to itsinitial-unprogrammed-state. Though more
expensive than PROMs, their ability to be reprogrammed makes EPROM s an essential part of the software
development and testing process.

6.1.3 Hybrid Types

Asmemory technology has matured in recent years, the line between RAM and ROM devices has blurred. There are
now several types of memory that combine the best features of both. These devices do not belong to either group
and can be collectively referred to as hybrid memory devices. Hybrid memories can be read and written as desired,
like RAM, but maintain their contents without electrical power, just like ROM. Two of the hybrid devices,
EEPROM and Flash, are descendants of ROM devices; the third, NVRAM, is amodified version of SRAM.
EEPROM s are el ectrically-erasable-and-programmable. Internally, they are similar to EPROMs, but the erase
operation is accomplished electrically, rather than by exposure to ultraviolet light. Any byte within an EEPROM can
be erased and rewritten. Once written, the new datawill remain in the device forever-or at least until it is electrically
erased. The tradeoff for thisimproved functionality is mainly higher cost. Write cycles are also significantly longer
than writesto aRAM, so you wouldn't want to use an EEPROM for your main system memory.

Flash memory is the most recent advancement in memory technology. It combines all the best features of the
memory devices described thus far. Flash memory devices are high density, low cost, nonvolatile, fast (to read, but
not to write), and electrically reprogrammable. These advantages are overwhelming and the use of Flash memory
has increased dramatically in embedded systems as a direct result. From a software viewpoint, Flash and EEPROM
technologies are very similar. The major difference isthat Flash devices can be erased only one sector at atime, not
byte by byte. Typical sector sizes are in the range of 256 bytesto 16 kilobytes. Despite this disadvantage, Flashis
much more popular than EEPROM and is rapidly displacing many of the ROM devices as well.

The third member of the hybrid memory classis NVRAM (nonvolatile RAM). Nonvolatility is also a characteristic
of the ROM and hybrid memories discussed earlier. However, an NVRAM is physically very different from those
devices. An NVRAM isusualy just an SRAM with a battery backup. When the power is turned on, the NVRAM
operatesjust like any other SRAM. But when the power is turned off, the NVRAM draws just enough electrical
power from the battery to retain its current contents. NVRAM isfairly common in embedded systems. However, it
is very expensive-even more expensive than SRAM-so its applications are typically limited to the storage of only a
few hundred bytes of system-critical information that cannot be stored in any better way.

Table 6-1 summarizes the characteristics of different memory types.

Table 6-1. Memory Device Characteristics

Memory [Volatile . " ! Relative .
Type > Writeable? EraseSize| Erase Cycles Cost Relative Speed
SRAM lyes yes byte unlimited expensive [fast
DRAM |yes yes byte unlimited moderate |moderate
Masked ' .
ROM no no n/a n/a inexpensive [fast
once, with
PROM no programmer n/a n/a moderate [fast
yes, with . N
EPROM [no brogrammer entire chip [limited (see specs) [moderate [fast
EEPROM |no yes byte limited (see specs) [expensive [fast to read, slow to write
Flash no yes sector limited (see specs) Imoderate [fast to read, slow to write
NVRAM [no es byte none expensive [fast

6.2 Memory Testing

One of thefirst pieces of serious embedded software you are likely to write isamemory test. Once the prototype
hardware is ready, the designer would like some reassurance that she has wired the address and data lines correctly
and that the memory chips are working properly. At first this might seem like afairly simple assignment, but as you
look at the problem more closely you will realize that it can be difficult to detect subtle memory problems with a
simpletest. Infact, asaresult of programmer naiveté, many embedded systems include memory tests that would
detect only the most catastrophic memory failures. Some of these might not even notice that the memory chips have
been removed from the board!

Direct Memory Access

Direct memory access (DMA) is atechnique for transferring blocks of data directly between two
hardware devices. In the absence of DMA, the processor must read the datafrom one device and write it
to the other, one byte or word at atime. If the amount of datato be transferred islarge, or the frequency

of transfersis high, the rest of the software might never get a chance to run. However, if aDMA

controller is present it is possible to have it perform the entire transfer, with little assistance from the

processor.

Here's how DMA works. When a block of data needs to be transferred, the processor providesthe DMA
controller with the source and destination addresses and the total number of bytes. The DMA controller
then transfers the data from the source to the destination automatically. After each byteis copied, each
address isincremented and the number of bytes remaining is reduced by one. When the number of bytes
remaining reaches zero, the block transfer ends and the DMA controller sends an interrupt to the
processor.
Inatypica DMA scenario, the block of dataistransferred directly to or from memory. For example, a
network controller might want to place an incoming network packet into memory asit arrives, but only
notify the processor once the entire packet has been received. By using DMA, the processor can spend
more time processing the dataonce it arrives and less time transferring it between devices. The
processor and DMA controller must share the address and data buses during thistime, but thisis
handled automatically by the hardware and the processor is otherwise uninvolved with the actual
transfer.

The purpose of amemory test isto confirm that each storage location in amemory device isworking. In other
words, if you store the number 50 at a particular address, you expect to find that number stored there until another
number iswritten. The basic idea behind any memory test, then, isto write some set of data values to each address
in the memory device and verify the data by reading it back. If all the values read back are the same as those that
were written, then the memory device is said to passthe test. Asyou will see, it isonly through careful selection of
the set of data valuesthat you can be sure that a passing result is meaningful.

Of course, amemory test like the one just described is unavoidably destructive. In the process of testing the
memory, you must overwrite its prior contents. Because it is generally impractical to overwrite the contents of
nonvolatile memories, the tests described in this section are generally used only for RAM testing. However, if the
contents of a hybrid memory are unimportant-as they are during the product devel opment stage-these same
algorithms can be used to test those devices as well. The problem of validating the contents of a nonvolatile memory
isaddressed in alater section of this chapter.

6.2.1 Common Memory Problems

Before learning about specific test algorithms, you should be familiar with the types of memory problemsthat are
likely to occur. One common misconception among software engineersis that most memory problems occur within
the chips themselves. Though amajor issue at one time (afew decades ago), problems of this type areincreasingly
rare. The manufacturers of memory devices perform avariety of post-production tests on each batch of chips. If
thereis a problem with a particular batch, it is extremely unlikely that one of the bad chips will make its way into
your system.
The one type of memory chip problem you could encounter is a catastrophic failure. Thisisusually caused by some
sort of physical or electrical damage received by the chip after manufacture. Catastrophic failures are uncommon
and usually affect large portions of the chip. Because alarge areais affected, it is reasonable to assume that
catastrophic failure will be detected by any decent test algorithm.
In my experience, amore common source of memory problemsisthe circuit board. Typical circuit board problems
are:

Problems with the wiring between the processor and memory device

Missing memory chips

Improperly inserted memory chips
These are the problems that a good memory test algorithm should be able to detect. Such atest should also be able to
detect catastrophic memory failures without specifically looking for them. So let's discuss circuit board problemsin
more detail.

6.2.1.1 Electrical wiring problems

An electrical wiring problem could be caused by an error in design or production of the board or asthe result of
damage received after manufacture. Each of the wires that connect the memory device to the processor is one of
three types. an address line, adataline, or acontrol line. The address and data lines are used to select the memory
location and to transfer the data, respectively. The control linestell the memory device whether the processor wants
to read or write the location and precisely when the datawill be transferred. Unfortunately, one or more of these

wires could be improperly routed or damaged in such away that it is either shorted (i.e., connected to another wire
on the board) or open (not connected to anything). These problems are often caused by abit of solder splash or a
broken trace, respectively. Both cases areillustrated in Figure 6-2

Memaory] Memary “"“']
Processor | Processor —
Shorted Wire Open Wire

Figure 6-2. Possible wiring problems

Problems with the electrical connections to the processor will cause the memory device to behave incorrectly. Data
might be stored incorrectly, stored at the wrong address, or not stored at all. Each of these symptoms can be
explained by wiring problems on the data, address, and control lines, respectively.

If the problem iswith adataline, several databits might appear to be "stuck together” (i.e., two or more bits always
contain the same val ue, regardless of the data transmitted). Similarly, adatabit might be either "stuck high" (always
1) or "stuck low" (always 0). These problems can be detected by writing a sequence of data values designed to test
that each data pin can be set to and 1, independently of all the others.

If an address line has awiring problem, the contents of two memory locations might appear to overlap. In other
words, datawritten to one address will instead overwrite the contents of another address. This happens because an
address bit that is shorted or open will cause the memory device to see an address different from the one selected by
the processor.

Another possibility isthat one of the control linesis shorted or open. Although it is theoretically possible to develop
specific testsfor control line problems, it is not possible to describe a general test for them. The operation of many
control signalsis specific to the processor or memory architecture. Fortunately, if thereis a problem with a control
line, the memory will probably not work at all, and thiswill be detected by other memory tests. If you suspect a
problem with a control line, it is best to seek the advice of the board's designer before constructing a specific test.

6.2.1.2 Missing memory chips

A missing memory chipisclearly aproblem that should be detected. Unfortunately, because of the capacitive nature
of unconnected electrical wires, some memory tests will not detect this problem. For example, suppose you decided
to use the following test algorithm: write the value 1 to the first location in memory, verify the value by reading it
back, write 2 to the second location, verify the value, write 3 to the third location, verify, etc. Because each read
occurs immediately after the corresponding write, it is possible that the data read back represents nothing more than
the voltage remaining on the data bus from the previous write. If the datais read back too quickly, it will appear that
the data has been correctly stored in memory-even though there is no memory chip at the other end of the bus!

To detect amissing memory chip, the test must be altered. Instead of performing the verification read immediately
after the corresponding write, it is desirable to perform several consecutive writes followed by the same number of
consecutive reads. For example, write the value 1 to the first location, 2 to the second location, and 3 to the third
location, then verify the data at the first location, the second location, etc. If the data values are unique (asthey are
in thetest just described), the missing chip will be detected: the first value read back will correspond to the last
value written (3), rather than the first (1).

6.2.1.3 Improperly inserted chips

If amemory chip is present but improperly inserted in its socket, the system will usually behave as though thereisa
wiring problem or amissing chip. In other words, some number of the pins on the memory chip will either not be
connected to the socket at all or will be connected at the wrong place. These pinswill be part of the data bus, address
bus, or control wiring. So as long as you test for wiring problems and missing chips, any improperly inserted chips
will be detected automatically.

Before going on, let's quickly review the types of memory problems we must be able to detect. Memory chips only
rarely have internal errors, but if they do, they are probably catastrophic in nature and will be detected by any test. A
more common source of problemsis the circuit board, where awiring problem can occur or amemory chip might be
missing or improperly inserted. Other memory problems can occur, but the ones described here are the most
common and also the simplest to test in ageneric way.

6.2.2 Developing a Test Strategy

By carefully selecting your test data and the order in which the addresses are tested, it is possible to detect all of the
memory problems described earlier. It is usually best to break your memory test into small, single-minded pieces.
This helpsto improve the efficiency of the overall test and the readability of the code. More specific tests can also
provide more detailed information about the source of the problem, if oneis detected.

| have found it is best to have three individual memory tests. adata bus test, an address bus test, and a device test.
Thefirst two test for electrical wiring problems and improperly inserted chips; the third isintended to detect missing
chips and catastrophic failures. As an unintended consequence, the device test will also uncover problems with the
control buswiring, though it cannot provide useful information about the source of such a problem.

The order in which you execute these three tests is important. The proper order is. data bus test first, followed by the
address bus test, and then the device test. That's because the address bus test assumes aworking data bus, and the
device test results are meaningless unless both the address and data buses are known to be good. If any of the tests
fail, you should work with a hardware engineer to locate the source of the problem. By looking at the data value or
address at which the test failed, she should be able to quickly isolate the problem on the circuit board.

6.2.2.1 Data bustest

The first thing we want to test is the data bus wiring. We need to confirm that any value placed on the data bus by
the processor is correctly received by the memory device at the other end. The most obvious way to test that isto
write all possible data values and verify that the memory device stores each one successfully. However, that is not
the most efficient test available. A faster method is to test the bus one bit at atime. The data bus passes the test if
each data bit can be set to and 1, independently of the other data bits.

A good way to test each bit independently isto perform the so-called "walking 1's test.” Table 6-2 shows the data
patterns used in an 8-bit version of thistest. The name, walking 1's, comes from the fact that a single data bit is set
to 1 and "walked" through the entire dataword. The number of data valuesto test isthe same as the width of the
data bus. This reduces the number of test patterns from 2" to n, where n is the width of the data bus.

Table 6-2. Consecutive Data Valuesfor the Walking 1's Test

00000001

00000010

00000100

00001000

00010000

00100000

01000000

10000000

Because we are testing only the data bus at this point, all of the data values can be written to the same address. Any
address within the memory device will do. However, if the data bus splits as it makes its way to more than one
memory chip, you will need to perform the data bustest at multiple addresses, one within each chip.

To perform the walking 1'stest, simply write the first datavalue in the table, verify it by reading it back, write the
second value, verify, etc. When you reach the end of the table, the test is complete. It is okay to do the read
immediately after the corresponding write this time because we are not yet looking for missing chips. In fact, this
test may provide meaningful results even if the memory chips are not installed!

The function memTestDataBus shows how to implement the walking 1'stest in C. It assumes that the caller will
select the test address, and tests the entire set of data values at that address. If the data bus is working properly, the
function will return 0. Otherwise it will return the data value for which the test failed. The bit that is set in the
returned value corresponds to the first faulty dataline, if any.

typedef unsigned char datum /* Set the data bus width to 8 bits. */

/**

*

* Function: meniTest Dat aBus()

Description: Test the data bus wiring in a nmenory region by
performng a walking 1's test at a fixed address
within that region. The address (and hence the
menory region) is selected by the caller.

Not es:

Ret ur ns: 0O if the test succeeds.
A nonzero result is the first pattern that fail ed.

L S R

**/

dat um
menirest Dat aBus(vol atil e datum * address)

{

datum pattern;

/*
* Performa walking 1's test at the given address.
*/
for (pattern = 1; pattern != 0; pattern <<= 1)
{
/*
* Wite the test pattern.
*/
*address = pattern;
/*
* Read it back (inmmediately is okay for this test).
*/
if (*address != pattern)
{
return (pattern);
}
}

return (0);

} /* memlest Dat aBus() */
6.2.2.2 Address bustest

After confirming that the data bus works properly, you should next test the address bus. Remember that address bus
problems lead to overlapping memory locations. There are many possible addresses that could overlap. However, it
is not necessary to check every possible combination. Y ou should instead follow the example of the previous data
bustest and try to isolate each address bit during testing. Y ou simply need to confirm that each of the address pins
can be set to and 1 without affecting any of the others.

The smallest set of addresses that will cover all possible combinationsisthe set of "power-of-two" addresses. These
addresses are anal ogous to the set of data values used in the walking 1's test. The corresponding memory locations
are 00001h, 00002h, 00004h, 00008h, 00010h, 00020h, and so forth. In addition, address 00000h must also be
tested. The possibility of overlapping locations makes the address bus test harder to implement. After writing to one
of the addresses, you must check that none of the others has been overwritten.

It isimportant to note that not all of the address lines can be tested in thisway. Part of the address-the leftmost bits-
selects the memory chip itself. Another part-the rightmost bits-might not be significant if the databuswidthis
greater than 8 bits. These extra bitswill remain constant throughout the test and reduce the number of test addresses.
For example, if the processor has 20 address bits, as the 80188EB does, then it can address up to 1 megabyte of
memory. If you want to test a 128-kilobyte block of memory, the three most significant address bits will remain
constant 2! In that case, only the 17 rightmost bits of the address bus can actually be tested.

(1 128 kilobytes is one-eighth of the total 1-megabyte address space.

To confirm that no two memory locations overlap, you should first write someinitial data value at each power-of-
two offset within the device. Then write anew value-an inverted copy of theinitial valueisagood choice-to the first
test offset, and verify that theinitial datavalueis still stored at every other power-of-two offset. If you find a

location (other than the one just written) that contains the new data value, you have found a problem with the current
address bit. If no overlapping isfound, repeat the procedure for each of the remaining offsets.

The function memTestAddressBus shows how this can be done in practice. The function accepts two parameters.
Thefirst parameter is the base address of the memory block to be tested, and the second isits size, in bytes. The size
is used to determine which address bits should be tested. For best results, the base address should contain ain each
of those hits. If the address bus test fails, the address at which the first error was detected will be returned.
Otherwise, the function returns NULL to indicate success.

/**

Functi on: menirest Addr essBus()

Description: Test the address bus wiring in a nmenory region by
performing a walking 1's test on the relevant bits
of the address and checking for aliasing. The test
will find single-bit address failures such as stuck
-hi gh, stuck-low, and shorted pins. The base address
and size of the region are selected by the caller

Not es: For best results, the selected base address shoul d
have enough LSB 0's to guarantee single address bit
changes. For exanple, to test a 64 KB region, select
a base address on a 64 KB boundary. Also, select the
region size as a power-of-two--if at all possible.

Ret ur ns: NULL if the test succeeds.
A nonzero result is the first address at which an
al i asi ng probl em was uncovered. By exam ning the
contents of menory, it may be possible to gather
addi ti onal information about the problem

o R I S R T N N N R

**/

datum *
menirest Addr essBus(vol atil e datum * baseAddress, unsigned | ong nBytes)
{

unsi gned | ong addressMask = (nBytes - 1);

unsi gned | ong of fset;

unsi gned long testOff set;

datum pattern
datum anti pattern

(datum) OXAAAAAAAA;
(datun) 0x55555555;

/*

* Wite the default pattern at each of the power-of-two offsets..

*/

for (offset = sizeof (datun); (offset & addressMask) != 0; offset <<= 1)

baseAddress[of fset] = pattern;

}

/*

* Check for address bits stuck high.
*/

testOffset = 0;

baseAddress[test Offset] = antipattern;

for (offset = sizeof(datum); (offset & addressMask) != 0; offset <<= 1)

{
if (baseAddress[offset] != pattern)

{
}

return ((datum *) &baseAddress[offset]);

baseAddress[test Offset] = pattern;

/*

* Check for address bits stuck |ow or shorted.

*/

for (testOffset = sizeof (datunm); (testOffset & addressMask) != 0;
testOffset <<= 1)

{

baseAddress[test Offset] = antipattern;

for (offset = sizeof(datum; (offset & addressMask) !
of fset <<= 1)

0;

if ((baseAddress[offset] != pattern) && (offset !
{

}

test Offset))

return ((datum *) &baseAddress[testOffset]);

}

baseAddress[test Offset] = pattern;
}

return (NULL);

} /* menmTest AddressBus() */

6.2.2.3 Device test

Once you know that the address and data bus wiring are correct, it is necessary to test the integrity of the memory
deviceitself. The thing to test isthat every bit in the device is capable of holding both and 1. Thisisafairly
straightforward test to implement, but it takes significantly longer to execute than the previous two.

For a complete device test, you must visit (write and verify) every memory location twice. Y ou are free to choose
any datavaluefor thefirst pass, solong asyou invert that value during the second. And because there is apossibility
of missing memory chips, it is best to select a set of data that changes with (but is not equivalent to) the address. A
simple exampleis an increment test.

The data values for the increment test are shown in the first two columns of Table 6-3. The third column shows the
inverted data values used during the second pass of thistest. The second pass represents a decrement test. There are
many other possible choices of data, but the incrementing data pattern is adequate and easy to compute.

Table 6-3. Data Values for an Increment Test

Memory Offset Binary Value Inverted Value
00Ch 00000001 11111110
001h 00000010 11111101
002h 00000011 11111100
003h 00000100 11111011
OFEh 11111111 00000000
OFFh 00000000 11111111

The function memTestDevice implements just such a two-pass increment/decrement test. It accepts two parameters
from the caller. Thefirst parameter is the starting address, and the second is the number of bytesto be tested. These
parameters give the user amaximum of control over which areas of memory will be overwritten. The function will
return NULL on success. Otherwise, the first address that contains an incorrect datavalueis returned.

/**

*

. . .
Functi on: menirest Devi ce()

*

*

Description: Test the integrity of a physical nmenory device by

{

* % ok kX X X X X

* 0% X X X * F

performng an increment/decrement test over the
entire region. |In the process every storage bit
in the device is tested as a zero and a one. The
base address and the size of the region are

sel ected by the caller.

Not es:

Ret ur ns: NULL if the test succeeds. Also, in that case, the

entire menory region will be filled with zeros.

A nonzero result is the first address at which an
i ncorrect value was read back. By exam ning the

contents of menmory, it nmay be possible to gather

addi tional information about the problem

**/

datum *
menifest Devi ce(vol atil e datum * baseAddress, unsigned | ong nBytes)

unsi gned | ong of fset;
unsi gned | ong nWords = nBytes / sizeof(datum;

datum pattern;
datum anti pattern;

/*
* Fill menory with a known pattern.
*/
for (pattern = 1, offset = 0; offset < nWrds; pattern++, offset++)

{

}

/*
* Check each location and invert it for the second pass.
*/
for (pattern = 1, offset = 0; offset < nWrds; pattern++, offset++)

{

baseAddress[of fset] = pattern;

if (baseAddress[offset] != pattern)
{
return ((datum *) &baseAddress[offset]);
}
antipattern = ~pattern;
baseAddress[of fset] = antipattern
}
/*

* Check each location for the inverted pattern and zero it.
*/
for (pattern = 1, offset = 0; offset < nWrds; pattern++, offset++)

{

antipattern = ~pattern;
if (baseAddress[offset] != antipattern)

{
}

baseAddress[of fset] = O;

return ((datum *) &baseAddress[offset]);

}

return (NULL);

} /* menmTest Devi ce() */
6.2.2.4 Putting it all together

To make our discussion more concrete, let's consider a practical example. Suppose that we wanted to test the second
64-kilobyte chunk of the SRAM on the Arcom board. To do this, we would call each of the three test routinesin
turn. In each case, the first parameter would be the base address of the memory block. Looking at our memory map,
we see that the physical address is 10000h, which is represented by the segment:offset pair 0x1000:0000. The width
of the data busis 8 bits (afeature of the 80188EB processor), and there are atotal of 64 kilobytes to be tested
(corresponding to the rightmost 16 bits of the address bus).

