
LV GUI - Supplementary Material

LabVIEW Draw Revealed

Copyright © 2002 by the McGraw-Hill Companies, Inc. All rights reserved.
Except as permitted under the United States Copyright Act of 1976, no part of t h i s
publication may be reproduced or distributed in any form or by any means, or stored in a
data base or retrieval system, without prior written permission of the publisher.



2

LV GUI - Supplementary Material

LabVIEW Draw Revealed

Contents

1.1 INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 THE LABVIEW DRAW USER INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 THE LABVIEW DRAW VI DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 THE DRAWING FUNCTIONS ........................................................................................................ 6
1.3.2 THE FILE SAVE AND EXPORT FUNCTIONS..................................................................................... 6



3

LV GUI - Supplementary Material

LabVIEW Draw Revealed

1.1 Introduction

LabVIEW video games are a great source of advanced Picture con t ro l
techniques, but the mathematics and the diagram complexity necessary t o
realize a video game can be overwhelming for the uninitiated. In order t o
explore Picture control techniques in a practical, yet accessible setting, th is
article introduces LabVIEW Draw , a simple drawing VI that takes advantage o f
the native LabVIEW Picture functions to simulate a simple graphics program ( s e e
Figure 1). In order to make the VI more interesting, load, save, import a n d
export capabilities have been added so users can save and load images in a
variety of formats. In addition, an implementation of the undo funct ion
introduced in Chapter 7 of the text has been added to the VI to enable drawing
error corrections.

Figure 1 The LabVIEW Draw GUI Panels



4

1.2 The LabVIEW Draw User Interface

The primary LabVIEW Draw GUI panels are revealed in Figure 1 (above) .
Notice that the pop-up Color Selector subVI panel is superimposed over t h e
main GUI panel in this depiction. The Color Selector subVI permits the user t o
select colors from a bank of presets, or to set the R, G, and B values directly.
The Color Selector subVI is a non-modal GUI VI that uses the �Selective Panel
Control� technique introduced in Chapter 8 of the text. This non-modal design
permits the Color Selector to remain open and active while the user is drawing
with the various tools on the main GUI panel. The user can interactively select
and try colors without closing the pop-up subVI. This provides immediate
access to color editing while constructing an image.

Drawing takes place on the main GUI panel inside a large Picture cont ro l .
The user selects a drawing tool from the toolbar on the left, then uses t h e
selected tool to draw a shape or line inside the Picture control. Drawing tools
include a freeform pencil, a line tool, filled and unfilled primitive shapes
(rectangles, circles, rounded rectangles and ovals), a gradient tool, and a t ex t
tool. The selected shape is rendered using the currently selected color. While
the toolbar includes no eraser tool, 5 undo levels permit the most r e cen t
actions to be erased. This mechanism is a practical application of the mult iple
undo strategy introduced in Chapter 7 of the text.

1.3 The LabVIEW Draw VI Diagrams

The main VI diagram is depicted in Figure 2. The uppermost subVI in t h e
left-hand corner (outside the main while loop) generates a custom menu for t h e
VI. Image �Load�, �Save�, �Import� and �Export� functions are accessible f r o m
the menus, along with �Clear Image�, �Undo�, and �Redo� functions. Just below
the Menu Builder subVI, the Undo manager subVI is initialized. As you m a y
recall from �multiple undo� example presented in Chapter 7 of the text, a n
array of undo and redo states is stored inside the shift register of t h e
encapsulated Undo subVI. Before the Undo array can be used, it must first b e
initialized. Five copies of an empty Picture control constant are stored in t h e
Undo array during initialization. Below the Undo initialization, a value of zero is
passed to a shift register counter. This counter controls the sequential
execution of multi-step drawing operations. (A more detailed examination o f
this shift register counter is presented below.)

Moving inside the main while loop, the standard menu functions in t h e
upper left corner are responsible for enabling and disabling the Undo and Redo
functions, and for reading user selections. Menu processing actually takes p lace
in the smaller case structure on the right-hand side of the loop. U n d o / r e d o
processing and file operations are located in this case structure (labeled �Menu
Functions� in the figure). These operations are the last step in the chain be fo re
the front panel Picture indicator is updated.



5

Figure 2 LabVIEW Draw � Main VI diagram and highlights

Below the logic responsible for reading the menus is the logic responsible
for reading the Tools cluster. The �Scan Tools� subVI monitors the Toolbar f o r
changes, and controls tool selection by passing the appropriate string to t h e
Draw Functions case structure. Below the Toolbar logic is the key to t h e
drawing operations. The mouse position and the state of the mouse buttons a r e
polled using the Picture control�s mouse property. These are used t o
orchestrate the drawing operations - as we shall see in a moment.