If any of the memory test routines returns a nonzero (or non-NULL) value, we'll immediately turn on thered LED to
visually indicate the error. Otherwise, after all three tests have completed successfully, we will turn on the green
LED. Inthe event of an error, the test routine that failed will return some information about the problem
encountered. Thisinformation can be useful when communicating with a hardware engineer about the nature of the
problem. However, it isvisible only if we are running the test program in a debugger or emulator.

The best way to proceed is to assume the best, download the test program, and let it run to completion. Then, if and
only if thered LED comes on, must you use the debugger to step through the program and examine the return codes
and contents of the memory to see which test failed and why.

#i nclude "Il ed. h"

#defi ne BASE_ADDRESS (volatile datum *) 0x10000000
#tdefi ne NUM _BYTES 0x10000

/**

*

Functi on: mai n()

Description: Test the second 64 KB bank of SRAM

Ret ur ns: 0 on success.

*

*

*

*

* Not es:
*

*

* Ocherwise -1 indicates failure.
*

*

***/

mai n(voi d)

{
i f ((menTest Dat aBus(BASE_ADDRESS) != 0) ||
(menTest Addr essBus(BASE_ADDRESS, NUM BYTES) != NULL) ||
(menTest Devi ce(BASE_ADDRESS, NUM BYTES) != NULL))
{
t oggl eLed(LED_RED) ;
return (-1);
}
el se
{
t oggl eLed(LED_GREEN) ;
return (0);
}

} [* main() */

Unfortunately, it is not always possible to write memory testsin a high-level language. For example, C and C++
both require the use of a stack. But a stack itself requires working memory. This might be reasonable in a system
that has more than one memory device. For example, you might create a stack in an area of RAM that is already
known to be working, while testing another memory device. In acommon such situation, asmall SRAM could be
tested from assembly and the stack could be created there afterward. Then alarger block of DRAM could be tested
using a nicer test algorithm, like the one shown earlier. If you cannot assume enough working RAM for the stack
and data needs of the test program, then you will need to rewrite these memory test routines entirely in assembly
language.

Another option is to run the memory test program from an emulator. In this case, you could choose to place the stack
in an area of the emulator's own internal memory. By moving the emulator's internal memory around in the target
memory map, you could systematically test each memory device on the target.

The need for memory testing is perhaps most apparent during product development, when the reliability of the
hardware and its design are still unproved. However, memory is one of the most critical resourcesin any embedded
system, so it might also be desirable to include amemory test in the final release of your software. In that case, the
memory test and other hardware confidence tests should be run each time the system is powered-on or reset.
Together, thisinitial test suite forms a set of hardware diagnostics. If one or more of the diagnosticsfail, arepair
technician can be called in to diagnose the problem and repair or replace the faulty hardware.

6.3 Validating Memory Contents

It does not usually make sense to perform the type of memory testing described earlier when dealing with ROM and
hybrid memory devices. ROM devices cannot be written at all, and hybrid devices usually contain data or programs
that cannot be overwritten. However, it should be clear that the same sorts of memory problems can occur with these
devices. A chip might be missing or improperly inserted or physically or electrically damaged, or there could be an
electrical wiring problem. Rather than just assuming that these nonvolatile memory devices are functioning

properly, you would be better off having some way to confirm that the device isworking and that the data it contains
isvalid. That's where checksums and cyclic redundancy codes comein.

6.3.1 Checksums

How can we tell if the data or program stored in a nonvolatile memory device is still valid? One of the easiest ways
isto compute a checksum of the datawhen it is known to be good-prior to programming the ROM, for example.
Then, each time you want to confirm the validity of the data, you need only recal cul ate the checksum and compare
the result to the previously computed value. If the two checksums match, the datais assumed to be valid. By
carefully selecting the checksum algorithm, we can increase the probability that specific types of errors will be
detected.

The simplest checksum algorithm isto add up all the data bytes (or, if you prefer a 16-bit checksum, words),
discarding carries along the way. A noteworthy weakness of thisalgorithmisthat if all of the data (including the
stored checksum) is accidentally overwritten with 0's, then this data corruption will be undetectable. The sum of a
large block of zerosis also zero. The simplest way to overcome this weaknessisto add afinal step to the checksum
algorithm: invert the result. That way, if the data and checksum are somehow overwritten with O's, the test will fail
because the proper checksum would be FFh.

Unfortunately, a simple sum-of-data checksum like this one cannot detect many of the most common data errors.
Clearly if one bit of datais corrupted (switched from 1 to O, or vice versa), the error would be detected. But what if
two bits from the very same "column" happened to be corrupted alternately (the first switches from 1 to 0, the other
from to 1)? The proper checksum does not change, and the error would not be detected. If bit errors can occur, you
will probably want to use a better checksum algorithm. We'll see one of these in the next section.

After computing the expected checksum, we'll need a place to storeit. One option isto compute the checksum ahead
of time and define it as a constant in the routine that verifies the data. This method is attractive to the programmer
but has several shortcomings. Foremost among them is the possibility that the data-and, as aresult, the expected
checksum-might change during the lifetime of the product. Thisis particularly likely if the data being tested is
actually embedded software that will be periodically updated as bugs are fixed or new features added.

A better ideais to store the checksum at some fixed location in memory. For example, you might decide to use the
very last location of the memory device being verified. This makes insertion of the checksum easy-just compute the
checksum and insert it into the memory image prior to programming the memory device. When you recal culate the
checksum, you simply skip over the location that contains the expected result, and compare the new result to the
value stored there. Another good place to store the checksum isin another nonvolatile memory device. Both of these
solutions work very well in practice.

6.3.2 Cyclic Redundancy Codes

A cyclic redundancy code (CRC) is a specific checksum algorithm that is designed to detect the most common data
errors. The theory behind the CRC is quite mathematical and beyond the scope of this book. However, cyclic
redundancy codes are frequently useful in embedded applications that require the storage or transmission of large
blocks of data. What followsis abrief explanation of the CRC technique and some source code that shows how it
can be donein C. Thankfully, you don't need to understand why CRCs detect data errors-or even how they are
implemented-to take advantage of their ability to detect errors.

Here'savery brief explanation of the mathematics. When computing a CRC, you consider the set of datato bea
very long string of 1'sand O's (called the message). This binary string is divided-in arather peculiar way-by a
smaller fixed binary string called the generator polynomial . The remainder of thisbinary long division isthe CRC
checksum. By carefully selecting the generator polynomial for certain desirable mathematical properties, you can
use the resulting checksum to detect most (but never all) errors within the message. The strongest of these generator
polynomials are able to detect all single and double bit errors, and all odd-length strings of consecutive error bits. In
addition, greater than 99.99% of all burst errors-defined as a sequence of bits that has one error at each end-can be

detected. Together, these types of errors account for alarge percentage of the possible errors within any stored or
transmitted binary message.

Those generator polynomials with the very best error-detection capabilities are frequently adopted as international
standards. Three such standards are parameterized in Table 6-4. Associated with each standard are its width (in bits),
the generator polynomial, a binary representation of the polynomial called the divisor, aninitial value for the
remainder, and avalue to XOR (exclusive or) with the final remainder.2

121 The divisor is simply a binary representation of the coefficients of the generator polynomial-each of which is either
or 1. To make this even more confusing, the highest-order coefficient of the generator polynomial (alwaysal) isleft
out of the binary representation. For example, the polynomial in the first standard, CCITT, has four nonzero
coefficients. But the corresponding binary representation has only three 1'sin it (bits 12, 5, and 0).

Table 6-4. International Standard Generator Polynomials

CCITT CRC16 CRC32
Checksum size . . .
(width) 16 bits 16 bits 32 bits
Generator X+ X2+ + O+ X+ R+ P+ + 2+ +x +x +x0+ B e X +x + X + X
polynomial 1 1 + ¢t + 1
Divisor 0x1021 0x8005 0x04C11DB7
(polynomial)
Initia OXFFFF 0x0000 OXFFFFFFFF
remainder X X X
Final XOR
\alue 0x0000 0x0000 OxFFFFFFFF

The code that follows can be used to compute any CRC formulathat has asimilar set of parameters2

I3l There is one other potential twist called "reflection” that my code does not support. Y ou probably won't need that
anyway.

To make this as easy as possible, | have defined all of the CRC parameters as constants. To change to the CRC16
standard, simply change the values of the three constants. For CRC32, change the three constants and redefine width
astype unsigned long.
/ *

* The CRC paraneters. Currently configured for CCITT.

* Sinply nodify these to switch to anot her CRC standard.

*/
#defi ne POLYNOM AL 0x1021
#def i ne | NI TI AL_REMAI NDER OXFFFF
#def i ne FI NAL_XOR VALUE 0x0000
/ *

* The width of the CRC cal cul ation and result.
* Modify the typedef for an 8 or 32-bit CRC standard.
*/

t ypedef unsigned short wi dth;

#defi ne WDTH (8 * sizeof(width))
#define TOPBIT (1 << (WDTH - 1))
The function crclnit should be called first. It implements the peculiar binary division required by the CRC
algorithm. It will precompute the remainder for each of the 256 possible values of a byte of the message data. These
intermediate results are stored in a global lookup table that can be used by the crcCompute function. By doing it this
way, the CRC of alarge message can be computed a byte at atime rather than bit by bit. This reduces the CRC
calculation time significantly.
/*

* An array containing the pre-conmputed internediate result for each

* possible byte of input. This is used to speed up the conputation.

*/
wi dth crcTabl e[256];

/**

*

**/

voi d

* Function: crclnit()

*

* Description: Initialize the CRC | ookup table. This table is used
* by crcCompute() to nake CRC conputation faster.

*

* Not es: The nod-2 binary long division is inplenented here.
*

* Returns: None defi ned.

*

crclnit(void)

{

wi dth reminder;
wi dth dividend;

i nt

/*

bit;

* Performbinary long division, a bit at a tinme.

*/
for

{

}

(dividend = 0; dividend < 256; dividend++)

/*
* |nitialize the remainder.
*/
remai nder = dividend << (WDTH - 8);
/*
* Shift and XOR with the pol ynom al .
*/
for (bit = 0; bit < 8; bit++)
{
/-k
* Try to divide the current data bit.
*/
if (remai nder & TOPBIT)
{
remai nder = (remai nder << 1) ~ POLYNOM AL;
}
el se
{
remai nder = renmi nder << 1;
}
}
/*
* Save the result in the table.
*/
crcTabl e[di vidend] = renmi nder;

} [* crclnit() */

Finally, we arrive at the actual workhorse routine, crcCompute. Thisis aroutine that you can call over and over
from your application to compute and verify CRC checksums. An additional benefit of splitting the computation
between crclnit and crcCompute is that the crclnit function need not be executed on the embedded system. Instead,
this function can be run in advance-on any computer-to produce the contents of the lookup table. The valuesin the
table can then be stored in ROM (requiring only 256 bytes of storage) and referenced over and over by crcCompute.

/**

*

* Function: crcConput e()

Descri ption: Conpute the CRC checksum of a binary nessage bl ock.

Not es: This function expects that crclnit() has been called
first to initialize the CRC | ookup table.

Ret ur ns: The CRC of the data.

* % ok F X X X X

**/
wi dt h
crcConput e(unsi gned char * nmessage, unsigned int nBytes)

{

unsi gned int of fset;
unsi gned char byte;

wi dt h remai nder = | NI TI AL_REMAI NDER;

/*

* Divide the nmessage by the polynomal, a byte at a tine.
*/

for (offset = 0; offset < nBytes; offset++)

{

byte = (renmmi nder >> (WDTH - 8)) " nessage[offset];
remai nder = crcTabl e[byte] ~ (renminder << 8);

}

/*
* The final remainder is the CRC result.
*/

return (remai nder ~ FINAL_XOR VALUE);

} /* crcConpute() */

6.4 Working with Flash Memory

From the programmer's viewpoint, Flash is arguably the most complicated memory device ever invented. The
hardware interface has improved somewhat since the original deviceswereintroduced in 1988, but thereisstill a
long way to go. Reading from Flash memory isfast and easy, asit should be. In fact, reading datafrom aFlash is
not all that different from reading from any other memory device.2 The processor simply provides the address, and
the memory device returns the data stored at that location. Most Flash devices enter thistype of "read" mode
automatically whenever the system is reset; no special initialization sequenceis required to enable reading.

14l Thereis one small difference worth noting here. The erase and write cycles take longer than the read cycle. So if a
read is attempted in the middle of one of those operations, the result will be either delayed or incorrect, depending on

the device.

Writing data to a Flash is much harder. Three factors make writes difficult. First, each memory location must be
erased before it can be rewritten. If the old datais not erased, the result of the write operation will be some logical
combination of the old and new values, and the stored value will usually be something other than what you intended.
The second thing that makes writesto a Flash difficult is that only one sector, or block, of the device can be erased
at atime; it isimpossible to erase asingle byte. The size of an individual sector varies by device, but it isusually on
the order of several thousand bytes. For example, the Flash device on the Arcom board-an AMD 29F010-has eight
sectors, each containing 16 kilobytes.

Finally, the process of erasing the old data and writing the new varies from one manufacturer to another and is
usually rather complicated. These device programming interfaces are so awkward that it is usually best to add a
layer of software to make the Flash memory easier to use. If implemented, this hardware-specific layer of software
isusualy called the Flash driver.

6.4.1 Flash Drivers

Because it can be difficult to write data to the Flash device, it often makes sense to create a Flash driver. The
purpose of the Flash driver isto hide the details of a specific chip from the rest of the software. This driver should

present a simple application programming interface (API) consisting of the erase and write operations. Parts of the
application software that need to modify data stored in Flash memory simply call the driver to handle the details.
This allows the application programmer to make high-level reguests like "erase the block at address DO0O0Oh" or
"write ablock of data, beginning at address D4000h." It also keeps the device-specific code separate, so it can be
easily modified if another manufacturer's Flash deviceis later used.

A Flash driver for the AMD 29F010 device on the Arcom board is shown below. This driver contains just two
functions: flashErase and flashWrite. These functions erase an entire sector and write an array of bytes, respectively.
Y ou should be able to see from the code listings that the interaction with the Flash device is no picnic. This code
will work only with an AMD 29F010 device. However, the same API could be used with any Flash memory device.
#i ncl ude "tgt188eb. h"

/ *

* Features of the AMD 29F010 Fl ash nenory device.
*/

#defi ne FLASH SI ZE 0x20000

#defi ne FLASH BLOCK_SI ZE 0x04000

#defi ne UNLOCK1_OFFSET 0x5555

#def i ne UNLOCK2_OFFSET Ox2AAA

#defi ne COMVAND_OFFSET 0x5555

#define FLASH CMVD_UNLOCK1 OxAA

#defi ne FLASH CMD_UNLOCK2 0x55

#def i ne FLASH_CMD_READ RESET 0xFO
#def i ne FLASH_CMD_AUTOSELECT 0x90
#define FLASH_CMD_BYTE_PROGRAM 0xAQ
#define FLASH CMD ERASE SETUP 0x80
#define FLASH CMD CHI P_ERASE 0x10
#defi ne FLASH CMD_SECTOR ERASE 0x30

#def i ne DQ7 0x80
#def i ne DQB 0x20

/**

*

* Function: flashWite()
*
* Description: Wite data to consecutive |ocations in the Flash.
*
* Not es: This function is specific to the AMD 29F010 Fl ash
* menory. In that device, a byte that has been
* previously witten nust be erased before it can be
* rewitten successfully.
*
* Returns: The nunber of bytes successfully witten.
*
**/
i nt
flashWite(unsigned char * baseAddr ess,

const unsigned char data[],

unsi gned int nByt es)

unsi gned char * flashBase = FLASH BASE;
unsi gned i nt of f set;

for (offset = 0; offset < nBytes; offset++)
{
/*
*] ssue the conmand sequence for byte program
*/
fl ashBase[UNLOCK1_OFFSET]
fl ashBase[UNLOCK2_OFFSET]

FLASH_CMD_UNLOCK1;
FLASH_CMD_UNLOCK2;

}

}

fl ashBase[COMMAND_OFFSET] = FLASH CMD_BYTE_PROGRAM

/*

* Performthe actual wite operation.
*/

baseAddress[of fset] = dataoffset];

/*

* Wait for the operation to conmplete or tinme-out.

*/

while (((baseAddress[offset] & DQ7) != (data[offset] & DQ7)) &&
I (baseAddress[offset] & DQB));

if ((baseAddress[offset] & DQ7) != (data[offset] & DQr))
{

}

br eak;

return (offset);

/* flashWite() */

/**

*

*
*
*
*
*
*
*
*
*
*
*
*
*

Functi on: fl ashErase()

Description: Erase a block of the Flash nmenory device.

Not es: This function is specific to the AMD 29F010 Fl ash

menory. In this device, individual sectors may be
hardware protected. |If this algorithmencounters

a protected sector, the erase operation will fail

wi t hout noti ce.

Ret ur ns: O on success.

O herwise -1 indicates failure.

**/

i nt

fl ashErase(unsi gned char * sector Address)

{

unsi gned char * flashBase = FLASH BASE;

/*

*

*/

fl ashBase[UNLOCK1_OFFSET]
fl ashBase[UNLOCK2_OFFSET]
fl ashBase[COMMAND OFFSET]
fl ashBase[UNLOCK1_OFFSET]
fl ashBase[UNLOCK2_OFFSET]

| ssue the command sequence for sector erase.

FLASH_CMD_UNLOCK1;
FLASH_CMD_UNLOCK2;
FLASH_CVD_ERASE_SETUP;
FLASH_CMD_UNLOCK1;
FLASH_CMD_UNLOCK2;

*sect or Address = FLASH CMD_SECTOR_ERASE;

/*

* Wait for the operation to conplete or time-out.

*/

while (!(*sectorAddress & DQ7) && ! (*sector Address & D)) ;

if (!(*sectorAddress & DQ7))

{

return (-1);

}

return (0);

} /* flashErase() */

Of course, thisisjust one possible way to interface to a Flash memory-and not a particularly advanced one at that. In
particular, thisimplementation does not handle any of the chip's possible errors. What if the erase operation never
completes? The function flashErase will just keep spinning its wheels, waiting for that to occur. A more robust
implementation would use a software time-out as a backup. For example, if the Flash device doesn't respond within
twice the maximum expected time (as stated in the databook), the routine could stop polling and indicate the error to
the caller (or user) in some way.

Another thing that people sometimes do with Flash memory isto implement a small filesystem. Because the Flash
memory provides nonvolatile storage that is also rewriteable, it can be thought of as similar to any other secondary
storage system, such as ahard drive. In the filesystem case, the functions provided by the driver would be morefile-
oriented. Standard filesystem functions likeopen, close, read, and write provide agood starting point for the driver's
programming interface. The underlying filesystem structure can be as simple or complex as your system requires.
However, awell-understood format like the File Allocation Table (FAT) structure used by DOS is good enough for
most embedded projects.

Chapter 7.

Peripherals

Each pizza glidesinto a slot like a circuit board into a computer, clicksinto place as the
smart box interfaces with the onboard system of the car. The address of the customer is
communicated to the car, which computes and projects the optimal route on a heads-up

display.
-Neal Stephenson, Show Crash

In addition to the processor and memory, most embedded systems contain a handful of other hardware devices.
Some of these devices are specific to the application domain, while others-like timers and serial ports-are useful in a
wide variety of systems. The most generically useful of these are often included within the same chip asthe
processor and are called internal, or on-chip, peripherals. Hardware devices that reside outside the processor chip
are, therefore, said to be external peripherals. In this chapter we'll discuss the most common software i ssues that
arise when interfacing to a peripheral of either type.

7.1 Control and Status Registers

The basic interface between an embedded processor and a peripheral device isaset of control and status registers.
Theseregisters are part of the peripheral hardware, and their locations, size, and individual meanings are features of
the peripheral. For example, the registers within a serial controller are very different from those in atimer/counter.
In this section, I'll describe how to manipulate the contents of these control and status registers directly from your
C/C++ programs.

Depending upon the design of the processor and board, peripheral devices arelocated either in the processor's
memory space or within the 1/0 space. In fact, it is common for embedded systems to include some peripheral s of
each type. These are called memory-mapped and |/O-mapped peripherals, respectively. Of the two types, memory-
mapped peripherals are generally easier to work with and are increasingly popular.

Memory-mapped control and status registers can be made to look just like ordinary variables. To do this, you need
simply declare a pointer to the register, or block of registers, and set the value of the pointer explicitly. For example,
if the P2LTCH register from Chapter 2, were memory-mapped and located at physical address 7205Eh, we could
have implemented toggleLed entirely in C, as shown below. A pointer to an unsigned short-a 16-bit register-is
declared and explicitly initialized to the address 0x7200:005E. From that point on, the pointer to the register looks
just like a pointer to any other integer variable;

unsi gned short * pP2LTCH = (unsigned short *) 0x7200005E;

voi d
t oggl eLed(voi d)

pP2LTCH ~= LED_GREEN; / Read, xor, and nodify. */

} /* toggl eLed() */

Note, however, that there is one very important difference between device registers and ordinary variables. The
contents of a device register can change without the knowledge or intervention of your program. That's because the
register contents can also be modified by the peripheral hardware. By contrast, the contents of avariable will not
change unless your program modifies them explicitly. For that reason, we say that the contents of a device register
arevolatile, or subject to change without notice.

The C/C++ keyword volatile should be used when declaring pointers to device registers. This warns the compiler
not to make any assumptions about the data stored at that address. For example, if the compiler sees awrite to the
volatile location followed by another write to that same location, it will not assume that the first writeisan
unnecessary use of processor time. In other words, the keyword volatile instructs the optimization phase of the
compiler to treat that variable as though its behavior cannot be predicted at compile time.

Here's an example of the use of volatile to warn the compiler about the P2LTCH register in the previous code
listing:

vol atil e unsigned short * pP2LTCH = (unsigned short *) 0x7200005E;

It would be wrong to interpret this statement to mean that the pointer itself isvolatile. In fact, the value of the
variable pP2LTCH will remain 0x7200005E for the duration of the program (unlessit is changed somewhere else,

of course). Rather, it isthe data pointed to that is subject to change without notice. Thisisavery subtle point, and it
is easy to confuse yourself by thinking about it too much. Just remember that the location of aregister isfixed,
though its contents might not be. And if you use the volatile keyword, the compiler will assume the same.

The primary disadvantage of the other type of device registers, 1/O-mapped registers, isthat there is no standard way
to access them from C or C++. Such registers are accessible only with the help of special machine-language
instructions. And these processor-specific instructions are not supported by the C or C++ language standards. Soitis
necessary to use special library routines or inline assembly (as we did in Chapter 2) to read and write the registers of
an 1/O-mapped device.

.2 The Device Driver Philosophy

When it comes to designing device drivers, you should always focus on one easily stated goal: hide the hardware
completely. When you're finished, you want the device driver modul e to be the only piece of softwarein the entire
system that reads or writes that particular device's control and status registers directly. In addition, if the device
generates any interrupts, the interrupt service routine that responds to them should be an integral part of the device
driver. In this section, I'll explain why | recommend this philosophy and how it can be achieved.

Of course, attempts to hide the hardware completely are difficult. Any programming interface you select will reflect
the broad features of the device. That's to be expected. The goal should be to create a programming interface that
would not need to be changed if the underlying peripheral were replaced with another inits general class. For
example, all Flash memory devices share the concepts of sectors (though the sector size can differ between chips).
An erase operation can be performed only on an entire sector, and once erased, individual bytes or words can be
rewritten. So the programming interface provided by the Flash driver example in the last chapter should work with
any Flash memory device. The specific features of the AMD 29F010 are hidden from that level, as desired.

Device drivers for embedded systems are quite different from their workstation counterparts. In a modern computer
workstation, device drivers are most often concerned with satisfying the requirements of the operating system. For
example, workstation operating systems generally impose strict requirements on the software interface between
themselves and a network card. The device driver for a particular network card must conform to this software
interface, regardless of the features and capabilities of the underlying hardware. Application programs that want to
use the network card are forced to use the networking API provided by the operating system and don't have direct
access to the card itself. In this case, the goal of hiding the hardware completely is easily met.

By contrast, the application software in an embedded system can easily access your hardware. In fact, because all of
the software is linked together into a single binary image, there is rarely even a distinction made between application
software, operating system, and device drivers. The drawing of these lines and the enforcement of hardware access
restrictions are purely the responsibilities of the software devel opers. Both are design decisions that the devel opers
must consciously make. In other words, the implementers of embedded software can more easily cheat on the
software design than their non-embedded peers.

The benefits of good device driver design are threefold. First, because of the modularization, the structure of the
overall softwareis easier to understand. Second, because there is only one module that ever interacts directly with
the peripheral's registers, the state of the hardware can be more accurately tracked. And, last but not least, software
changes that result from hardware changes are localized to the device driver. Each of these benefits can and will
help to reduce the total number of bugsin your embedded software. But you have to be willing to put in abit of
extraeffort at design timein order to realize such savings.

If you agree with the philosophy of hiding al hardware specifics and interactions within the device driver, it will
usually consist of the five componentsin the following list. To make driver implementation as simple and
incremental as possible, these elements should be developed in the order in which they are presented.

1. A data structure that overlays the memory-mapped control and status registers of the device

The first step in the driver development process is to create a C-style struct that looks just
like the memory-mapped registers of your device. This usualy involves studying the data
book for the peripheral and creating atable of the control and status registers and their
offsets. Then, beginning with the register at the lowest offset, start filling out the struct. (If
one or more locations are unused or reserved, be sure to place dummy variables there to fill
in the additional space.)

An example of such a data structure is shown below. This structure describes the registersin
one of the on-chip timer/counter units within the 80188EB processor. The device has three
registers, arranged as shown in the TimerCounter data structure below. Each register is 16

bits wide and should be treated as an unsigned integer, although one of them, the control
register, is actually a collection of individually significant bits.

struct Ti ner Count er

{

unsi gned short count; /1 Current Count, offset 0x00
unsi gned short maxCount A; /1 Maxi mum Count, offset 0x02
unsi gned short _reserved, /1 Unused Space, offset 0x04
unsi gned short control; /1 Control Bits, offset 0x06

b
To make the bits within the control register easier to read and write individually, we might
also define the following bitmasks:

#define TI MER_ENABLE 0xC000 /'l Enable the tiner.
#define TI MER DI SABLE 0x4000 // Disable the tinmer.
#define TI MER | NTERRUPT 0x2000 /1 Enable timer interrupts.
#define TI MER_MAXCOUNT 0x0020 /1 Timer conplete?

#define TI MER _PERI ODI C 0x0001 /1l Periodic timer?

2. A set of variables to track the current state of the hardware and device driver

The second step in the driver development process is to figure out what variables you will
need to track the state of the hardware and device driver. For example, in the case of the
timer/counter unit described earlier we'll probably need to know if the hardware has been
initialized. And if it has been, we might also want to know the length of the running
countdown.

Some device drivers create more than one software device. Thisis a purely logical device
that isimplemented over the top of the basic peripheral hardware. For example, it is easy to
imagine that more than one software timer could be created from a single timer/counter unit.
The timer/counter unit would be configured to generate a periodic clock tick, and the device
driver would then manage a set of software timers of various lengths by maintaining state
information for each.

3. Aroutineto initialize the hardware to a known state

Once you know how you'll track the state of the physical and logical devices, it's time to start
writing the functions that actually interact with and control the device. It is probably best to
begin with the hardware initialization routine. You'll need that one first anyway, and it'sa
good way to get familiar with the device interaction.

4. A set of routines that, taken together, provide an API for users of the device driver

After you've successfully initialized the device, you can start adding other functionality to the
driver. Hopefully, you've already settled on the names and purposes of the various routines,
as well as their respective parameters and return values. All that's left to do now is implement
and test each one. Welll see examples of such routines in the next section.

5. One or more interrupt service routines

It's best to design, implement, and test most of the device driver routines before enabling
interrupts for the first time. Locating the source of interrupt-related problems can be quite
challenging. And, if you add possible bugs in the other driver modules to the mix, it could
even gpproach impossible. It's far better to use polling to get the guts of the driver working.
That way you'll know how the device works (and that it is indeed working) when you start
looking for the source of your interrupt problems. And there will amost certainly be some of
those.

7.3 A Simple Timer Driver

The device driver example that we're about to discuss is designed to control one of the timer/counter units contained
within the 80188EB processor. | have chosen to implement this driver-and all of the remaining examplesin the
book-in C++. Although C++ offers no additional assistance over C in accessing hardware registers, there are many
good reasonsto useit for this type of abstraction. Most notably, C++ classes allow usto hide the actual hardware
interface more completely than any C features or programming techniques. For example, a constructor can be
included to automatically configure the hardware each time a new timer object is declared. This eliminates the need
for an explicit call from the application software to the driver initialization routine. In addition, it is possible to hide
the data structure that corresponds to the device registers within the private part of the associated class. This helpsto
prevent the application programmer from accidentally reading or writing the device registers from some other part
of the program.

The definition of the Timer classis asfollows:

enum TinerState { Idle, Active, Done };

enum Ti mer Type { OneShot, Periodic };

class Tinmer

{
public:
Timer () ;
~Ti mer () ;
i nt start(unsigned int nMIliseconds, TimerType = OneShot);
i nt wai tfor();
void cancel ();
Ti mer St at e st at e;
Ti mer Type type
unsi gned int |ength;
unsi gned int count;
Timer * pNext ;
private:
static void interrupt Interrupt();
}.

Before discussing the implementation of this class, |et's examine the previous declaration and consider the device
driver'soverall structure. Thefirst thing we see are two enumerated types, TimerState and TimerType. Themain
purpose of these typesisto make the rest of the code more readable. From them we learn that each software timer
has a current state-1dle, Active, or Done-and atype-OneShot or Periodic. The timer's type tells the driver what to do
with the timer when it expires; a Periodic timer is to be restarted then.
The constructor for the Timer classis also the device driver'sinitialization routine. It ensures that the timer/counter
hardware is actively generating a clock tick every 1 millisecond. The other public methods of the class-start,
waitfor, and cancel -provide an API for an easy-to-use software timer. These methods allow application
programmers to start one-shot and periodic timers, wait for them to expire, and cancel running timers, respectively.
Thisisamuch simpler and more generic interface than that provided by the timer/counter hardware within the
80188EB chip. For one thing, the timer hardware does not know about human units of time, like milliseconds. But
because the timer driver hides the specifics of this particular hardware, the application programmer need never even
know about that.
The data members of the class should also help give you someinsight into the device driver implementation. The
first three items are variables that answer the following questions about this software timer:

What isthe timer's current state (idle, active, or done)?

What type of atimer isit (one-shot or periodic)?

What isthe total length of the timer (in units called ticks)?
Following those are two more data members, both of which contain information that is specific to this
implementation of the timer driver. The values of count and pNext have meaning only within the context of alinked
list of active softwaretimers. Thislinked list is ordered by the number of ticks remaining for each timer. So count
contains information about the number of ticks remaining before this software timer is set to expireX and pNext isa
pointer to the software timer that will expire the soonest after this one.

[Specifically, it represents the number of clock ticks remaining after al of the timers ahead of it in the list have
expired.

Finally, thereis a private method called Interrupt -our interrupt service routine. The Interrupt method is declared
static because it is not allowed to manipulate the data members of the individual software timers. So, for example,
the interrupt service routineis not allowed to modify the state of any timer. By using the keyword static, this
restriction is automatically enforced for us by the C++ compiler.

The most important thing to learn from the class declaration is that, although all of the software timers are driven by
the same hardware timer/counter unit, each hasits own private data store. This allows the application programmer to
create multiple simultaneous software timers and the device driver to manage them behind the scenes. Once you
grasp that idea, you're ready to look at the implementation of the driver'sinitialization routine, API, and interrupt
serviceroutine.

The constructor for the Timer classisresponsible for initializing both the software timer and the underlying
hardware. With respect to the latter, it is responsible for configuring the timer/counter unit, inserting the address of
the interrupt service routineinto the interrupt vector table, and enabling timer interrupts. However, because this
method is a constructor that may be called several times (once for each of the Timer objects declared), our
implementation of the constructor must be smart enough to perform these hardware initializations only during the
very first call to it. Otherwise, the timer/counter unit might be reset at an inopportune time or become out of sync
with the device driver.

That isthe reason for the static variable binitialized in the following code. This variableis declared with an initial
value of zero and set to one after the hardware initialization sequence has been performed. Subsequent calls to the
Timer constructor will seethat binitialized is no longer zero and skip that part of the initialization sequence.

#i ncl ude "i 8018xEB. h"

#include "timer.h"

#define CYCLES PER TICK (25000/4) /1 Nurmber of clock cycles per tick.

/**

*

* Met hod: Ti mer ()

*

* Description: Constructor for the Tiner class.
*

* Not es:

*

* Returns: None defi ned.

*
**/
Ti mer:: Timer(void)

static int blnitialized = 0;

/1
/1l Initialize the new software tiner.
/1
state = Idle;
type = OneShot ;
Il ength = 0;
count = 0;
pNext = NULL;
/1
/1 Initialize the timer hardware, if not previously done.
/1
if (!blnitialized)
{
/1
/1l Install the interrupt handler and enable tiner interrupts.
/1

gProcessor.install Handl er (TI MER2_I NT, Tinmer::Interrupt);
gProcessor. pPCB->i ntControl .timerControl &=
~(TI MER_MASK | TI MER_PRI ORI TY);

/1
// Initialize the hardware device (use Timer #2).
/1

gProcessor. pPCB->tinmer[2].count = 0;

gProcessor. pPCB->ti mer[2] . maxCount A
gProcessor. pPCB->tinmer[2].control

= CYCLES_PER TI CK;
= TI MER_ENABLE

| TI MER_| NTERRUPT

| TI MER_PERI ODI C;

/1

/1l Mark the timer hardware initialized.

/1

blnitialized = 1;

}

} [* Timer() */
The global object gProcessor is declared in a header file calledi8018xEB.h. It represents the Intel 80188EB
processor. The i8018XEB class is something that | wrote, and it includes methods to make interaction with the
processor and its on-chip peripherals easier. One of these methodsis calledinstallHandler, and itsjob isto insert an
interrupt service routine into the interrupt vector table. This class also includes aglobal data structure called PCB
that can be overlaid upon the memory-mapped registers of the peripheral control block.2 The three registers
associated with timer/counter unit 2 make up just one small part of this 256-byte structure. (For purely aesthetic
reasons, I've implemented the PCB data structure as a set of nested structures. Hence, the control register of
timer/counter unit 2 is accessible as pPCB->timer[2].control.)

(21 Astute readers might recall that in Chapter 5, | stated that the PCB was located in the 1/0 space of the 80188EB
processor. However, because memory-mapped registers are more likely in a device driver situation, I've relocated the
entire PCB to physical address 72000h, in the memory space. This new location will be assumed for the rest of the
book. To see how this relocation was performed, take alook at the constructor for the i8018xEB class.

Theinitialization of the timer/counter unit consists of resetting its count register to 0, loading the maxCountA
register with the countdown length, and setting several bits within the control register. What we are doing aboveis
starting a1 ms periodic timer that generates an interrupt at the end of each cycle. (This periodic timer will act asthe
clock tick we need to create software timers of arbitrary lengths.) The value that isloaded into maxCountA can be
determined mathematically because it represents the number of clock cyclesinput to the timer/counter unitinal ms
period. According to the 80188EB databook, thiswill be one fourth of the number of processor cyclesinal ms
period. So, for a25 MHz processor like the one we're using (that's 25,000,000 cycles per second, or, if you prefer,
25,000 cycles per millisecond), maxCountA should be set to 25,000/4-as it isin the constant CY CLES PER_TICK
earlier.

Once the hardware has been initialized and the clock tick established, it is possible to start a software timer of any
length, so long as that length can be expressed as an integral number of ticks. Because our clock tick is 1 mslong,
the application programmer can create timers of any length from 1 to 65,535 ms (65.536 seconds). He would do this
by calling the start method:

/**

*

* Met hod: start()

*

* Description: Start a software tinmer, based on the tick fromthe
* under | ying hardware timer.

*

* Not es:

*

* Returns: 0 on success, -1 if the tinmer is already in use.

*
**/
i nt

Timer::start(unsigned int nMIIliseconds, TinerType tinmerType)

{
if (state !'= Idle)

{

}
/1

return (-1);

// Initialize the software tiner.
/1
state
type

| engt h

Active;
timerType;
nM 1| Iliseconds / MS_PER TICK;

/1

// Add this timer to the active tinmer |ist.
/1

timerList.insert(this);

return (0);

} /* start() */

When a software timer is started, the data members state, type, and length are initialized and the timer isinserted
into alinked list of active timers called the timerList. Thetimersin the timer list are ordered so that the first timer to
expireisat thetop of thelist. In addition, each timer has a count associated with it. This value represents the number
of ticks that will be remaining in the software timer once all previoustimersin the list have expired. Taken together,
these design choices favor quick updatesto the timer list at the price of slower insertions and deletions. Speedis
important during updates because the timer list will be updated every time the hardware generates a clock tick
interrupt-that's every one millisecond.

Figure 7-1 shows the timer list in action. Remember that each software timer has its own unique length and starting
time, but once it has been inserted into the list, only the count field matters for ordering. In the example shown, the
first and second timers were both started (the second might actually have been restarted, because it is periodic) at the
sametime. Since the second is5 mslonger, it will expire 5 clock ticks after the first. The second and third timersin
the list both happen to expire at the same time, though the third timer will have been running for 10 times longer.

Figure 7-1. Thetimer list in action

imerList.pTop || State: Active | | State: Active | | State: Active
Type: One-shot Type: Periodic Type: One-shot
Length: 10 Length: 15 Length: 150
Count: 1 Count. 5 Count: 0
pNext . pNext e NULL

The code for the interrupt service routine is shown below. Thisroutine is declared to be of type void interrupt. The
keyword interrupt is an extension of the C/C++ language that is understood only by compilers for 80x86 processors.
By declaring the routine in thisway, we ask the compiler to save and restore all of the processor's registers at the
entry and exit, rather than only those that are saved during an ordinary function call.

/**

*

* Met hod: Interrupt()

*

* Description: An interrupt handler for the tinmer hardware.

*

* Not es: This method is declared static, so that we cannot
* i nadvertently nodify any of the software tiners.
*

* Returns: None defi ned.

*

**/

void interrupt
Timer::Interrupt()
{
/1
/'l Decrement the active timer's count.
/1
timerList.tick();

/1

/1 Acknowl edge the tiner interrupt.

/1

gProcessor. pPCB->i nt Control . eoi = EO _NONSPECI FI C,

/1

/1 Clear the Maxi mum Count bit (to start the next cycle).
/1

gProcessor. pPCB->tinmer[2].control &= ~TI MER_MAXCOUNT,;

} [* Interrupt() */

Of course, the tick method of the TimerList class does most of the work here. This method is mostly concerned with
linked list manipulation and is not very exciting to look at. Briefly stated, the tick method starts by decrementing the
tick count of the timer at the top of thelist. If that timer's count has reached zero, it changes the state of the software
timer to Done and removes it from the timer list. It also does the same for any timers that are set to expire on the
very sametick. These are the ones at the new head of the list that also have a count of zero.

After creating and starting a software timer, the application programmer can do some other processing and then
check to seeif the timer has expired. The waitfor method is provided for that purpose. This routine will block until
the software timer's state is changed to Done by timerList.tick. The implementation of this method is as follows:

/**

*

Met hod: wai tfor()

Description: Wit for the software tinmer to finish.

*
*
*
*
* Not es:
*
* Returns: 0 on success, -1 if the timer is not running.
*
*

***/

i nt
Timer::waitfor()
{
if (state !'= Active)
{
return (-1);
}
/1
/1 Wait for the tinmer to expire.
/1
while (state != Done);
/1
/!l Restart or idle the tiner, depending on its type.
/1

if (type == Periodic)
{

state = Active;
timerList.insert(this);

}
el se

{
}

return (0);

state = 1dl e;

} /* waitfor() */

One important thing to notice about this code is that the test while (state != Done) is not an infinite loop. That's
because, aswe just learned afew paragraphs back, the timer's state is modified by timerList.tick, which iscalled
from the interrupt service routine. In fact, if we were being careful embedded programmers, we would have declared

state as volatile. Doing so would prevent the compiler from incorrectly assuming that the timer's state is either done
or not done and optimizing away the while loop2
131 A word of caution about waitfor : thisimplementation spins its wheels waiting for the software timer to change to
the done state. Thistechnique is called busy-waiting, and it is neither elegant nor an efficient use of the processor. In
Chapter 8, we'll see how the introduction of an operating system allows us to improve upon this implementation.

The final method of the Timer classis used to cancel arunning timer. Thisis easy to implement because we need
only remove the timer from the timer list and change its state to Idle. The code that actually doesthisis shown here:

/**

*

* Met hod: cancel ()

*

* Description: Stop a running tiner.
*

* Not es:

*

* Returns: None defi ned.

*
**/
voi d
Ti mer: : cancel (voi d)

{
/1
/! Renmpbve the tiner fromthe timer |ist.
/1
if (state == Active)
{
timerList.renove(this);
}
!/
// Reset the tinmer's state.
/1
state = |dle;

} /* cancel () */

Of course, thereis also adestructor for the Timer class, though | won't show the code here. Sufficeit to say that it
just checksto seeif the software timer isactive and, if so, removesit from the timer list. This preventsaperiodic
timer that has gone out of scope from remaining in the timer list indefinitely and any pointersto the "dead" timer
from remaining in the system.

For completeness, it might be nice to add a public method, perhaps called poll, that allows users of the Timer class
to test the state of a software timer without blocking. In the interest of space, | have left this out of my
implementation, but it would be easy to add such aroutine. It need only return the current value of the comparison
state == Done. However, in order to do this, some technique would need to be devised to restart periodic timers for
which waitfor is never called.