The subVI in the bottom left-hand corner is the Color Selector subVI. As
noted previously, this subVI is �GUI-enabled� using Selective Panel Control. The
Color Selector subVI executes on every loop iteration, and the current d r a w
color originates inside this subVI whether its front panel is open or closed.
When the �Color Change� button is clicked on the main VI panel, this subVI uses
VI Server functions to open its own panel for user interaction. When the u s e r
clicks OK or Cancel, this subVI uses VI Server to close itself. The impor tan t
thing to notice is that regardless of whether its front panel is open or closed,
this subVI remains active in the execution chain.



6

1.3.1 The Drawing Functions

The diagram elements responsible for the drawing functions are:

! The Tools Cluster
! The Picture indicator�s �Mouse� properties
! The value in the draw counter shift register

The Tools cluster determines which of several draw sequences is current ly
selected - the filled rectangle draw sequence is featured in the figure, a n d
therefore will be the basis of this discussion.

When the VI is started, the draw counter shift register is initialized t o
zero.  The first mouse click increments the draw counter to 1 and initiates t h e
draw sequence. When the mouse button is clicked for the first time, the c u r r e n t
x  and y  mouse coordinates are passed to the �Draw Point� function to draw a n
initial point. At the same time, these initial coordinates are stored in �s tar t
point� for later use, and the draw counter is incremented to 2 to activate m o u s e
tracking (see Draw Rectangle � Case number 1 in the figure). Case number 2
(situated directly below the main while loop in the figure) illustrates active
mouse tracking. As the user moves the mouse around inside the p ic ture
control, the �Draw Rectangle� function dynamically generates a rectangle based
on the current mouse position. Bounded by the initial point at one corner a n d
the current cursor position at the opposite corner, the size of the rectangle
continues to track the moving mouse. This tracking behavior continues unt i l
the user clicks the mouse button for a second time. When the second click is
detected, the draw counter is incremented to 3, and the shape of the rectangle
is locked in. The complete rectangle is drawn from the initial point ( cap tu red
with the first mouse click and stored in �start point�) to the current m o u s e
position as depicted in case number 3 (below the main loop). After the final
rectangle is drawn and appended to the previous image, the final step is to r e se t
the draw counter to zero in preparation for the next draw sequence. While
different drawing tools use different variations of this sequence, the technique
is essentially the same for all tools.

1.3.2 The File Save and Export Functions

While LabVIEW Draw was designed primarily to demonstrate LabVIEW�s
built-in Picture functions, this VI also offers a few interesting tricks for saving
and loading graphic files. Techniques for loading images into a Picture indicator
were covered previously in the text of Chapter 9, but saving images to disk h a s
not been covered.  And while there are VIs specifically devoted to both loading
and saving images in standard formats, the first step involved in saving a Picture
control image can be somewhat elusive.

In order to save the current Picture control image, you must invoke t h e
�Get Image� method. Similar in function to the �Get Panel Image� m e t h o d
accessed from a VI Server Invoke node, the �Get Image� method is accessed
through a Picture control Invoke node. You can create an Invoke node for a
control or indicator in much the same way as you create a control Property



7

node � just pop-up on the control or diagram terminal and select �Invoke Node�
from the �Create� menu. Alternatively, you can create a reference to the Picture
control, and wire this reference into a standard Invoke node from t h e
�Application Control� palette. Either way, you will have access to the �Get
Image� method through the Picture control�s Invoke node. Once you have
selected the �Get Image� method, the inputs and outputs presented on the n o d e
are reasonable self-explanatory. If you have difficulty understanding any of t h e
parameters, the online help (accessed by popping-up on the node) offers
additional information about each item.       

All image file �Save� and �Export� functions in the LabVIEW Draw VI u s e
the file save subVI depicted in Figure 3. When this subVI is called, the main VI
passes a reference to its Picture indicator. This reference is used to invoke t h e
�Get Image� method inside the subVI. The flattened image, color table, bit d e p t h
and bounds of the image are then passed to the appropriate file write subVI,
and the image is written to disk in the designated file format.

A copy of LabVIEW Draw has been included on the CD-ROM. You a r e
invited to experiment with it and observe the techniques used. Particularly
interesting are the Undo implementation and the gradient fill tool. If you are s o
inclined, you may want to add new functionality to this VI, such as an e ra se r
tool, a fill bucket, variable line thickness, and so on. If you come up with
something exciting and want to share it with others, email a copy of y o u r
solution to the author � solutions@bettervi.com . Interesting submissions will b e
posted on the BetterVIEW website (bettervi.com).

Figure 3 The subVI responsible for saving and exporting LabVIEW Draw images.