Watchdog Timers

Another type of timer you might hear mentioned frequently in reference to embedded systemsisa
watchdog timer. Thisisaspecia piece of hardware that protects the system from software hangs. If
present, the watchdog timer is always counting down from some large number to zero. This process

typically takes afew seconds to complete. In the meantime, it is possible for the embedded software to
"kick" the watchdog timer, to reset its counter to the original large number. If the counter ever does
reach zero, the watchdog timer will assume that the software is hung. It then resets the embedded
processor and, thus, restarts the software.
Thisisacommon way to recover from unexpected software hangs that occur after the systemis
deployed. For example, suppose that your company's new product will travel into space. No matter how
much testing you do before deployment, the possibility remains that there are undiscovered bugs lurking
in the software and that one or more of these is capable of hanging the system altogether. If the software
hangs, you won't be able to communicate with it at all, so you can't just issue a reset command remotely.
Instead, you must build an automatic recovery mechanism into the system. And that's where the
watchdog timer comesin.
The implementation of the watchdog timer "kick" would look just like the Blinking LED program in
this chapter, except that instead of toggling the LED the watchdog timer's counter would be reset.

Another potential feature of the Timer classis asynchronous callbacks. In other words, why not allow the creator of
asoftware timer to attach afunction to it. This function could then be called automatically-viatimerList.tick -each
time that timer expires. Asyou read the next section, be sure to think about how different the Blinking LED program
would look if asynchronous callbacks were used instead. Thisis one type of application to which asynchronous
function calls are particularly well suited.

7.4 Das Blinkenlights, Revisited

Now that we have the Timer class at our disposal, it is possible to rewrite the book's very first example to make its
timing more precise. Recall that in our original implementation, we relied on the fact that the length of a"decrement
and compare" operation was fixed for agiven processor and speed. We simply took a guess as to how long that
might be and then revised our estimate based on empirical testing. By utilizing the Timer class, we can
simultaneously eliminate this guesswork and increase the readability of the program.

In the revised Blinking LED program below you will see that we can now simply start a periodic 500 ms software
timer, toggle the LED, and then wait for the timer to expire before toggling the LED again. In the meantime, we
could perform other processing tasks required by the application at hand.

#i nclude "tiner.h"
#i ncl ude "l ed. h"

/**

* Function: mai n()

* Description: Blink the green LED once a second.

* Not es: This outer |oop is hardware-independent. However, it

* calls the hardware-dependent function togglelLed().

* Returns: This routine contains an infinite |oop.
**[

voi d

mai n(voi d)

{

Timer tinmer;

timer.start (500, Periodic); /1l Start a periodic 500 nms tinmer.

while (1)

{
t oggl eLed(LED_GREEN) ; /1 Toggle the green LED.
//*********** m Other useful WOI‘k here kkhkkkhkhkkhhkkhkhkkhkkhkhkkhkkk*%
timer.waitfor(); /1 Wait for the timer to expire.

}

} /* main() */

Chapter 8.
Operating Systems

osophobian. A common fear among embedded systems programmers.

All but the most trivial of embedded programs will benefit from the inclusion of an operating system. This can range
from asmall kernel written by you to afull-featured commercial operating system. Either way, you'll need to know
what features are the most important and how their implementation will affect the rest of your software. At the very
least, you need to understand what an embedded operating system looks like on the outside. But there's probably no
better way to understand the exterior interfaces than to examine a small operating system inits entirety. So that's
what we'll do in this chapter.

8.1 History and Purpose

In the early days of computing there was no such thing as an operating system. Application programmers were
completely responsible for controlling and monitoring the state of the processor and other hardware. In fact, the
purpose of the first operating systems wasto provide avirtual hardware platform that made application programs
easier to write. To accomplish this goal, operating system devel opers needed only provide aloose collection of
routines-much like amodern software library-for resetting the hardware to a known state, reading the state of the
inputs, and changing the state of the outputs.
Modern operating systems add to this the ability to execute multiple software tasks simultaneously on asingle
processor. Each such task is a piece of the software that can be separated from and run independently of therest. A
set of embedded software requirements can usually be decomposed into a small number of such independent pieces.
For example, the printer-sharing device described in Chapter 5, contains three obvious software tasks:

Task 1: Receive data from the computer attached to serial port A.

Task 2: Receive data from the computer attached to serial port B.

Task 3: Format and send the waiting data (if any) to the printer attached to the parallel port.
Tasks provide akey software abstraction that makes the design and implementation of embedded software easier
and the resulting source code simpler to understand and maintain. By breaking the larger program up into smaller
pieces, the programmer can more easily concentrate her energy and talents on the unique features of the system
under development.
Strictly speaking, an operating system is not a required component of any computer system-embedded or otherwise.
It isalways possible to perform the same functions from within the application program itself. Indeed, all of the
examples so far in this book have done just that. Thereis simply one path of execution-starting at main -that is
downloaded into the system and run. Thisisthe equivalent of having only one task. But as the complexity of the
application expands beyond just blinking an LED, the benefits of an operating system far outweigh the associated
costs.
If you have never worked on operating system internals before, you might have the impression that they are
complex. I'm sure the operating system vendors would like you to continue to believe that they are and that only a
handful of computer scientists are capable of writing one. But I'm here to | et the cat out of the bag: it's not all that
hard! In fact, embedded operating systems are even easier to write than their desktop cousins-the required
functionality is smaller and better defined. Once you learn what that functionality is and afew implementation
techniques, you will see that an operating system is no harder to develop than any other piece of embedded software.
Embedded operating systems are small because they lack many of the things you would expect to find on your
desktop computer. For example, embedded systemsrarely have disk drives or graphical displays, and hence they
need no filesystem or graphical user interface in their operating systems. In addition, thereisonly one "user” (i.e.,
all of the tasks that comprise the embedded software cooperate), so the security features of multiuser operating
systems do not apply. All of these are features that could be part of an embedded operating system but are
unnecessary in the majority of cases.

8.2 A Decent Embedded Operating System

What follows is a description of an embedded operating system that | have developed on my own. | call my
operating system ADEQOS (pronounced the same as the Spanish farewell), which is an acronym for "A Decent
Embedded Operating System.” | think that name really sumsit up nicely. Yes, it is an embedded operating system;
but it is neither the best nor the worst in any regard. In all, there are less than 1000 lines of source code. Of these,
three quarters are platform-independent and written in C++. Therest are hardware- or processor-specific and,
therefore, written in assembly language. In the discussion later, | will present and explain all of the routines that are
written in C++ along with the theory you need to understand them. In the interest of clarity, | will not present the

source code for the assembly language routines. Instead, | will simply state their purpose and assume that interested
readers will download and examine that code on their own.

If you would like to use ADEOS (or amodified version of it) in your embedded system, please feel freeto do so. In
fact, | would very much like to hear from anyone who usesit. | have made every effort to test the code and improve
upon the weaknesses | have uncovered. However, | can make no guarantee that the code presented in this chapter is
useful for any purpose other than learning about operating systems. If you decide to use it anyway, please be
prepared to spend some amount of your time finding and fixing bugs in the operating system itself.

8.2.1 Tasks

We have already talked about multitasking and the idea that an operating system makes it possible to execute
multiple "programs" at the same time. But what does that mean? How is it possible to execute several tasks
concurrently? In actuality, the tasks are not executed at the same time. Rather, they are executed in pseudoparallel.
They merely take turns using the processor. Thisis similar to the way several people might read the same copy of a
book. Only one person can actually use the book at a given moment, but they can both read it by taking turns using
it.

An operating system is responsible for deciding which task gets to use the processor at a particular moment. In
addition, it maintains information about the state of each task. Thisinformation is called the task's context, and it
serves a purpose similar to a bookmark. In the multiple book reader scenario, each reader is presumed to have her
own bookmark. The bookmark's owner must be able to recognize it (e.g., it has her name written on it), and it must
indicate where she stopped reading when last she gave up control of the book. Thisisthe reader's context.

A task's context records the state of the processor just prior to another task's taking control of it. This usually
consists of a pointer to the next instruction to be executed (the instruction pointer), the address of the current top of
the stack (the stack pointer), and the contents of the processor's flag and general -purpose registers. On 16-hit 80x86
processors, these are the registers CS and IP, SS and SP, Flags, and DS, ES, SI, DI, AX, BX, CX, and DX,
respectively.

In order to keep tasks and their contexts organized, the operating system maintains a bit of information about each
task. Operating systemswritten in C often keep thisinformation in a data structure called the task control block.
However, ADEOS iswritten in C++ and one of the advantages of this approach is that the task-specific datais
automatically made a part of the task object itself. The definition of a Task, which includes the information that the
operating system needs, is asfollows:

cl ass Task

{
publi c:
Task(void (*function)(), Priority p, int stackSize);
Taskl d id;
Cont ext cont ext ;
TaskSt at e st at e;
Priority priority;
int * pSt ack;
Task * pNext ;
void (*entryPoint)();
private:
static Taskld nextld;
b

Many of the data members of this class will make sense only after we discuss the operating system in greater detail.
However, thefirst two fields-id and context --should already sound familiar. The id contains a unique integer
(between and 255) that identifies the task. In other words, it is the name on the bookmark. The context isthe
processor-specific data structure that actually contains the state of the processor the last time this task gave up
control of the processor.

8.2.1.1 Task states

Remember how | said that only one task could actually be using the processor at agiven time? That task is said to be
the" running" task, and no other task can be in that same state at the same time. Tasks that are ready to run-but are
not currently using the processor-are in the "ready" state, and tasks that are waiting for some event external to
themselves to occur before going on are in the "waiting" state. Figure 8-1 shows the relationships between these
three states.

Figure8-1. Possible states of a task

A transition between the ready and running states occurs whenever the operating system selects a new task to run.
Thetask that was previously running becomes ready, and the new task (selected from the pool of tasksin the ready
state) is promoted to running. Onceit isrunning, atask will leave that state only if it isforced to do so by the
operating system or if it needs to wait for some event external to itself to occur before continuing. In the latter case,
the task is said to block, or wait, until that event occurs. And when that happens, the task enters the waiting state and
the operating system selects one of the ready tasksto be run. So, although there may be any number of tasksin each
of the ready and waiting states, there will never be more (or |ess) than one task in the running state at any time.
Here'show atask's stateis actually defined in ADEOS:

enum TaskState { Ready, Running, Waiting };

It isimportant to note that only the scheduler-the part of the operating system that decides which task to run-can
promote atask to the running state. Newly created tasks and tasks that are finished waiting for their external event
are placed into the ready state first. The scheduler will then include these new ready tasksin its future decision-
making.

8.2.1.2 Task mechanics

As an application developer working with ADEQOS (or any other operating system), you will need to know how to
create and use tasks. Like any other abstract datatype, the Task class hasits own set of routines to do just that.
However, the task interfacein ADEOS is simpler than most because you can do nothing but create new Task
objects. Once created, an ADEOS task will continue to exist in the system until the associated function returns. Of
course, that might not happen at all, but if it does, the task will be deleted automatically by the operating system.
The Task constructor is shown below. The caller assigns afunction, apriority, and an optional stack size to the new
task by way of the constructor's parameters. The first parameter, function, is a pointer to the C/C++ or assembly
language function that is to be executed within the context of the new task. The only requirements for this function
are that it take no arguments and return nothing. The second parameter, p, is aunique number from 1 to 255 that
represents the new task's priority relative to other tasks in the system. These numbers are used by the scheduler
when it is selecting the next task to be run (higher numbers represent higher priorities).

Taskl d Task: :nextld = O;

/**

*

* Met hod: Task()

*

* Description: Create a new task and initialize its state.
*

* Not es:

*

* Returns:

*

*

***[

Task: : Task(void (*function)(), Priority p, int stackSize)
{

stackSi ze /= sizeof (int); /1 Convert bytes to words.

enter CS(); [1111] Critical Section Begin

/1

/1 Initialize the task-specific data.

/1

id = Task: :next| d++;

state = Ready;

priority = p;

entryPoi nt = function;

pSt ack = new i nt[stackSi ze];

pNext = NULL,;

/1

/1l Initialize the processor context.

/1

contextlnit(&ontext, run, this, pStack + stackSize);

/1

/1 Insert the task into the ready |ist.

/1

os.readylList.insert(this);

0s. schedul e(); /1 Schedul i ng Poi nt
exitCS(); /1111] Critical Section End

} [* Task() */

Notice how the functional part of this routineis surrounded by the two function callsenter CS and exitCS. The block
of code between these callsis said to be acritical section. A critical section isapart of aprogram that must be
executed atomically. That is, the instructions that make up that part must be executed in order and without
interruption. Because an interrupt can occur at any time, the only way to make such a guarantee is to disable
interrupts for the duration of the critical section. Soenter CSis called at the beginning of the critical section to save
the interrupt enable state and disable further interrupts. AndexitCSis called at the end to restore the previously
saved interrupt state. We will see this same technique used in each of the routines that follow.

There are several other routines that |'ve called from the constructor in the previous code, but | don't have the space
to list here. These are the routines contextlnit and os.readyList.insert. The contextlnit routine establishesthe initial
context for atask. Thisroutine is necessarily processor-specific and, therefore, written in assembly language.
contextlnit has four parameters. The first is a pointer to the context data structure that isto be initialized. The second
isapointer to the startup function. Thisis a special ADEOS function, called run, that is used to start atask and clean
up behind it if the associated function later exits. The third parameter is a pointer to the new Task object. This
parameter is passed to run so the function associated with the task can be started. The fourth and final parameter isa
pointer to the new task's stack.

The other function call istoos.readyList.insert. This call adds the new task to the operating system'sinternal list of
ready tasks. The readyL ist isan object of type TaskList. Thisclassisjust alinked list of tasks (ordered by priority)
that has two methods: insert and remove. Interested readers should download and examine the source code for
ADEOS if they want to see the actual implementation of these functions. Y ou'll also |learn more about the ready list
in the discussion that follows.

Application Programming I nterfaces

One of the most annoying things about embedded operating systemsistheir lack of acommon API.
Thisisaparticular problem for companies that want to share application code between products that are
based on different operating systems. One company | worked for even went so far asto create their own
layer above the operating system solely to isolate their application programmers from these differences.

But surely thiswas just adding to the overall problem-by creating yet another API.
The basic functionality of every embedded operating system is much the same. Each function or method
represents a service that the operating system can perform for the application program. But there aren't
that many different services possible. And it isfrequently the case that the only real difference between
two implementations is the name of the function or method.
This problem has persisted for several decades, and thereisno end in sight. Y et during that same time
the Win32 and POSIX APIs have taken hold on PCs and Unix workstations, respectively. So why hasn't
asimilar standard emerged for embedded systems? It hasn't been for alack of trying. In fact, the authors
of the original POSIX standard (IEEE 1003.1) also created a standard for real-time systems (IEEE
1003.4b). And afew of the more Unix-like embedded operating systems (VxWorks and LynxOS come
to mind) are compliant with this standard API. However, for the vast majority of application
programmers, it is necessary to learn anew API for each operating system used.
Fortunately, there isaglimmer of hope. The Java programming language has support for multitasking
and task synchronization built in. That means that no matter what operating system a Javaprogramis
running on, the mechanics of creating and manipulating tasks and synchronizing their activitiesremain
the same. For this and several other reasons, Javawould be a very nice language for embedded
programmers. | hope that there will some day be a need for abook about embedded systems
programming in Java and that a sidebar like this one will, therefore, no longer be required.

8.2.2 Scheduler

The heart and soul of any operating system isits scheduler. Thisisthe piece of the operating system that decides
which of the ready tasks has the right to use the processor at agiven time. If you've written software for a

mai nstream operating system, then you might be familiar with some of the more common scheduling algorithms:
first-in-first-out, shortest job first, and round robin. These are simple scheduling algorithms that are used in
nonembedded systems.

First-in-first-out (FIFO) scheduling describes an operating system like DOS, which is not a multitasking operating
system at all. Rather, each task runs until it is finished, and only after that is the next task started. However, in DOS
atask can suspend itself, thus freeing up the processor for the next task. And that's precisely how older version of
the Windows operating system permitted users to switch from one task to another. True multitasking wasn't a part of
any Microsoft operating system before Windows NT.

Shortest job first describes a similar scheduling algorithm. The only difference is that each time the running task
completes or suspendsitself, the next task selected is the one that will require the least amount of processor timeto
complete. Shortest job first was common on early mainframe systems because it has the appealing property of
maximizing the number of satisfied customers. (Only the customers who have the longest jobs tend to notice or
complain.)

Round robin isthe only scheduling algorithm of the three in which the running task can be preempted, that is,
interrupted whileit is running. In this case, each task runs for some predetermined amount of time. After that time
interval has elapsed, the running task is preempted by the operating system and the next task in line getsits chance
to run. The preempted task doesn't get to run again until all of the other tasks have had their chancesin that round.
Unfortunately, embedded operating systems cannot use any of these simplistic scheduling algorithms. Embedded
systems (particularly real-time systems) almost always require away to share the processor that allows the most
important tasks to grab control of the processor as soon as they need it. Therefore, most embedded operating
systems utilize a priority-based scheduling algorithm that supports preemption. Thisisafancy way of saying that at
any given moment the task that is currently using the processor is guaranteed to be the highest-priority task that is
ready to do so. Lower-priority tasks must wait until higher-priority tasks are finished using the processor before
resuming their work. The word preemptive adds that any running task can be interrupted by the operating system if a
task of higher priority becomes ready. The scheduler detects such conditions at afinite set of time instants called
scheduling points.

When a priority-based scheduling algorithm is used, it is also necessary to have a backup policy. Thisisthe
scheduling algorithm to be used in the event that several ready tasks have the same priority. The most common
backup scheduling algorithm is round robin. However, for simplicity's sake, I've implemented only a FIFO scheduler
for my backup policy. For that reason, users of ADEOS should take care to assign a unique priority to each task
whenever possible. This shouldn't be a problem though, because ADEOS supports as many priority levels astasks
(up to 255 of each).

The scheduler in ADEOS isimplemented in a class called Sched:
cl ass Sched

{
publ i c:

Sched() ;

void start();
void schedul e();

void enterlsr();
void exitlsr();

static Task * pRunni ngTask;
static TaskLi st readylList;

enum SchedState { Uninitialized, Initialized, Started };
private:

static SchedState state;

static Task i dl eTask;

static int i nterruptLevel;

static int bSchedul e;
b
After defining this class, an object of thistypeisinstantiated within one of the operating system modules. That way,
users of ADEOS need only link the file sched.obj to include an instance of the scheduler. Thisinstanceis called os
and is declared asfollows:
extern Sched os;
References to this global variable can be made from within any part of the application program. But you'll soon see
that only one such reference will be necessary per application.

8.2.2.1 Scheduling points

Simply stated, the scheduling points are the set of operating system events that result in an invocation of the
scheduler. We have already encountered two such events: task creation and task deletion. During each of these
events, the method os.scheduleis called to select the next task to be run. If the currently executing task still hasthe
highest priority of all the ready tasks, it will be allowed to continue using the processor. Otherwise, the highest
priority ready task will be executed next. Of course, in the case of task deletion anew task is always selected: the
currently running task is no longer ready, by virtue of the fact that it no longer exists!

A third scheduling point is called the clock tick. The clock tick is a periodic event that istriggered by atimer
interrupt. The clock tick provides an opportunity to awake tasks that are waiting for a software timer to expire. This
isamost exactly the same as the timer tick we saw in the previous chapter. In fact, support for softwaretimersisa
common feature of embedded operating systems. During the clock tick, the operating system decrements and checks
each of the active software timers. When atimer expires, all of the tasks that are waiting for it to complete are
changed from the waiting state to the ready state. Then the scheduler isinvoked to seeif one of these newly
awakened tasks has a higher priority than the task that was running prior to the timer interrupt.

The clock tick routinein ADEOS is almost exactly the same as the one in Chapter 7. In fact, we still use the same
Timer class. Only the implementation of this class has been changed, and that only slightly. These changes are
meant to account for the fact that multiple tasks might be waiting for the same software timer. In addition, all of the
calls to disable and enable have been replaced by enter CS and exitCS, and the length of a clock tick has been
increased from 1 msto 10 ms.

8.2.2.2 Ready list

The scheduler uses adata structure called the ready list to track the tasksthat arein the ready state. In ADEOS, the
ready list isimplemented as an ordinary linked list, ordered by priority. So the head of thislist is always the highest
priority task that isready to run. Following acall to the scheduler, thiswill be the same as the currently running task.
Infact, the only time that won't be the case is during areschedule. Figure 8-2 shows what the ready list might 1ook
like while the operating system isin use.

Figure8-2. Theready list in action

readyList. pTop I—» TaskID: 4 Task ID: 1 Task 1D:2 Task 1D:0
State:Running State: Ready State: Ready State: Ready
Priority: 250 Priority: 170 Priorily: 95 Priority: 0
phiext phiext phext & NULL

The main advantage of an ordered linked list like this one is the ease with which the scheduler can select the next
task to berun. (It'salways at the top.) Unfortunately, there is a tradeoff between lookup time and insertion time. The
lookup time is minimized because the data member readyL ist always points directly to the highest priority ready
task. However, each time a new task changesto the ready state, the code within the insert method must walk down
theready list until it finds atask that has alower priority than the one being inserted. The newly ready task is
inserted in front of that task. Asaresult, theinsertion timeis proportional to the average number of tasksin the
ready list.

8.2.2.3Idletask

If there are no tasksin the ready state when the scheduler is called, theidle task will be executed. The idle task looks
the same in every operating system. It is simply an infinite loop that does nothing. In ADEQS, theidletask is
completely hidden from the application developer. It does, however, have avalid task ID and priority (both of which
are zero, by the way). Theidletask is always considered to be in the ready state (when it is not running), and
because of itslow priority, it will always be found at the end of the ready list. That way, the scheduler will find it
automatically when there are no other tasksin the ready state. Those other tasks are sometimes referred to as user
tasksto distinguish them from the idle task.

8.2.2.4 Scheduler

Because | use an ordered linked list to maintain the ready list, the scheduler is easy to implement. It simply checksto
seeif the running task and the highest-priority ready task are one and the same. If they are, the scheduler'sjobis
done. Otherwise, it will initiate a context switch from the former task to the latter. Here's what this looks like when

it'simplemented in C++:
/**

*

* Met hod schedul e()

*

* Description: Select a new task to be run.

*

* Not es If this routine is called fromwithin an ISR, the
* schedul e wil|l be postponed until the nesting |evel
* returns to zero.

*

* The caller is responsible for disabling interrupts.
*

* Returns: None defi ned.

*

*

***/
voi d
Sched: : schedul e(voi d)

{
Task * pd dTask;
Task * pNewTask;
if (state !'= Started) return;
/1

/1 Postpone rescheduling until all interrupts are conpl eted.

/1
if (interruptLevel != 0)

bSchedule = 1;

return;
}
/1
/1 1f there is a higher-priority ready task, switch to it.
/1
i f (pRunningTask != readylist.pTop)
{
pAd dTask = pRunni ngTask;
pNewTask = readylist. pTop;
pNewTask- >st at e = Runni ng;
pRunni ngTask = pNewTask;
if (pddTask == NULL)
{
context Swi t ch(NULL, &pNewTask->cont ext);
}
el se
pAd dTask- >state = Ready;
cont ext Swi t ch(&Q dTask- >cont ext, &pNewTask->context);
}
}

} /* schedul e() */

Asyou can see from this code, there are two situations during which the scheduler will not initiate a context switch.
Thefirstisif multitasking has not been enabled. Thisis necessary because application programmers sometimes want
to create some or all of their tasks before actually starting the scheduler. In that case, the application'smain routine
would look like the following one. Each time a Task object is created, the scheduler isinvoked &

131 Remember, task creation is one of our scheduling points. If the scheduler has been started, there is also a possibility
that the new task will be the highest priority ready task.

However, because schedul e checks the value of state to ensure that multitasking has been started, no context

switches will occur until after start is called.
#i ncl ude "adeos. h"

void taskAfunction(void);
void taskBfunction(void);

/*

* Create two tasks, each with its own unique function and priority.
*/

Task taskA(taskAfunction, 150, 256);

Task taskB(taskBfunction, 200, 256);

/***

*

Functi on: mai n()

*

*

* Description: This is what an application program m ght |ook Iike
* if ADECS were used as the operating system This

* function is responsible for starting the operating
* system only.

Not es: Any code placed after the call to os.start() wll
never be executed. This is because main() is not a
task, so it does not get a chance to run once the
scheduler is started.

* X X X X

*

* Returns: This function will never return!

*
***[
voi d

mai n(voi d)

os.start();
/1 This point will never be reached.

} /* main() */

Because thisis an important piece of code, let me reiterate what you are looking at. Thisis an example of the
application code you might write as auser of ADEOS. Y ou begin by including the header file adeos.h and declaring
your tasks. After you declare the tasks and call os.start, the task functionstaskAfunction and taskBfunction will
begin to execute (in pseudoparallel). Of course, taskB has the highest priority of the two (200), so it will get to run
first. However, as soon asit relinquishes control of the processor for any reason, the other task will have a chance to
run aswell.

The other situation in which the ADEOS scheduler will not perform a context switch is during interrupt processing.
The operating system tracks the nesting level of the current interrupt service routine and allows context switches
only if the nesting level is zero. If the scheduler is called from an I SR (asit is during the timer tick), the bSchedule
flag is set to indicate that the scheduler should be called again as soon as the outermost interrupt handler exits. This
delayed scheduling speeds up interrupt response times throughout the system.

8.2.3 Context Switch

The actual process of changing from one task to another is called a context switch. Because contexts are processor-
specific, so isthe code that implements the context switch. That means it must always be written in assembly
language. Rather than show you the 80x86-specific assembly codethat | used in ADEQOS, I'll show the context
switch routine in a C-like pseudocode:
voi d
cont ext Swi t ch(PCont ext pd dCont ext, PContext pNewContext)
{
i f (saveContext(pQA dContext))
{
/1
/!l Restore new context only on a nonzero exit from saveContext ().
/1
r est or eCont ext (pNewCont ext) ;

/1 This line is never executed!

}

/1 Instead, the restored task continues to execute at this point.
}
The contextSwitch routine is actually invoked by the scheduler, which isin turn called from one of the operating
system calls that disablesinterrupts. So it is not necessary to disable interrupts here. In addition, because the
operating system call that invoked the scheduler iswritten in a high-level language, most of the running task's
registers have already been saved onto itslocal stack. That reduces the amount of work that needs to be done by the
routines saveContext and restoreContext. They need only worry about saving the instruction pointer, stack pointer,
and flags.
The actual behavior of contextSwitch at runtime is difficult to see simply by looking at the previous code. M ost
software developers think serially, assuming that each line of code will be executed immediately following the
previous one. However, this code is actually executed two times, in pseudoparallel. When one task (the new task)
changesto the running state, another (the old task) must simultaneously go back to the ready state. Imagine what the
new task seeswhen it isrestored inside the restoreContext code. No matter what the new task was doing before, it
always wakes up inside the saveContext code-because that's where its instruction pointer was saved.
How does the new task know whether it is coming out of saveContext for the first time (i.e., in the process of going
to sleep) or the second time (in the process of waking up)? It definitely does need to know the difference, so I've had
to implement saveContext in a slightly sneaky way. Rather than saving the precise current instruction pointer,
saveContext actually saves an address afew instructions ahead. That way, when the saved context is restored,
execution continues from a different point in the saveContext routine. This also makesiit possible for saveContext to
return different values: nonzero when the task goesto sleep and zero when the task wakes up. The contextSwitch

routine uses this return value to decide whether to call restoreContext. If contextSwitch did not perform this check,
the code associated with the new task would never get to execute.
I know this can be a complicated sequence of eventsto follow, so I've illustrated the whole processin Figure 8-3.

Figure 8-3. A context switch

Task A (priority = 150) Task B (priority = 200)

1. Task A starts minming

2. A timer interrupt occurs, during which Task B
becomes ready to run

3. After the 15K is complete, scheduie is called.

4. Within the contextSwitch routing:
a, saveComextis called {it refurns non-zaro)
b. restoreCiontextis called. . 5. Task B wakes up, with its instruction pointer
polnting 1o the last place it was saved. This
st always be inside a call to savalomtext.

G, The return valee from savecontext is 2en,
50 rastoraContaxt is not called this tima

7. comfaxtawitoh is exited

8. The ADEDS function that calisd
confextzwiteh (from within Task B's context)
i5 exited,

4. Task B continues running whare it laft off

firmg

8.2.4 Task Synchronization

Though we frequently talk about the tasks in a multitasking operating system as completely independent entities,
that portrayal is not completely accurate. All of the tasks are working together to solve alarger problem and must
occasionally communicate with one another to synchronize their activities. For example, in the printer-sharing
device the printer task doesn't have any work to do until new datais supplied to it by one of the computer tasks. So
the printer and computer tasks must communicate with one another to coordinate their access to common data
buffers. One way to do thisisto use adata structure called a mutex.

Mutexes are provided by many operating systems to assist with task synchronization. They are not, however, the
only such mechanism available. Others are called semaphores, message queues, and monitors. However, if you have
any one of these data structures, it is possible to implement each of the others. In fact, amutex isitself a special type
of semaphore called a binary, or mutual-exclusion, semaphore.

Y ou can think of a mutex as being nothing more than a multitasking-aware binary flag. The meaning associated with
aparticular mutex must, therefore, be chosen by the software designer and understood by each of the tasks that use
it. For example, the data buffer that is shared by the printer and computer task would probably have a mutex
associated with it. When this binary flag is set, the shared data buffer is assumed to bein use by one of the tasks. All
other tasks must wait until that flag is cleared (and then set again by themselves) before reading or writing any of the
data within that buffer.

We say that mutexes are multitasking-aware because the processes of setting and clearing the binary flag are atomic.
That is, these operations cannot be interrupted. A task can safely change the state of the mutex without risking that a
context switch will occur in the middle of the modification. If a context switch were to occur, the binary flag might
be left in an unpredictable state and a deadlock between the tasks could result. The atomicity of the mutex set and
clear operationsis enforced by the operating system, which disables interrupts before reading or modifying the state
of the binary flag.

ADEOS includes a Mutex class. Using this class, the application software can create and destroy mutexes, wait for a
mutex to be cleared and then set it, or clear amutex that was previously set. The last two operations are referred to
as taking and releasing a mutex, respectively.

Here is the definition of the Mutex class:

cl ass Mitex

{
publ i c:

Mut ex() ;

void take(void);

void release(void);
private:
TaskLi st waitingList;

enum { Available, Held } state;
1
The process of creating anew Mutex is simple. The following constructor will be executed automatically each time
anew mutex object isinstantiated:

/**

*

* Met hod: Mut ex()

*

* Description: Create a new nutex.
*

* Not es:

*

* Returns:

*

**/

Mut ex: : Mut ex()

{
enter CS(); /1111 Critical Section Begin

state = Avail abl e;
wai tingList.pTop = NULL;

exi tCS(); {11111 Critical Section End

} /* Mutex() */

All mutexes are created in the Availabl e state and are associated with alinked list of waiting tasksthat isinitially
empty. Of course, once you've created a mutex it is necessary to have some way to change its state, so the next
method we'll discussistake. Thisroutine would typically be called by atask, before it reads or writes a shared
resource. When the call totakereturns, the calling task's exclusive access to that resource is guaranteed by the
operating system. The code for thisroutine is as follows:

/**

*

* Met hod: t ake()
*
* Description: Wait for a nmutex to becone available, then take it.
*
* Not es:
*
* Returns: None defi ned.
*
**/
voi d
Mut ex: : t ake(voi d)
{
Task * pCallingTask;
enterCS(); [1111] Critical Section Begin
if (state == Avail abl e)
{
/1
/1 The mutex is available. Sinply take it and return.
/1

state = Hel d;
wai tingList.pTop = NULL;

}

el se

/1

/1 The mutex is taken. Add the calling task to the waiting list.
/1

pCal | i ngTask = os. pRunni ngTask;

pCal | i ngTask->state = Wi ting;

os. readylLi st.remve(pCal | i ngTask) ;

wai ti ngList.insert(pCallingTask);

0s. schedul e(); /'l Schedul i ng Poi nt

/1 When the nmutex is released, the caller begins executing here.
}
exit CS(); /1111l Critical Section End

/* take() */

The neatest thing about the take method is that if the mutex is currently held by another task (that is, the binary flag
isaready set), the calling task will be suspended until the mutex is released by that other task. Thisiskind of like
telling your spouse that you are going to take anap and asking him or her to wake you up when dinner isready. It is
even possible for multiple tasks to be waiting for the same mutex. In fact, the waiting list associated with each
mutex is ordered by priority, so the highest-priority waiting task will always be awakened first.

The method that comes next is used torelease a mutex. Although this method could be called by any task, it is
expected that only atask that previously calledtake would invoke it. Unlike take, this routine will never block.
However, one possible result of releasing the mutex could be to wake atask of higher priority. In that case, the
releasing task would immediately be forced (by the scheduler) to give up control of the processor, in favor of the
higher-priority task.

/*

*

*
*
*
*
*
*
*
*
*

EE R R R S R I I I R S R R S S I R I S S A S
Met hod: rel ease()

Description: Release a nmutex that is held by the calling task.

Not es:

Ret ur ns: None defi ned.

***/

voi d
Mut ex: : rel ease(voi d)

{

Task * pWiitingTask;

enter CS(); [1111] Critical Section Begins

if (state == Held)
{
pWai ti ngTask = waitingList. pTop;

if (pWaitingTask !'= NULL)
{
/1
/1 Wake the first task on the waiting list.
/1
wai tingLi st. pTop = pWiitingTask->pNext;
pWai t i ngTask->st ate = Ready;
os. readylLi st.insert(pWiitingTask);

os. schedul e(); /1 Schedul i ng Poi nt

}
el se
{
state = Avail abl e;
}
}
exit CS(); /11111 Critical Section End

} /* release() */
8.2.4.1 Critical sections

The primary use of mutexesisfor the protection of shared resources. Shared resources are global variables, memory
buffers, or device registers that are accessed by multiple tasks. A mutex can be used to limit accessto such a
resource to onetask at atime. It islike the stoplight that controls access to an intersection. Remember that in a
multitasking environment you generally don't know in which order the tasks will be executed at runtime. One task
might be writing some datainto amemory buffer when it is suddenly interrupted by a higher-priority task. If the
higher-priority task were to modify that same region of memory, then bad things could happen. At the very least,
some of the lower-priority task's data would be overwritten.

Pieces of code that access shared resources contain critical sections. We've already seen something similar inside the
operating system. There, we simply disabled interrupts during the critical section. But tasks cannot (wisely) disable
interrupts. If they were allowed to do so, other tasks-even higher-priority tasks that didn't share the same resource-
would not be able to execute during that interval. So we want and need a mechanism to protect critical sections
within tasks without disabling interrupts. And mutexes provide that mechanism.

Deadlock and Priority Inversion

Mutexes are powerful tools for synchronizing access to shared resources. However, they are not without
their own dangers. Two of the most important problems to watch out for are deadlock and priority
inversion.
Deadlock can occur whenever thereisacircular dependency between tasks and resources. The simplest
exampleisthat of two tasks, each of which require two mutexes: A and B. If one task takes mutex A
and waits for mutex B while the other takes mutex B and waits for mutex A, then both tasks are waiting
for an event that will never occur. This essentially brings both tasks to a halt and, though other tasks
might continue to run for awhile, could bring the entire system to a standstill eventually. The only way
to end the deadlock is to reboot the entire system.
Priority inversion occurs whenever a higher-priority task is blocked, waiting for a mutex that is held by
a lower-priority task. This might not sound like too big a deal-after all, the mutex isjust doing its job of
arbitrating access to the shared resource-because the higher-priority task iswritten with the knowledge
that sometimes the lower-priority task will be using the resource they share. However, consider what
happensif thereisathird task that has a priority somewhere between those two.
This situation isillustrated in Figure 8-4. Here there are three tasks: high priority, medium priority, and
low priority. Low becomes ready first (indicated by the rising edge) and, shortly thereafter, takes the
mutex. Now, when high becomes ready, it must block (indicated by the shaded region) until low is done
with their shared resource. The problem isthat Medium, which does not even require access to that
resource, getsto preempt Low and run even though it will delay High's use of the processor. Many
sol utions to this problem have been proposed, the most common of whichis called "priority
inheritance." This solution has Low's priority increased to that of High as soon as High beginswaiting
for the mutex. Some operating systems include this "fix" within their mutex implementation, but the
majority do not.

Figure 8-4. An example of priority inversion

High Priority Task | 1 R A
Medium Priority Task . £
Low Priority Task : : I
= fask bocked l'ﬂ‘ IT .!E 13 .fd 15 ."E E@.
ime

Y ou've now learned everything there isto learn about one simple embedded operating system. Its basic elements are
the scheduler and scheduling points, context switch routine, definition of atask, and a mechanism for intertask
communication. Every useful embedded operating system will have these same elements. However, you don't
always need to know how they are implemented. Y ou can usually just treat the operating system as a black box on
which you, as application programmer, rely. Y ou simply write the code for each task and make calls to the operating
system when and if necessary. The operating system will ensure that these tasks run at the appropriate timesrelative
to one another.

8.3 Real-Time Char acteristics

Engineers often use the term real-time to describe computing problems for which alate answer is as bad as awrong
one. These problems are said to have deadlines, and embedded systems frequently operate under such constraints.
For example, if the embedded software that controls your anti-lock brakes misses one of its deadlines, you might
find yourself in an accident. (You might even be killed!) So it is extremely important that the designers of real-time
embedded systems know everything they can about the behavior and performance of their hardware and software. In
this section we will discuss the performance characteristics of real-time operating systems, which are acommon
component of real-time systems.

The designers of real-time systems spend alarge amount of their time worrying about worst-case performance. They
must constantly ask themselves questions like the following: What is the worst-case time between the human
operator pressing the brake pedal and an interrupt signal arriving at the processor? What is the worst-case interrupt
latency, the time between interrupt arrival and the start of the associated interrupt service routine (ISR)? And what is
the worst-case time for the software to respond by triggering the braking mechanism? Average or expected-case
analysis simply will not suffice in such systems.

Most of the commercial embedded operating systems available today are designed for possible inclusion in real-time
systems. In theideal case, this means that their worst-case performance is well understood and documented. To earn
the distinctive title "Real-Time Operating System" (RTOS), an operating system should be deterministic and have
guaranteed worst-case interrupt latency and context switch times. Given these characteristics and the relative
priorities of the tasks and interruptsin your system, it is possible to analyze the worst-case performance of the
software.

An operating system is said to be deterministic if the worst-case execution time of each of the system callsis
calculable. An operating system vendor that takes the real-time behavior of its RTOS seriously will usually publish a
data sheet that provides the minimum, average, and maximum number of clock cycles required by each system call.
These numbers might be different for different processors, but it is reasonable to expect that if the algorithm is
deterministic on one processor, it will be so on any other. (The actual times can differ.)

Interrupt latency isthe total length of time from an interrupt signal’'s arrival at the processor to the start of the
associated interrupt service routine. When an interrupt occurs, the processor must take several steps before executing
the I SR. First, the processor must finish executing the current instruction. That probably takes | ess than one clock
cycle, but some complex instructions require more time than that. Next, the interrupt type must be recognized. This
is done by the processor hardware and does not slow or suspend the running task. Finally, and only if interrupts are
enabled, the I SR that is associated with the interrupt is started.

Of course, if interrupts are ever disabled within the operating system, the worst-case interrupt latency increases by
the maximum amount of time that they are turned off. But as we have just seen, there are many places where

interrupts are disabled. These are the critical sections we talked about earlier, and there are no alternative methods
for protecting them. Each operating system will disable interrupts for a different length of time, so it isimportant
that you know what your system's requirements are. One real-time project might require a guaranteed interrupt
response time as short as 1 ps, while another requires only 100 ps.

The third real-time characteristic of an operating system is the amount of time required to perform a context switch.
Thisisimportant because it represents overhead across your entire system. For example, imagine that the average
execution time of any task before it blocksis 100 us but that the context switch timeisalso 100 us. In that case,
fully one-half of the processor's time is spent within the context switch routine! Again, there is no magic number and
the actual times are usually processor-specific because they are dependent on the number of registers that must be
saved and where. Be sure to get these numbers from any operating system vendor you are thinking of using. That
way, there won't be any last-minute surprises.

8.4 Selection Process

Despite my earlier statement about how easy it isto write your own operating system, | still strongly recommend
buying oneif you can afford to. Let me say that again: | highly recommend buying acommercial operating system,
rather than writing your own. | know of several good operating systems that can be obtained for just afew thousand
dollars. Considering the cost of engineering time these days, that's a bargain by almost any measure. In fact, awide
variety of operating systems are available to suit most projects and pocketbooks. In this section we will discussthe
process of selecting the commercial operating system that best fits the needs of your project.

Commercial operating systems form a continuum of functionality, performance, and price. Those at the lower end of
the spectrum offer only a basic scheduler and afew other system calls. These operating systems are usually
inexpensive, come with source code that you can modify, and do not require payment of royalties. Accelerated
Technology's Nucleus and Kadak's AM X both fall into this category [2 as do any of the embedded versions of DOS.

12l please don't write to complain. I'm not maligning either of these operating systems. In fact, from what | know of
both, I would highly recommend them as high-quality, low-cost commercial solutions.

Operating systems at the other end of the spectrum typically include alot of useful functionality beyond just the
scheduler. They might also make stronger (or better) guarantees about real-time performance. These operating
systems can be quite expensive, though, with startup costs ranging from $10,000 to $50,000 and royalties due on
every copy shipped in ROM. However, this price often includes free technical support and training and a set of
integrated development tools. Examples are Wind River Systems' VxWorks, Integrated Systems' pSOS, and
Microtec's VRTX. These are three of the most popular real-time operating systems on the market.

Between these two extremes are the operating systems that have a bit more functionality than just the basic
scheduler and make some reasonabl e guarantees about their real-time performance. While the up-front costs and
royalties are reasonabl e, these operating systems usually do not include source code, and technical support might
cost extra. Thisisthe category for most of the commercial operating systems not mentioned earlier.

With such awide variety of operating systems and features to choose from, it can be difficult to decide which isthe
best for your project. Try putting your processor, real-time performance, and budgetary requirementsfirst. These are
criteriathat you cannot change, so you can use them to narrow the possible choices to a dozen or fewer products.
Then contact all of the vendors of the remaining operating systems for more detailed technical information.

At this point, many people make their decision based on compatibility with existing cross-compilers, debuggers, and
other development tools. But it's really up to you to decide what additional features are most important for your
project. No matter what you decide to buy, the basic kernel will be about the same as the one described in this
chapter. The differences will most likely be measured in processors supported, minimum and maximum memory
requirements, availability of add-on software modules (networking protocol stacks, device drivers, and Flash
filesystems are common examples), and compatibility with third-party development tools.

Remember that the best reason to choose a commercial operating system is the advantage of using something that is
better tested and, therefore, more reliable than akernel you have developed internally (or obtained for free out of a
book). So one of the most important things you should be looking for from your OS vendor is experience. And if
your system demands real -time performance, you will definitely want to go with an operating system that has been
used successfully in lots of real-time systems. For example, find out which operating system NASA used for its
most recent mission. I'd be willing to bet it's a good one.

Chapter 9.
Putting It All Together

A sufficiently high level of technology is indistinguishable from magic.

-Arthur C. Clarke

In this chapter, I'll attempt to bring all of the elements we've discussed so far together into a compl ete embedded
application. | don't have much new material to add to the discussion at this point, so the body of the chapter is
mainly adescription of the code presented herein. My goal isto describe the structure of this application and its
source code in such away that there is no magic remaining for you. Y ou should leave this chapter with a complete
understanding of the example program and the ability to devel op useful embedded applications of your own.

9.1 Application Overview

The application we're going to discuss is not much more complicated than the "Hello, World!" example found in
most other programming books. It is a testament to the complexity of embedded software development that this
example comes near the end of this book, rather than at its beginning. We've had to gradually build our way up to
the computing platform that most books, and even high-level language compilers, take for granted.

Onceyou're ableto write the "Hello, World!" program, your embedded platform startsto look alot like any other
programming environment. The hardest parts of the embedded software development process-familiarizing yourself
with the hardware, establishing a software development process for it, and interfacing to the individual hardware
devices-are behind you. Y ou are finally able to focus your efforts on the algorithms and user interfaces that are
specific to the product you're developing. In many cases, these higher-level aspects of the program can be developed
on another computer platform, in parallel with the lower-level embedded software development we've been
discussing, and merely ported to the embedded system once both are compl ete.

Figure 9-1 contains a high-level representation of the "Hello, World!" application. This application includes three
devicedrivers, the ADEOS operating system, and two ADEOS tasks. Thefirst task toggles the Arcom board's red
LED at arate of 10 Hz. The second prints the string "Hello, World!" at 10 second intervalsto a host computer or
dumb terminal connected to one of the board's serial ports.

Figure 9-1. The" Hello, World!" application

| Hello World Task
Blinking LED Task
ADEDS Serial Port

LED | Timer _
Software | Driver | Driver | Operating System | Driver
Hardware Arcom's Target 188EB Hardware

In addition to the two tasks, there are three device drivers shown in the figure. These control the Arcom board's
LEDs, timers, and serial ports, respectively. Although it is customary to draw device drivers below the operating
system, | chose to place these three on the same level as the operating system to emphasize that they actually depend
more on ADEOS than it does on them. In fact, the embedded operating system doesn't even know (or care) that
these drivers are present in the system. Thisis acommon feature of the device drivers and other hardware-specific
software in an embedded system.

The implementation of main is shown below. This code simply creates the two tasks and starts the operating
system's scheduler. At such a high level the code should speak for itself. In fact, we've already discussed a similar
code listing in the previous chapter.

#i ncl ude "adeos. h"

void flashRed(void);
void helloWwrld(void);

/*

* Create the two tasks.

*/

Task taskA(fl ashRed, 150, 512);
Task taskB(hellowrld, 200, 512);

/***

*

* Functi on: mai n()
*
* Description: This function is responsible for starting the ADECS
* schedul er only.
*
* Not es:
*
* Returns: This function will never return!
*
***/
voi d
mai n(voi d)
{

os.start();
/1 This point will never be reached.

} /% main() */

9.2 Flashingthe LED

Asl| said earlier, one of two things this application doesis blink the red LED. Thisis done by the code shown below.
Here the function flashRed is executed as a task. However, ignoring that and the new function name, thisis almost
exactly the same Blinking LED function we studied in Chapter 7. The only differences at thislevel are the new
frequency (10 Hz) and LED color (red).

#i nclude "l ed. h"

#i nclude "timer.h"

/**

*

* Function: fl ashRed()
*
* Description: Blink the red LED ten tines a second.
*
* Not es: This outer |oop is hardware-independent. However, it
* cal I s the hardware-dependent function togglelLed().
*
* Returns: This routine contains an infinite | oop.
*
**/
voi d
fl ashRed(voi d)
{

Timer tiner;

timer.start (50, Periodic); /1l Start a periodic 50nms tiner.
while (1)
{
t oggl eLed(LED_RED) ; /1l Toggle the red LED.
timer.waitfor(); /1 Wait for the timer to expire.

} /* flashRed() */

The most significant changes to the Blinking LED program are not visible in this code. These are changes made to
the toggleled function and the Timer class to make them compatible with a multitasking environment. The
toggleled function iswhat | am now calling the LED driver. Once you start thinking about it thisway, it might
make sense to consider rewriting the driver as a C++ class and add new methods to set and clear an LED explicitly.
However, it is sufficient to leave our implementation as it was in Chapter 7 and simply use a mutex to protect the
P2L TCH register from simultaneous access by more than one task.l!

[Thereiis arace condition within the earlier toggleLed functions. To seeiit, look back at the code and imagine that two
tasks are sharing the LEDs and that the first task hasjust called that function to toggle the red LED. Inside toggleled,
the state of both LEDs isread and stored in a processor register when, all of the sudden, thefirst task is preempted by
the second. Now the second task causes the state of both LEDs to be read once more and stored in another processor
register, modified to change the state of the green LED, and the result written out to the P2LTCH register. When the
interrupted task is restarted, it already has a copy of the LED state, but this copy is no longer accurate! After making its
change to the red LED and writing the new state out to the P2L TCH register, the second task's change will be undone.
Adding a mutex eliminates this potential .

Here isthe modified code:
#i ncl ude "i 8018xEB. h"
#i ncl ude "adeos. h"

static Mutex gLedMutex;

/**

*

* Functi on: t oggl eLed()

*

* Description: Toggle the state of one or both LEDs.

*

* Not es: This version is ready for multitasking.
*

* Returns: None defi ned.

.

***/
voi d
t oggl eLed(unsi gned char | edMask)

gLedMut ex. t ake();

/1 Read P2LTCH, modify its value, and wite the result.
/1
gProcessor. pPCB->i oPort[1].latch = | edMask;

gLedMut ex. rel ease();

} /* toggl eLed() */

A similar change must be made to the timer driver from Chapter 7 before it can be used in a multitasking
environment. However, in this case there is no race condition2 Rather, we need to use a mutex to eliminate the
polling in the waitfor method. By associating a mutex with each software timer, we can put any task that is waiting
for atimer to sleep and, thereby, free up the processor for the execution of lower-priority ready tasks. When the
awaited timer expires, the sleeping task will be reawakened by the operating system.

12l Recall that the timer hardware s initialized only once-during the first constructor invocation-and thereafter, the
timer-specific registers are only read and written by one function: the interrupt service routine.

Toward this end, a pointer to amutex object, called pMutex, will be added to the class definition:
cl ass Ti mer

{
publi c:

Ti mer () ;
~Ti mer () ;

i nt start(unsigned int nMIIliseconds, TinerType = OneShot);

i nt waitfor();
void cancel ();

Ti mer St ate st at e;

Ti mer Type type;

unsi gned int |ength;

Miut ex * pMut ex;

unsi gned int count;

Ti mer * pNext ;
private:

static void interrupt Interrupt();
b
This pointer isinitialized each time a software timer is created by the constructor. And, thereafter, whenever atimer
object is started, its mutex is taken as follows:

/**

*

* Met hod: start()

*

* Description: Start a software tinmer, based on the tick fromthe
* underlying hardware timer.

*

* Not es: This version is ready for multitasking.

*

* Returns: 0 on success, -1 if the tinmer is already in use.

*

**/

i nt
Timer::start(unsigned int nMIIliseconds, TinerType tinmerType)
{

if (state !'= Idle)

{

return (-1);

}

/1

/1 Take the mutex. It will be released when the timer expires.

I

pMut ex- >t ake();

/1

/] Initialize the software tiner.

!/

state = Active;

type = tinmerType;

length = nMIliseconds / MS_PER TICK;

/1

// Add this timer to the active tinmer |ist.

/1

timerList.insert(this);
return (0);

} /* start() */

By taking the mutex when the timer is started, we guarantee that no task (not even the one that started thistimer)
will be ableto take it again until the same mutex is released. And that won't happen until either the timer expires
naturally (viathe interrupt service routine) or the timer is canceled manually (viathe cancel method). So the polling
loop inside waitfor can be replaced with pMutex->take(), as follows:

/**

*

* Met hod: wai tfor()

*

* Description: Wait for the software tiner to finish.

*

* Not es: This version is ready for multitasking.

*

* Returns: 0 on success, -1 if the timer is not running.

*
**/
i nt

Timer::waitfor()

{
if (state !'= Active)
{
return (-1);
}
/1
/1 Wait for the tinmer to expire.
/1
pMut ex- >t ake();
/1
/1l Restart or idle the timer, depending on its type.
/1

if (type == Periodic)
{

state = Active;
timerList.insert(this);

}

el se

{
pMut ex- >r el ease() ;
state = Idle;

}

return (0);

} [* waitfor() */

When the timer does eventually expire, the interrupt service routine will release the mutex and the calling task will
awake inside waitfor. In the process of waking, the mutex will already be taken for the next run of the timer. The
mutex need only be released if the timer is of type OneShot and, because of that, not automatically restarted.

9.3 Printing " Hello, World!"

The other part of our example application isatask that printsthe text string "Hello, World!" to one of the serial ports
at aregular interval. Again, the timer driver is used to create the periodicity. However, this task also depends on a
serial port driver that we haven't seen before. The guts of the serial driver will be described in the final two sections
of this chapter, but the task that usesit is shown here. The only thing you need to know about serial portsto
understand thistask is that a Serial Port is a C++ class and that the puts method is used to print astring of characters
from that port.

#i nclude "timer.h"

#i nclude "serial.h"

/**

*

* Function: hel | oWor 1 d()
*
*

Description: Send a text nmessage to the serial port periodically.

Not es: This outer |oop is hardware-independent.

Ret ur ns: This routine contains an infinite | oop.

*
*
*
*
*
*

***/
voi d

hel | oWor | d(voi d)

{

Ti mer timer;

Serial Port serial (PORTA, 19200L);

timer.start (10000, Periodic); /1l Start a periodic 10 s tiner.
while (1)
{

serial.puts("Hello, Wrld!"); // Qutput a sinple text nmessage.
timer.waitfor(); /1 Wit for the tinmer to expire.

}

} /* helloWorld() */

Though the periodicity has a different length, the general structure of thistask isthe same as that of the flashRed
function. So, the only thing left for usto discussisthe makeup of the serial port driver. We'll start with adescription
of ageneralized serial portsinterface and then finish with the specifics of the serial controller found on the Arcom
board.

9.4 Working with Serial Ports

At the application level, aserial port issimply abidirectional data channel. This channel is usually terminated on
each end with a hardware device called a serial communications controller (SCC). Each serial port within the SCC-
there are usually at least two serial ports per controller-is connected to the embedded processor on one side and to a
cable (or the connector for one) on the other side. At the other end of that cable thereis usually ahost computer (or
some other embedded system) that has an internal serial communications controller of its own.

Of course, the actual purpose of the seria port is application-dependent. But the general ideaisthis: to communicate
streams of data between two intelligent systems or between one such device (the target) and a human operator.
Typically, the smallest unit of datathat can be sent or received over aserial port isan 8-bit character. So streams of
binary data need to be reorganized into bytes before transmission. This restriction is similar to that of C'sstdio
library, so it makes sense to borrow some programming conventions from that interface.

In order to support serial communications and emul ate a stdio-style interface, I've defined the SerialPort class asitis
shown below. This class abstracts the application's use of the serial port as bidirectional data channel and makes the
interface as similar as possible to what we've all seen before. In addition to the constructor and destructor, the class
includes four methods-putchar,2 puts, getchar, and gets -for sending characters and strings of characters and
receiving the same. These routines are defined exactly as they would be in any ANSI C-compliant version of the
header file stdio.h.

131 ou might be wondering why this method accepts an integer argument rather than a character. After all, were
sending 8-bit characters over the serial port, right? Well, don't ask me. I'm just trying to be consistent with the ANSI C

library standard and wondering the very same thing myself.

Here's the actual class definition:
#i ncl ude "circbuf.h"

#defi ne PORTA O
#define PORTB 1

cl ass Seri al Port

{
publi c:

Serial Port (int port,
unsi gned | ong baudRate = 19200L,

64,
64) ;

Si ze
Si ze

/! Transmt Buffer
/! Receive Buffer

unsi gned i nt
unsi gned i nt
~Serial Port();

t xQueueSi ze
rxQueueSi ze

i nt put char(int c);
i nt put s(const char *s);
i nt getchar();
char * gets(char *s);
private:
i nt channel ;
Ci r cBuf pTxQueue; /1 Transmit Buffer
CircBuf * pRxQueue; /1 Receive Buffer

1

Note the private data members channel, pTxQueue, and pRxQueue. These are initialized within the constructor and
used to interface to the hardware-specific part of the serial driver described in the next section. I'll have more to say
about thisinterface shortly, but for now just be aware that the Serial Port class does not contain any code that is
specific to aparticular Serial Controller. All of that is hidden inside the SCC class that it references.

Let'stake alook at the SerialPort constructor. Thisroutine isresponsible for initializing the three private data
members and configuring the requested data channel within the SCC hardware:

#i nclude "scc. h"

static SCC scc;

/**

*

Met hod: Serial Port ()

Description: Default constructor for the serial port class.

None defi ned.

*

*

*

*

* Not es:
*

* Returns:
*

*

***/

Serial Port:: Serial Port(int
unsi gned | ong
unsi gned int
unsi gned int

/1
/1 Initialize
/1
switch (port)

the | ogi cal device.

case PORTA:
channel = 0;
br eak;

case PORTB:
channel = 1;
br eak;

def aul t:

channel =
br eak;

/1

port,
baudRat e,

t xQueuesSi ze
rxQueuesi ze)

/1 Create input and output FIFGCs.

/1

pTxQueue = new CircBuf (txQueueSi ze) ;
pRxQueue = new CircBuf (rxQueueSi ze);
/1

/1 Initialize the hardware device.
/1

scc. reset (channel);
scc.init(channel, baudRate, pTxQueue, pRxQueue);

} /* Serial Port() */

Once a Serial Port object has been created, the af orementioned methods for sending and receiving data can be used.
For example, in the helloWorld function shown earlier, puts("Hello, World!") is the statement that sends the text
string to serial port A (a.k.a. SCC channel 0). The datais sent over the serial channel at arate of 19,200 bits per
second, as selected by the baudRate parameter to the Serial Port constructor.

The send and receive methods rely on the circular buffers pointed to by pTxQueue and pRxQueue, respectively.
pTxQueueis atransmit buffer that provides overflow memory in case the rate at which characters are sent by the
application exceeds the baud rate of the channel. This usually happensin short spurts, so it is expected that the
transmit buffer won't usually fill up al the way. Similarly, the receive buffer, pRxQueue, provides overflow memory
for bytesthat have been received at the serial port but not yet read by the application. By default, the above
constructor creates each of these as 64-byte buffers. However, these sizes can be set to smaller or larger values,
depending on the needs of your application, simply by overriding the default arguments to the constructor.

The implementations of the send methods putchar and puts are shown below. In putchar we start by checking if the
transmit buffer isalready full. If so, we return an error indication to the caller, so he will know that the character was
not sent. Otherwise, we add the new character to the transmit buffer, ensure that the SCC transmit engine is running,
and return success. The puts method makes a series of calls to putchar, one for each character in the string and then

adds a newline character at the end.
/**

*

-1 is returned in the case of an error.

* Met hod: put char ()

*

* Description: Wite one character to the serial port.

*

* Not es:

*

* Returns: The transmtted character is returned on success.
*

*

**/
i nt
Serial Port::putchar(int c)

{
if (pTxQueue->isFull())
{

return (-1);

}

/1

/1 Add the character to the transmt FIFO
/1

pTxQueue->add((char) c);

/1

/1l Start the transmit engine (if it's stalled).
/1

scc. txStart (channel);

return (c);

} /* putchar() */

/**

*

* Met hod: put s()

*

* Description: Copies the null-termnated string s to the serial
* port and appends a new i ne character.

*

* Not es: In rare cases, this function may return success though
* the newl i ne was not actually sent.

*

* Returns: The nunber of characters transmtted successfully.
* O herwise, -1 is returned to indicate error.

*

**/
i nt
Serial Port::puts(const char * s)

{

const char * p;

/1

/1 Send each character of the string.
/1

for (p =s; *p !="\0"; p++)

{

}

/1

// Add a new ine character.
/1

putchar('\n');

if (putchar(*p) < 0) break;

return ((p - s) + 1);

} [* puts() */

The receive method getchar is similar to putchar. It starts by checking if the receive buffer is empty. If so, an error
codeisreturned. Otherwise, one byte of datais removed from the receive buffer and returned to the caller. The gets
method callsgetchar repeatedly until either a newline character isfound or there is no more data available at the
serial port. It then returns whatever string was found up to that point. The code for both of these methods follows:

/**

*

* Met hod: get char ()

*

* Description: Read one character fromthe serial port.

*

* Not es:

*

* Returns: The next character found on this input stream
* -1 is returned in the case of an error.

*

**/
i nt
Seri al Port:: getchar(void)

{

int c;

i f (pRxQueue->i sEnpty())
{

return (-1); /1 There is no input data avail able

}

int rxStalled = pRxQueue->isFull ();

/1

/1 Read the next byte out of the receive FIFO
g: pRxQueue- >remove();

/1

// 1f the receive engine is stalled, restart it.
{é (rxStall ed)

i scc.rxStart (channel);

return (c);

/* getchar() */

/**

*

* F X X

* % F X X X X X X

*

*

*

Met hod: gets()

Description: Collects a string of characters term nated by a new
l'ine character fromthe serial port and places it in s.
The newl i ne character is replaced by a null character

Not es: The caller is responsible for allocating adequate space
for the string.

Wr ni ngs: This function does not block waiting for a newine.
If a conplete string is not found, it will return
whatever is available in the receive queue.

Ret ur ns: A pointer to the string.
Ot herwi se, NULL is returned to indicate an error.

**/

char *
Serial Port::gets(char * s)

{

char * p;
i nt c

I
// Read characters until a newline is found or no nore data.
/1

for (p

{
}

/1

/1 Term nate the string.
/1

*p = "\0';

s; (c = getchar()) !'="'\n" & c >= 0; p++)

return (s);

} [* gets() */
9.5 The Zilog 85230 Serial Controller

Thetwo serial ports on the Arcom board are part of the same Zilog 85230 Serial Communications Controller. This
particular chipis, unfortunately, rather complicated to configure and use. So, rather than fill up the SerialPort class
shown earlier with device-specific code, | decided to divide the serial driver into two parts. The upper layer isthe
classwe have just discussed. This upper layer will work with any two-channel SCC that provides byte-oriented
transmit and receive interfaces and configurable baud rates. All that is necessary isto implement a device-specific
SCC class (the lower layer described next) that has the same reset, init, txStart, and rxStart interfaces as those called
from the Serial Port class.

In fact, one of the reasons the Zilog 85230 SCC deviceis so difficult to configure and useisthat it has many more
options than are really necessary for this simple application. The chip is capable of sending not only bytes but also
characters that have any number of bits up to 8. And in addition to being able to select the baud rate, itisalso
possible to configure many other features of one or both channels and to support avariety of other communication
protocols.

Here's how the SCC classis actually defined:

#i ncl ude "circbuf.h"

cl ass SCC
{
publi c:
SC() ;

void reset(int channel);
void init(int channel, unsigned |ong baudRate,
CircBuf * pTxQueue, CircBuf * pRxQueue);

void txStart(int channel);
void rxStart(int channel);

private:

static void interrupt Interrupt(void);
b
Notice that this class also depends upon the CircBuf class. The pTxQueue and pRxQueue arguments to the init
method are used to establish the input and output buffers for that channel. This makesit possible to link alogical
Serial Port object with one of the physical channels within the SCC device. The reason for defining the init method
separately from the constructor is that most SCC chips control two or more serial channels. The constructor resets
them both thefirst timeit iscalled. Then, init is called to set the baud rate and other parameters for a particular
channel.
Everything else about the SCC classis aninternal feature that is specific to the Zilog 85230 device. For that reason,
| have decided not to list or explain this rather long and complex module within the book. Sufficeit to say that the
code consists of macros for reading and writing the registers of the device, an interrupt service routine to handle
receive and transmit interrupts, and methods for restarting the receive and transmit processes if they have previously
stalled while waiting for more data. Interested readers will find the actual code in the file scc.cpp.

Chapter 10.
Optimizing Your Code

Things should be made as simple as possible, but not any simpler.

-Albert Einstein

Though getting the software to work correctly seems like the logical last step for a project, thisis not always the
casein embedded systems development. The need for low-cost versions of our products drives hardware designers
to providejust barely enough memory and processing power to get the job done. Of course, during the software
development phase of the project it is more important to get the program to work correctly. And toward that end
there are usually one or more "development” boards around, each with additional memory, afaster processor, or
both. These boards are used to get the software working correctly, and then the final phase of the project becomes
code optimization. The goal of thisfinal step isto make the working program run on the lower-cost " production”
version of the hardware.

10.1 Increasing Code Efficiency

Some degree of code optimization is provided by all modern C and C++ compilers. However, most of the
optimization techniques that are performed by a compiler involve atradeoff between execution speed and code size.
Y our program can be made either faster or smaller, but not both. In fact, an improvement in one of these areas can
have a negative impact on the other. It is up to the programmer to decide which of these improvementsis most
important to her. Given that single piece of information, the compiler's optimization phase can make the appropriate
choice whenever a speed versus size tradeoff is encountered.

Because you can't have the compiler perform both types of optimization for you, | recommend letting it do what it
can to reduce the size of your program. Execution speed is usually important only within certain time-critical or
frequently executed sections of the code, and there are many things you can do to improve the efficiency of those
sections by hand. However, code size is adifficult thing to influence manually, and the compiler isin amuch better
position to make this change across all of your software modules.

By the time your program is working you might already know, or have a pretty good idea, which subroutines and
modules are the most critical for overall code efficiency. Interrupt service routines, high-priority tasks, calculations
with real-time deadlines, and functions that are either compute-intensive or frequently called are all likely
candidates. A tool called aprofiler, included with some software development suites, can be used to narrow your
focusto those routines in which the program spends most (or too much) of itstime.

Onceyou've identified the routines that require greater code efficiency, one or more of the following techniques can
be used to reduce their execution time:

Inline functions

In C++, the keyword inline can be added to any function declaration. This keyword makes a
request to the compiler to replace al cals to the indicated function with copies of the code
that isinside. This eliminates the runtime overhead associated with the actua function call
and is most effective when the inline function is called frequently but contains only afew
lines of code.

Inline functions provide a perfect example of how execution speed and code size are
sometimes inversely linked. The repetitive addition of the inline code will increase the size of
your program in direct proportion to the number of times the function is called. And,
obvioudly, the larger the function, the more significant the size increase will be. The resulting
program runs faster, but now requires more ROM.

Table lookups

A switch statement is one common programming technique to be used with care. Each test
and jump that makes up the machine language implementation uses up valuable processor

time simply deciding what work should be done next. To speed things up, try to put the
individual casesin order by their relative frequency of occurrence. In other words, put the
most likely cases first and the least likely cases last. This will reduce the average execution
time, though it will not improve at al upon the worst-case time.

If thereisalot of work to be done within each case, it might be more efficient to replace the
entire switch statement with a table of pointers to functions. For example, the following
block of code is a candidate for this improvement:

enum NodeType { NodeA, NodeB, NodeC };

swi tch (get NodeType())
{

case NodeA:
case NodeB:

case NodeC:

}

To speed things up, we would replace this switch statement with the following alternative.
The first part of thisisthe setup: the creation of an array of function pointers. The second
part is a one-line replacement for the switch statement that executes more efficiently.

i nt processNodeA(void);

i nt processNodeB(void);
i nt processNodeC(void);

/*

* Establishment of a table of pointers to functions.

*/

int (* nodeFunctions[])() = { processNodeA, processNodeB, processNodeC };

/*

* The entire switch statenent is replaced by the next |ine.
*/
status = nodeFuncti ons[get NodeType()]();

Hand-coded assembly

Some software modules are best written in assembly language. This gives the programmer an
opportunity to make them as efficient as possible. Though most C/C++ compilers produce
much better machine code than the average programmer, a good programmer can still do
better than the average compiler for a given function. For example, early in my career |
implemented a digital filtering algorithm in C and targeted it to a TI TMS320C30 DSP. The
compiler we had back then was either unaware or unable to take advantage of a special
instruction that performed exactly the mathematical operations | needed. By manually
replacing one loop of the C program with inline assembly instructions that did the same
thing, | was able to decrease the overall computation time by more than a factor of ten.

Register variables

The keyword register can be used when declaring local variables. This asks the compiler to
place the variable into a general-purpose register, rather than on the stack. Used judicioudly,
this technigque provides hints to the compiler about the most frequently accessed variables
and will somewhat enhance the performance of the function. The more frequently the
function is called, the more likely such a change is to improve the code's performance.

Global variables

It is more efficient to use a globa variable than to pass a parameter to a function. This
eliminates the need to push the parameter onto the stack before the function call and pop it
back off once the function is completed. In fact, the most efficient implementation of any
subroutine would have no parameters at all. However, the decision to use a global variable
can also have some negative effects on the program. The software engineering community
generally discourages the use of global variables, in an effort to promote the goal's of
modularity and reentrancy, which are also important considerations.

Polling

Interrupt service routines are often used to improve program efficiency. However, there are
some rare cases in which the overhead associated with the interrupts actually causes an
inefficiency. These are cases in which the average time between interrupts is of the same
order of magnitude as the interrupt latency. In such cases it might be better to use polling to
communicate with the hardware device. Of course, this too leads to a less modular software
design.

Fixed-point arithmetic

Unless your target platform includes a floating-point coprocessor, you'll pay avery large
penalty for manipulating float data in your program. The compiler-supplied floating-point
library contains a set of software subroutines that emulate the instruction set of a floating-
point coprocessor. Many of these functions take a long time to execute relative to their
integer counterparts and also might not be reentrant.

If you are only using floating-point for a few calculations, it might be better to reimplement
the calculations themselves using fixed-point arithmetic only. Although it might be difficult
to see just how this can be done, it is theoretically possible to perform any floating-point
calculation with fixed-point arithmetic. (After al, that's how the floating-point software
library does it, right?) Y our biggest advantage is that you probably don't need to implement
the entire IEEE 754 standard just to perform one or two calculations. If you do need that kind
of complete functionality, stick with the compiler's floating-point library and look for other
ways to speed up your program.

10.2 Decreasing Code Size

Asl| said earlier, when it comesto reducing code size your best bet isto let the compiler do the work for you.
However, if the resulting program is still too large for your available ROM, there are several programming
techniques you can use to further reduce the size of your program. In this section we'll discuss both automatic and
manual code size optimizations.

Of course, Murphy's Law dictates that the first time you enable the compiler's optimization feature your previously
working program will suddenly fail. Perhaps the most notorious of the automatic optimizationsis" dead code
elimination.” This optimization eliminates code that the compiler believesto be either redundant or irrelevant. For
example, adding zero to a variable requires no runtime cal culation whatsoever. But you might still want the compiler
to generate those "irrelevant” instructionsif they perform some function that the compiler doesn't know about.

For example, given the following block of code, most optimizing compilers would remove the first statement
because the value of *pControl is not used beforeit is overwritten (on the third line):

*pControl = DISABLE;

*pData ='a;

*pControl = ENABLE;
But what if pControl and pData are actually pointers to memory-mapped device registers? In that case, the
peripheral device would not receive the DISABLE command before the byte of datawas written. This could
potentially wreak havoc on all future interactions between the processor and this peripheral. To protect yourself
from such problems, you must declare all pointers to memory-mapped registers and global variablesthat are shared
between threads (or athread and an ISR) with the keyword volatile. And if you missjust one of them, Murphy's
Law will come back to haunt you in the final days of your project. | guarantee it.

=

Never make the mistake of assuming that the optimized program will behave the same as the unoptimized one. You
must completely retest your software at each new optimization level to be sureits behavior hasn't changed.

To make matters worse, debugging an optimized program is challenging, to say the least. With the compiler's
optimization enabled, the correlation between aline of source code and the set of processor instructions that
implements that line is much weaker. Those particular instructions might have moved or been split up, or two
similar code blocks might now share a common implementation. In fact, some lines of the high-level language
program might have been removed from the program altogether (as they were in the previous example)! Asaresult,
you might be unable to set a breakpoint on a particular line of the program or examine the value of avariable of
interest.

Once you've got the automatic optimizations working, here are some tips for further reducing the size of your code
by hand:

Avoid standard library routines

One of the best things you can do to reduce the size of your program is to avoid using large
standard library routines. Many of the largest are expensive only because they try to handle
all possible cases. It might be possible to implement a subset of the functionality yourself
with significantly less code. For example, the standard C library's sprintf routine is
notorioudly large. Much of this bulk is located within the floating-point manipulation
routines on which it depends. But if you don't need to format and display floating-point
values (%f or %d), you could write your own integer-only version of sprintf and save several
kilobytes of code space. In fact, a few implementations of the standard C library (Cygnus
newlib comes to mind) include just such a function, called siprintf.

Native word size

Every processor has a native word size, and the ANSI C and C++ standards state that data
type int must always map to that size. Manipulation of smaller and larger data types
sometimes requires the use of additional machine-language instructions. By consistently
using int whenever possible in your program, you might be able to shave a precious few
hundred bytes from your program.

Goto statements

As with global variables, good software engineering practice dictates against the use of this
technique. But in a pinch, goto statements can be used to remove complicated control
structures or to share a block of oft repeated code.

In addition to these techniques, several of the ones described in the previous section could be helpful, specifically
table lookups, hand-coded assembly, register variables, and global variables. Of these, the use of hand-coded
assembly will usually yield the largest decrease in code size.

10.3 Reducing Memory Usage

In some cases, it is RAM rather than ROM that is the limiting factor for your application. In these cases, you'll want
to reduce your dependence on global data, the stack, and the heap. These are all optimizations better made by the
programmer than by the compiler.

Because ROM isusually cheaper than RAM (on a per-byte basis), one acceptabl e strategy for reducing the amount
of global data might be to move constant datainto ROM. This can be done automatically by the compiler if you
declare all of your constant data with the keyword const. Most C/C++ compilers place all of the constant global data
they encounter into a special data segment that is recognizable to the locator as ROM-able. Thistechniqueis most
valuable if there arelots of strings or table-oriented data that does not change at runtime.

If some of the datais fixed once the program is running but not necessarily constant, the constant data segment
could be placed in a hybrid memory device instead. This memory device could then be updated over a network or by
atechnician assigned to make the change. An example of such dataisthe salestax rate for each locale in which your
product will be deployed. If atax rate changes, the memory device can be updated, but additional RAM can be
saved in the meantime.

Stack size reductions can also lower your program’'s RAM requirement. One way to figure out exactly how much
stack you need isto fill the entire memory areareserved for the stack with a special data pattern. Then, after the
software has been running for awhile-preferably under both normal and stressful conditions-use a debugger to
examine the modified stack. The part of the stack memory areathat still contains your special data pattern has never
been overwritten, so it is safe to reduce the size of the stack area by that amount 2!

11 Of course, you might want to |leave alittle extra space on the stack-just in case your testing didn't last long enough or
did not accurately reflect all possible runtime scenarios. Never forget that a stack overflow isapotentially fatal event

for your software and to be avoided at all costs.

Be especially conscious of stack space if you are using areal-time operating system. Most operating systems create
aseparate stack for each task. These stacks are used for function calls and interrupt service routines that occur
within the context of atask. Y ou can determine the amount of stack required for each task stack in the manner
described earlier. Y ou might also try to reduce the number of tasks or switch to an operating system that has a
separate "interrupt stack" for execution of all interrupt service routines. The latter method can significantly reduce
the stack size requirement of each task.

The size of the heap is limited to the amount of RAM left over after all of the global data and stack space has been
allocated. If the heap istoo small, your program will not be able to allocate memory when it is needed, so always be
sure to compare the result of malloc or new with NULL before dereferencing it. If you'vetried all of these
suggestions and your program is still requiring too much memory, you might have no choice but to eliminate the
heap altogether.

10.4 Limiting the Impact of C++

One of the biggest issues | faced upon deciding to write this book was whether or not to include C++ in the
discussion. Despite my familiarity with C++, | had written ailmost all of my embedded software in C and assembly.
In addition, there has been much debate within the embedded software community about whether C++ isworth the
performance penalty. It is generally agreed that C++ programs produce larger executables that run more slowly than
programs written entirely in C. However, C++ has many benefits for the programmer, and | wanted to talk about
some of those benefitsin the book. So | ultimately decided to include C++ in the discussion, but to usein my
examples only those features with the least performance penalty.

| believe that many readers will face the same issue in their own embedded systems programming. Before ending the
book, | wanted to briefly justify each of the C++ features | have used and to warn you about some of the more
expensive featuresthat | did not use.

The Embedded C++ Standard

Y ou might be wondering why the creators of the C++ language included so many expensive-in terms of
execution time and code size-features. Y ou are not alone; people around the world have wondered the
same thing-especially the users of C++ for embedded programming. Many of these expensive features
are recent additions that are neither strictly necessary nor part of the original C++ specification. These

features have been added one by one as part of the ongoing "standardization™ process.

In 1996, a group of Japanese processor vendors joined together to define a subset of the C++ language

and libraries that is better suited for embedded software development. They call their new industry

standard Embedded C++. Surprisingly, for itsyoung age, it has already generated a great deal of interest
and excitement within the C++ user community.

IA proper subset of the draft C++ standard, Embedded C++ omits pretty much anything that can be left

out without limiting the expressiveness of the underlying language. Thisincludes not only expensive

features like multiple inheritance, virtual base classes, runtime type identification, and exception
handling, but also some of the newest additions like templates, namespaces, and new-style casts. What's
left isasimpler version of C++ that is still object-oriented and a superset of C, but with significantly
less runtime overhead and smaller runtime libraries.

A number of commercial C++ compilers already support the Embedded C++ standard specifically.

Several others allow you to manually disable individual language features, thus enabling you to emulate

Embedded C++ or create your very own flavor of the C++ language.

Of course, not everything introduced in C++ is expensive. Many older C++ compilersincorporate a technology
called C-front that turns C++ programs into C and feeds the result into a standard C compiler. The mere fact that this
is possible should suggest that the syntactical differences between the languages have little or no runtime cost
associated with them.2 [t is only the newest C++ features, like templates, that cannot be handled in this manner.

12 Moreover, it should be clear that there is no penalty for compiling an ordinary C program with a C++ compiler.

For example, the definition of a classis completely benign. The list of public and private member data and functions
are not much different than a struct and alist of function prototypes. However, the C++ compiler is able to use the
public and private keywords to determine which method calls and data accesses are allowed and disallowed.
Because this determination is made at compile time, thereis no penalty paid at runtime. The addition of classes
alone does not affect either the code size or efficiency of your programs.

Default parameter values are also penalty-free. The compiler simply inserts code to pass the default value whenever
the function is called without an argument in that position. Similarly, function name overloading is a compile-time
modification. Functions with the same names but different parameters are each assigned unique names during the
compilation process. The compiler alters the function name each time it appears in your program, and the linker
matches them up appropriately. | haven't used this feature of C++ in any of my examples, but | could have done so
without affecting performance.

Operator overloading is another feature | could have used but didn't. Whenever the compiler sees such an operator, it
simply replacesit with the appropriate function call. So in the code listing that follows, the last two lines are
equivalent and the performance penalty is easily understood:

Complex a, b, c;

C = operator+(a, b); /1 The traditional way: Function Call

c = a + b /1 The C++ way: Operator Overl oading
Constructors and destructors also have a slight penalty associated with them. These special methods are guaranteed
to be called each time an object of the typeis created or goes out of scope, respectively. However, this small amount
of overhead is areasonable price to pay for fewer bugs. Constructors eliminate an entire class of C programming
errors having to do with uninitialized data structures. This feature has also proved useful for hiding the awkward
initialization sequences that are associated with complex classes like Timer and Task.

Virtual functions also have a reasonable cost/benefit ratio. Without going into too much detail about what virtual
functions are, let's just say that polymorphism would be impossible without them. And without polymorphism, C++
would not be atrue object-oriented language. The only significant cost of virtual functionsis one additional memory
lookup before avirtual function can be called. Ordinary function and method calls are not affected.

The features of C++ that are too expensive for my taste are templates, exceptions, and runtime type identification.
All three of these negatively impact code size, and exceptions and runtime type identification also increase
execution time. Before deciding whether to use these features, you might want to do some experiments to see how
they will affect the size and speed of your own application.

Appendix A.
Arcom's Target188EB

All of the examplesin this book have been written for and tested on an embedded platform called the Target188EB.
Thisboard isalow-cost, high-speed embedded controller designed, manufactured, and sold by Arcom Control
Systems. The following paragraphs contain information about the hardware, required and included software
development tools, and instructions for ordering aboard for yourself.
The Target188EB hardware consists of the following:

Processor: Intel 80188EB (25 MH2z)

RAM: 128K of SRAM (256K available), with optional battery backup

ROM: 128K of EPROM and 128K of Flash (512K maximum)

Two RS232-compatible serial ports (with external DB9 connectors)

24-channel parallel port

3 programmabl e timer/counters

4 available interrupt inputs

An 8-bit PC/104 expansion bus interface

An optional 8-bit STEBuUS expansion interface

A remote debugging adapter containing two additional RS232-compatible serial ports
Software development for this board is as easy as PC programming. Free development tools and utilities included
with the board allow you to develop your embedded application in C/C++ or assembly language, using Borland's
C++ compiler and Turbo Assembler. In addition, a debug monitor preinstalled in the onboard Flash memory makes
it possible to use Borland's Turbo Debugger to easily find and fix bugs in your application. Finally, alibrary of
hardware interface routines makes manipulating the onboard hardware as simple as interacting with C'sstdio library.
All of the programsin this book were assembled, compiled, linked, and debugged with a copy of Borland C++ 3.1.
However, any version of the Borland tool chain capable of producing code for an 80186 processor will do just fine.
Thisincludes the popular versions 3.1, 4.5, and 4.52. If you already have one of these versions, you can use that.
Otherwise, you might want to check with Arcom to find out if the latest version of Borland'stoolsis compatible
with their development and debugging tools.
In small quantities, the Target188EB board (part number TARGET 188EB-SBC) retails for $195.141 Ordinarily, this
does not include the software devel opment tools and power supply. However, Arcom has generously agreed to
provide afree copy of their Target Development Kit (a $100 value) to readers of this book.El

(Al The price and availability of this board are beyond my control. Please contact Arcom for the latest information.

8 No financial or contractual relationship exists between myself or O'Reilly & Associates, Inc. and Arcom Control
Systems. | only promote the board here out of thanks to Arcom for producing a quality product and supporting me with
thisproject.

Simply mention the book when placing your order and you will be eligible for this special offer. To place an order,
contact the manufacturer directly at:

Arcom Control Systems
13510 South Oak Street
Kansas City, MO 64145
Phone: 888-941-2224
Fax: 816-941-7807

Email: sales@arcomcontrols.com

Web: http://www.arcomcontrols.com/

ASIC

Application-Specific Integrated Circuit. A piece of custom-designed hardware in a chip.

address bus

A set of electrical lines connected to the processor and all of the peripherals with which it
communicates. The address bus is used by the processor to select a specific memory location
or register within a particular peripheral. If the address bus contains n electrical lines, the
processor can uniquely address up to 2" such locations.

application software

Software modules specific to a particular embedded project. The application software is
unlikely to be reusable across embedded platforms, ssmply because each embedded system
has a different application.

assembler

A software development tool that trandates human-readable assembly language programs
into machine-language instructions that the processor can understand and execute.

assembly language

A human-readable form of a processor's instruction set. Most processor-specific functions
must be written in assembly language.

binary semaphore

A type of semaphore that has only two states. Also called a mutex.

board support package

Part of a software package that is processor- or platform-dependent. Typically, sample
source code for the board support package is provided by the package developer. The sample
code must be modified as necessary, compiled, and linked with the rest of the software
package.

breakpoint

A location in a program at which execution is to be stopped and control of the processor
switched to the debugger. Mechanisms for creating and removing breakpoints are provided
by most debugging tools.

< BACK CONTINUE >

C

CISC

Complex Instruction Set Computer. Describes the architecture of a processor family. CISC processors generally
feature variable-length instructions and multiple addressing formats, and contain only a small number of general-
purpose registers. Intel's 80x86 family is the quintessential example of CISC. Contrast with RISC.

CPU
Central Processing Unit. The part of a processor that executes instructions.

compiler
A software development tool that translates high-level language programs into the machine-language instructions
that a particular processor can understand and execute.

context
The current state of the registers and flags of the processor.

context switch

The process of switching from one task to another in a multitasking operating system. A context switch involves
saving the context of the running task and restoring the previously saved context of the other. The piece of code that
does thisis necessarily processor-specific.

counting semaphore
A type of semaphore that is used to track multiple resources of the same type. An attempt to take a counting
semaphore is blocked only if all of the available resources arein use. Contrast with binary semaphore.

critical section

A block of code that must be executed in sequence and without interruption to guarantee correct operation of the
software. See also race condition.

cross-compiler
A compiler that runs on adifferent platform than the one for which it produces object code. A cross-compiler runs
on ahost computer and produces object code for the target.

DMA
Direct Memory Access. A technique for transferring data directly between two peripherals

(usually memory and an 1/0 device) with only minimal intervention by the processor. DMA
transfers are managed by athird peripheral called a DMA controller.

DRAM
Dynamic Random-Access Memory. A type of RAM that maintains its contents only as long

as the data stored in the device is refreshed at regular intervals. The refresh cycles are usually
performed by a peripheral called a DRAM controller.

DSP

See digital signal processor.

data bus

A set of electrica lines connected to the processor and all of the peripherals with which it
communicates. When the processor wants to read (or write) the contents of a memory
location or register within a particular peripheral, it sets the address bus pins appropriately
and receives (or transmits) the contents on the data bus.

deadline

The time by which a particular set of computations must be completed. See also real-time
system.

deadlock

An unwanted software situation in which an entire set of tasksis blocked, waiting for an
event that only atask within the same set can cause. If a deadlock occurs, the only solution is

to reset the system. However, it is usually possible to prevent deadlocks altogether by
following certain software design practices.

debug monitor

A piece of embedded software that has been designed specifically for use as a debugging
tool. It usually residesin ROM and communicates with a debugger via a serial port or
network connection. The debug monitor provides a set of primitive commands to view and
modify memory locations and registers, create and remove breakpoints and execute your

program. The debugger combines these primitives to fulfill higher-level requests like
program download and single-step.

debugger

A software development tool used to test and debug embedded software. The debugger runs
on ahost computer and connects to the target through a serial port or network connection.
Using a debugger, you can download software to the target for immediate execution. Y ou can
also set breakpoints and examine the contents of specific memory locations and registers.

devicedriver

A software module that hides the details of a particular peripheral and provides a high-level
programming interface to it.

device programmer

A tool for programming nonvolatile memories and other electrically programmable devices.
Typically, the programmable device is inserted into a socket on the device programmer and
the contents of a memory buffer are then transferred into it.

digital signal processor

A device that is smilar to a microprocessor, except that the internal CPU has been optimized
for use in applications involving discrete-time signal processing. In addition to standard
microprocessor instructions, DSPs usually support a set of complex instructions to perform
common signal-processing computations quickly. Common DSP families are Tl's 320Cxx
and Motorola's 5600x series.

E

EEPROM
Electrically Erasable, Programmable Read-Only Memory. (Pronounced "double-E PROM.")
A type of PROM that can be erased electronically.

EPROM
Erasable, Programmable Read-Only Memory. A type of PROM that can be erased by
exposing it to ultraviolet light. Once erased, an EPROM can be reprogrammed with the help
of adevice programmer.

embedded system
A combination of computer hardware and software, and perhaps additional mechanical or
other parts, designed to perform a specific function. Contrast with general-purpose computer.

emulator
Short for In-Circuit Emulator (ICE). A debugging tool that takes the place of-emulates-the
processor on your target board. Emulators frequently incorporate a special "bond-out"
version of the target processor that allows you to observe and record its internal state as your
program is executing.

executable

A file containing object code that is ready for execution on the target. All that remains is to
place the object code into a ROM or download it via a debugging tool.

firmware

Embedded software that is stored as object code within a ROM. This name is most common
among the programmers of digital signal processors.

Flash memory

A RAM-ROM hybrid that can be erased and rewritten under software control. Such devices
are divided into blocks, called sectors, that are individually erasable. Flash memory is
common in systems that require nonvolatile data storage at very low cost. In some cases, a
large Flash memory is even used instead of a disk-drive.

gener al-pur pose computer

A combination of computer hardware and software that serves as a general-purpose
computing platform. For example, a personal computer. Contrast with embedded system.

HLL

See high-level language.

heap

An area of memory that is used for dynamic memory allocation. Calls to malloc and free and
the C++ operators new and delete result in runtime manipulation of the heap.

high-level language

A language, such as C or C++, that is processor-independent. When you program in a high-
level language, it is possible to concentrate on algorithms and applications without worrying
about the details of a particular processor.

host

A general-purpose computer that communicates with the target via a seria port or network
connection. This term is usually used to distinguish the computer on which the debugger is
running from the embedded system that is being devel oped.

ICE

In-Circuit Emulator. See emul ator.

1/0

Input/Output. The interface between a processor and the world around it. The simplest
examples are switches (inputs) and LEDs (outputs).

/O device

A piece of hardware that interfaces between the processor and the outside world. Common
examples are switches and LEDSs, serial ports, and network controllers.

/O map

A table or diagram containing the name and address range of each peripheral addressable by
the processor within the 1/0 space. 1/0 maps are a helpful aid in getting to know the
hardware.

I/O space

A specia memory region provided by some processors and generally reserved for the
attachment of 1/O devices. Memory locations and registers within an 1/0O space can be
accessed only via specid instructions. For example, processors in the 80x86 family have
specia 1/0 space instructions called in and out. Contrast with memory space.

< BACK CONTINUE >
L
linker

A software development tool that accepts one or more object files as input and outputs arelocatable program. The
linker isthus run after all of the source files have been compiled or assembl ed.

|ocator

A software development tool that assigns physical addresses to the rel ocatable program produced by the linker. This
isthelast step in the preparation of software for execution by an embedded system, and the resulting fileis called an
executable. In some cases, the locator's function is hidden within the linker.

logic analyzer
A hardware debugging tool that can be used to capture the logic levels (0 or 1) of dozens, or even hundreds, of

electrical signalsin real time. Logic analyzers can be quite helpful for debugging hardware problems and complex
processor-peripheral interactions.

memory map

A table or diagram containing the name and address range of each peripheral addressable by
the processor within the memory space. Memory maps are a helpful aid in getting to know
the hardware.

memory-mapped 1/0

Common hardware design methodology in which 1/0 devices are placed into the memory
gpace rather than the 1/0 space. From the processor's point of view, memory-mapped 1/0
devices look very much like memory devices.

memory space

A processor's standard address space. Contrast with 1/0 space.

microcontroller

A microcontroller is very smilar to a microprocessor. The main difference is that a
microcontroller is designed specifically for use in embedded systems Microcontrollers
typically include a CPU, memory (asmall amount of RAM, ROM, or both), and other
peripherals on the same chip. Common examples are the 8051, Intel's 80196, and Motorolas
68HCxX series.

micCr opr ocessor

A piece of silicon containing a general-purpose CPU. The most common examples are Intel's
80x86 and Motorola's 680x0 families.

monitor

In the context of this book, a debug monitor. However, there is a second meaning for this
word that is associated with intertask communication. In that context, a monitor is a
language-level synchronization feature.

multiprocessing

The use of more than one processor in a single computer system. So-called "multiprocessor
systems" usually have a common memory space through which the processors can
communicate and share data. In addition, some multiprocessor systems support parallel
processing.

multitasking

The execution of multiple software routines in pseudoparallel. Each routine represents a
separate "thread of execution” and is referred to as a task. The operating systemis
responsible for ssimulating parallelism by parceling out the processor'stime.

mutex

A data structure for mutual exclusion, also known as a binary semaphore. A mutex is
basically a multitasking -aware binary flag that can be used to protect critical sections from
interruption.

mutual exclusion

A guarantee of exclusive access to a shared resource. In embedded systems, the shared
resource is typically a block of memory, a global variable, or a set of registers. Mutual
exclusion can be achieved with the use of a semaphore or mutex.

< BACK CONTINUE >

N
NVRAM

Nonvolatile Random-Access Memory. A type of RAM that retainsits data even when the system is powered down.
NVRAM frequently consists of an SRAM and along-life battery.

OoTP

See one-time programmabl e.

object code

A set of processor-readable opcodes and data. The output of compilers, assemblers, linkers,
and locators are files containing object code.

object file

A file containing object code. The output of a compiler or assembler.

one-time programmable

Any programmable device, like a PROM, that can be programmed just once by the end user.
However, this term is used almost exclusively to refer to microcontrollers that have on-chip
PROM.

opcode

A sequence of bits that is recognized by the processor as one of the instructions in its
instruction set.

oper ating system

A piece of software that makes multitasking possible. An operating system typically consists
of aset of function calls, or software interrupts and a periodic clock tick. The operating
system is responsible for deciding which task should be using the processor at a given time
and for controlling access to shared resources.

oscilloscope

A hardware debugging tool that allows you to view the voltage on one or more electrical
lines. For example, you might use an oscilloscope to determine if a particular interrupt is
currently asserted.

PROM

Programmable Read-Only Memory. A type of ROM that can be written (programmed) with a
device programmer. These memory devices can be programmed only once, so they are
sometimes referred to as write-once or one-time programmabl e devices.

parallel processing

The ability to apply two or more processors to a single computation.

peripheral

A piece of hardware other than the processor, usually memory or an I/O device. The
peripheral can reside within the same chip as the processor, in which caseiit is called an
internal peripheral.

physical address

The actual address that is placed on the address bus when accessing a memory location or
register.

preemptive

A scheduler is said to be preemptive if it allows the running task to be suspended when a
higher-priority task becomes ready. Non-preemptive schedulers are easier to implement but
less appropriate for embedded systems.

priority

The relative importance of one task compared to another.

priority inversion

An unwanted software situation in which a high-priority task is delayed while waiting for
access to a shared resource that is not even being used at the time. For all practical purposes,
the priority of this task has been lowered during the delay period.

process

A word that is often confused with task or thread. The crucial distinction isthat al of the
tasks in a system share a common memory space. Processes, on the other hand, aways have
their own private memory space. Processes are common in multi-user systems but are rarely,
if ever, found in embedded systems

Processor

A generic term that does not distinguish between microprocessor, microcontroller, and
digital signal processor. | have purposefully used this term throughout the book because the
actual processor type has very little impact on the type of embedded software devel opment
described here.

processor family

A set of related processors, usualy successive generations from the same manufacturer. For
example, Intel's 80x86 family began with the 8086 and now includes the 80186, 286, 386,
486, Pentium, and many others. The later models in afamily are typically backwards-
compatible with the ones that came before.

processor -independent

A piece of software that is independent of the processor on which it will be run. Most
programs that can be written in a high-level language are processor-independent. Contrast
with processor-specific.

pr ocessor -specific

A piece of software that is highly dependent on the processor on which it will be run. Such
code must usually be written in assembly language. Contrast with processor-independent.

profiler

A software development tool that collects and reports execution statistics for your programs.
These statistics include the number of calls to each subroutine and the total amount of time
spent within each. This data can be used to learn which subroutines are the most critical and,
therefore, demand the greatest code efficiency.

program counter

See instruction pointer.

RAM

Random-Access Memory. A broad classification of memory devices that includes all devices
in which individual memory locations can be read or written as required.

RISC

Reduced Instruction Set Computer. Describes the architecture of a processor family. RISC
processors generally feature fixed-length instructions, a load-store memory architecture, and
alarge number of general-purpose registers or register windows. The MIPS processor family
isan excellent example. Contrast with CISC.

ROM

Read-Only Memory. A broad classification of memory devices that includes all devicesin
which the individual memory locations can be read but not written.

ROM emulator

A debugging tool that takes the place of-or emulates-the ROM on your target board. A ROM
emulator acts very much like a debug monitor, except that it includes its own serial or
network connection to the host.

ROM monitor

See debug monitor.

RTOS

Real-Time Operating System. An operating system designed specifically for use in real-time
systems.

race condition

A situation in which the outcome of a program can be affected by the exact order in which
the instructions are executed. Race conditions are only an issue where interrupts and/or
preemption are possible and where critical sections exist.

real-time system

Any computer system, embedded or otherwise, that has deadlines The following question
can be used to identify real-time systems: is alate answer as bad as, or even worse than, a
wrong answer? In other words, what happens if the computation doesn't finish in time? If
nothing bad happens, it's not a real-time system. If someone dies or the mission fails, it's
generally considered "hard" real-time, which is meant to imply that the system has "hard"
deadlines. Everything in between is "soft" rea-time.

recursive

Refers to software that calls itself. Recursion should generally be avoided in an embedded
system because it frequently requires a large stack.

reentrant

Refers to software that can be executed multiple times simultaneously. A reentrant function
can be safely called recursively or from multiple tasks. The key to making code reentrant is
to ensure mutual exclusion whenever accessing global variables or shared registers.

register

A memory location that is part of a processor or aperipheral. In other words, it's not normal
memory. Generally, each bit or set of bits within the register controls some behavior of the
larger device.

relocatable

A file containing object code that is amost ready for execution on the target. The final step is
to use alocator to fix the remaining relocatable addresses within the code. The result of that
processis an executable.

reset address

The address from which the first instruction will be fetched after the processor is powered on
or reset.

reset code

A small piece of codethat is placed at the reset address. The reset code is usualy written in
assembly language and might simply be the equivalent of "jump to the startup code."

reset vector

See reset address.

SRAM

Static Random-Access Memory. A type of RAM that retains its contents as long as power is
supplied to it. Data stored in an SRAM is lost when the system is powered down or reset.

scheduler

The part of an operating system that decides which task to run next. This decision is based on
the readiness of each task, their relative priorities, and the specific scheduling algorithm
implemented.

semaphore

A data structure that is used for intertask communication. Semaphores are usually provided
by the operating system.

simulator

A debugging tool that runs on the host and pretends to be the target processor. A simulator
can be used to test pieces of the software before the embedded hardware is available.
Unfortunately, attempts to simulate interactions with complex peripherals are often more
trouble than they are worth.

softwar e interrupt

An interrupt that is generated by a software instruction. Software interrupts are commonly
used to implement breakpoints and operating system entry points. Compare with trap.

stack

An area of memory that contains a last-in-first-out queue of storage for parameters, automatic
variables, return addresses, and other information that must be maintained across function
cals. In multitasking situations, each task generally has its own stack.

stack frame

An area of the stack associated with a particular function call.

startup code

A piece of assembly language code that prepares the way for software written in a high-level
language. Most C/C++ cross-compilers come with startup code that you can modify,
compile, and link with your embedded programs.

tar get

Another name for the embedded system. This term is usually used during software
development, to distinguish the embedded system from the host with which it communicates.

task

The central abstraction of an operating system. Each task must maintain its own copy of the
instruction pointer and general-purpose registers. Unlike processes, tasks share a common
memory space and must be careful to avoid overwriting each other's code and data.

thread

Another name for atask. This name is more common in operating systemsthat support
processes. A task is simply athread in a single-process system.

tracepoint

Similar to a breakpoint except that a counter is incremented rather than stopping the
program. Tracepoints are not supported by all debugging tools.

trap

An interrupt that is generated by the processor's own interna hardware. For example, the
processor might trap if anillegal opcode is found in your program. Compare with software
interrupt.

volatile

A value that can change without the intervention of software is said to be volatile. For
example, values within the registers of some I/O devices change in response to external
events. C's volatile keyword should be used to warn your compiler about any pointers that

point to such registers. This will ensure that the actual value is reread each time the data is
used.

w

watchdog timer

A hardware timer that is periodically reset by software. If the software crashes or hangs, the
watchdog timer will expire, and the entire system will be reset automatically.

Bibliography

One of the most frustrating aspects of devel oping embedded software is that there are few references available.
Many of the books that have been written are poor or out of print, and there are only a handful of periodicals
dedicated to the subject. What follows is an annotated list of the books, magazines, and other resources | found most
helpful in writing this book. Thisis not an attempt to itemize all of the relevant publications. In fact, | have
specifically omitted several books and magazines that did not impress me. What'sleft isalist of books worth
owning, magazines and conferences worthy of your time, and World Wide Web sites worth bookmarking.

12.1 Books

Ball, Stuart R. Embedded Microprocessor Systems: Real World Design. Newton, Mass.:
Butterworth-Heinemann, 1996.

This tiny book is packed full of information about hardware design and embedded system
development that every embedded software engineer should understand to be effective.

Brown, John Forrest. Embedded Systems Programming in C and Assembly. New York: Van
Nostrand Reinhold, 1994.

It'sagood thing | didn't know about this book afew years ago. If | had, | might not have tried
writing my own. It is obvious to me that Mr. Brown and | had smilar visions for our books.
And since | have tried to stay away from assembly language as much as possible, this book
would make an excellent companion to the one you are reading.

Gansde, Jack G. The Art of Programming Embedded Systems. San Diego: Academic Press,
1992.

Some very practical advice from one of our industry's most voca gurus. The author of a
monthly column in Embedded Systems Programming (described later in this bibliography),
Mr. Gansse has helpfully collected some of his most lasting tips and rules of thumb in this
book. A handy reference for topics that are too specific to be covered here.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Englewood Cliffs,
N.J.: Prentice-Hall, 1988.

A concise explanation of C's syntax and semantics direct from the founding fathers. A
necessary component of any programmer's bookshelf.

Labrosse, Jean J. LC/OS: The Real-Time Kernel. Lawrence, Kans.: R & D Publications, 1992.

A real-time operating system with source code and explanatory text-all for the price of a
book. A great investment for someone who's thinking of writing their own operating system,
or just looking for free source code. LC/OS (pronounced "micro-COS") has been ported to
many processors and has a large user base.

Rosenberg, Jonathan B. How Debuggers Work: Algorithms, Data Sructures, and Architecture.
New Y ork: John P. Wiley & Sons, 1996.

If you've ever wondered what a debugger looks like on the inside, this book is for you. It will
also give you a better understanding of the split between debugger and debug monitor and
the potential for interference between the debugger and your programs.

Satir, Gregory, and Doug Brown. C++: The Core Language. Cambridge, Mass.: O'Reilly &
Associates, 1995.

An excellent introduction to C++ for competent C programmers. If you don't already have a
C++ book that you like, try this one.

Van der Linden, Peter. Expert C Programming: Deep C Secrets Englewood Cliffs, N.J.:
Prentice-Hall, 1994.

Written by a member of Sun Microsystems' compiler development team, this book helpsto
fill the gaps in knowledge between an ordinary C programmer and a guru. Although not
entirely necessary, an understanding of these advanced topics can only make you a better
embedded programmer. This book is an excellent reference as well as an entertaining read.

Van Sickle, Ted. Programming Microcontrollersin C. Solana Beach, Calif.: HighText
Publications, 1994.

Like many of the embedded programming books that I've found, this one is specific to a
particular processor family. However, because the book is well written and Motorola's
microcontrollers are quite popular, some readers will still find it useful.

12.2 Magazines and Conferences
Embedded Systems Programming

A monthly publication devoted specifically to the issues embedded software devel opers face
on the job. Every article and column is packed with practical advice and written in a casual
style familiar to readers of this and other Nutshell Handbooks. | highly recommend that
everyone reading this sentence immediately put my book down and take a few minutes to
sign up for afree subscription at http://www.embedded.com/mag.shtml. It usually takes
several months to get going, but is well worth the wait.

In addition, you might want to purchase a copy of the CD-ROM archive. This searchable
database contains hundreds of past articles and columns and was an indispensable reference
in the creation of this book. More information is available at
http://www.embedded.com/cd.htm.

Embedded Systems Conference

A technical conference hosted several times each year by the publishers of the magazine just
described. The conference has been running for about 10 years, and the number of exhibitors
and attendees continues to grow each year. The knowledge to be gained here far outweighs
the cost of traveling to the conference and attending the classes. | try to go as often as | can.

Chip Directory (http://www.hitex.com/)

An unbelievably large collection of information about common processors and peripherals. Thisis not the only
such site on the Web, but it is one of the best maintained and it has links to many of the others.

CPU Info Center (http://bwrc.eecs.berkeley.edu/CIC/)

Tons of information about new and old processors alike. Includes a section specifically about common
embedded processors.

CRC Pitstop (http://www.ross.net/crc/)

A site dedicated to information about CRC implementation, including Ross Williams' "Painless Guideto CRC
Error Detection Algorithms." The latter is the most readable explanation of CRC calculations I've ever found.

Electronic Engineers Toolbox (http://www.eetoolbox.com/ebox.htmn)

Focused on embedded systems, real-time software devel opment issues, and | nternet-enabling technol ogies, the

"EE Toolbox" is designed to make your job easier. The publishers of thissite have identified, indexed, and
summarized thousands of relevant Internet resources and brought them all together in one place.

Embedded Intel Architecture (http://www.intel.com/design/intarch/)

Intel's home page for their embedded processor line, including the 80188EB. In addition to technical

information about the hardware, there are a so free development and debugging tools and example source code
listings.

news: comp.arch.embedded
A newsgroup devoted to many of the topics discussed in this book. Discussions frequently involve software
development tools and processes, comparisons of commercial real-time operating systems, and suggestions for
processor selection criteria.

news: comp.realtime
Another good newsgroup for embedded systems discussion. This one tends to focus more heavily on real-time

scheduling issues, however, so not all of theinformationisrelevant. A list of FAQs from this group can be
found at http://www.fags.org/fags/by-newsgroup/comp/comp.realtime.html .

Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The insects on the cover of Programming Embedded Systemsin C and C++ areticks. There are approximately 850
species of these small to microscopic, blood-feeding parasites distributed worldwide. They are particularly abundant
in tropical and subtropical regions. There are two main families of ticks. hard ticks, whose mouth parts are visible
from above, and soft ticks, whose mouth parts are hidden.

In both hard and soft ticks, the mouth is made up of three major parts: the palps, the chelicerae, and the hypostome.
It isthe hypostome that isinserted into the host's skin while thetick isfeeding. A series of backward-facing
projections on the hypostome make it difficult to remove the tick from the skin. Most ticks also secrete a sticky
substance that glues them into place. This substance dissolves when thetick is done feeding. Their external body
surface expands from 200 to 600 percent to accommodate the blood that isingested.

Ticks go through three life stages: larva, nymph, and adult. At each stage they feed on amammal, reptile, or bird
host. Ticks wait for ahost by perching on leaves or other surfaces with their front two legs extended. When a host
brushes up against them they latch on and attach themselves. Adult female hard ticks lay a single batch of thousands
of eggs and then die. Adult male ticks also die after asingle mating.

As parasites go, ticks can be very nasty. They transmit more disease than any other blood-sucking parasite,
including Lyme disease, Rocky Mountain spotted fever, and relapsing fever. They can also cause excessive blood
loss. Some ticks secrete nerve poisons that can potentially cause death. A tick can be removed from skin by grasping
it with atweezer or aspecial tick-removing device as close to the skin as possible, and pulling in one steady motion.
Do not squeeze the tick. Immediately flush it down the toilet-or placeit in a sealed container and hold onto it for one
month, in case you develop symptoms of a disease.

Melanie Wang was the production editor and proofreader for Embedded Programming Systemsin C and C++.
Sheryl Avruch was the production manager; Paulette A. Miley was the copy editor; Nancy Kotary and Madeleine
Newell provided quality control. Seth Maislin wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from the Dover Pictorial Archive.
The cover layout was produced with QuarkX Press 3.3 using the I TC Garamond font.

The inside layout was designed by Edie Freedman and implemented in FrameMaker by Mike Sierra. The text and
heading fonts are I TC Garamond Light and Garamond Book. The illustrations that appear in the book were created
in Macromedia Freehand 7.0 by Robert Romano. This colophon was written by Clairemarie Fisher O'Leary.

