
Leveraging OCP for Cache Coherent Traffic
Within an Embedded Multi-core Cluster

By Matthias Knoth, MIPS Technologies

Introduction
Scaling processing performance beyond the frequency and power envelope of single core systems has led
to the emergence of multi-core clusters. Data access management within such processing systems becomes
essential to ensure behavioral consistency. One solution to provide access consistency is the application of
a memory coherence model such as MESI or MOESI within the L1 data cache hierarchy. For the MIPS
Technologies MIPS32® 1004K™ Coherent Processing System (CPS), we -applied Open Core Protocol
(OCP) point-to-point connectivity to establish snoop-based coherence throughout the cluster. Following are
principles of this communication model.

Deriving a Message-based Memory Coherence Model
Historically, memory coherence in multiprocessor systems was often achieved through bus ‘snooping,’
where each core was connected to a common multi-tier bus and was able to snoop on memory access traffic
of processor peers to regulate the coherence status of individual cache lines. For that, each core maintained
the coherence status of L1 cache lines locally, and posted status changes to peers via the common bus.

The increasing size and complexity of SoCs led to restructuring of the multi-tier bus philosophy in favor of
localized point-to-point connections with centralized traffic routing. This allowed dramatic speedup and
power improvements on now localized bus segments due to reduced load and segment length. Also, bus
contention problems eased, and throughput increased for the localized data exchange. In response to this
system architectural trend, the Open Core Protocol (OCP) standard emerged to consolidate this design
philosophy. Further, emergence of IP provider business models catalyzed the standardization of IP
interconnect and design methodology to facilitate design reuse centered on an open standard.

OCP
OCP Snoop

Port

CPU0

 L1

CACHE

L1
Snoop
Tags

CPU1

 L1

CACHE

L1
Snoop
Tags

OCP

CPU2

 L1

CACHE
L1

Snoop
Tags

OCP

CPU3

 L1

CACHE
L1

Snoop
Tags

OCP

Global
Interrupt

Controller

OCP

IOCU
Port

Snoop
Port

Snoop
Port

Snoop
Port

L2
Cache

OCP

OCP

Request
Unit

Response
Unit

Snoop
Agent

Memory Interface Unit

Figure 1: Coherent Processing System

 1

However, localized bus transactions, as conducted through OCP interconnect segments, decouple
processors throughout a multi-core cluster. Coherence schemes cannot be directly based on bus snooping
and reliance on bus arbitration to ensure access ordering. Different methods of communication are needed
to ensure data access consistency. Additional challenges arise in the ordering of competing L1 line data
requests. One way to addresses these challenges is to add coherence message communication to each
processing element as depicted in Figure 1. These messages provide the means of snoop type cache
coherence.

Coherence messages embody a new type of command within the OCP protocol. Members of the processor
system send coherence messages toward a centralized coherence manager that provides access ordering
(serialization) and message routing to provide snoop-type access to peer members. These peers will
respond with their individual L1 line status and post a message response. Depending on responses, the
coherence manager initiates data movement for coherent data between cores, and funnels access toward
higher-level memory hierarchies such as L2 and L3 caches. I/O coherence units also provide a means to
phase-in/out data toward/from the coherent address space, and are part of coherent message exchange.

In addition to new message-type commands within the OCP protocol, individual processors are required to
respond to coherent status requests, and are therefore not solely initiators (masters) of bus transactions. The
coherent processing system might address this requirement by providing an OCP slave port to receive and
respond to messages initiated by the coherence manager. Coherent requests by a processor will utilize the
OCP master port. Within the processing cluster, coherence message exchanges between cores and the
coherence manager are dubbed ‘interventions.’ OCP slave ports of processors receiving interventions are
therefore ‘intervention ports.’

As depicted in Figure 1, each individual processor of the 1004K system is based on our multi-threaded
processor architecture, providing two independent threads and processing context within the envelope of a
single-scalar, 9-stage pipeline. Level 1 data cache tag arrays are duplicated to be accessible simultaneously
for CPU operation and intervention lookup. MESI style cache line coherency is supported.

The coherence manager of the processing system receives and serializes incoming messages through its
request unit – OCP slave ports, driven by each CPU and I/O-coherence units. Serialized messages are
routed depending on their address space and context either to higher-level cache hierarchies using the
‘Memory Interface Unit,’ or toward processor peers and I/O-coherence units using the ‘Snoop Agent.’ The
snoop agent initiates OCP master transactions (interventions) to look up the coherent L1 cache line status
for each processor. Interventions returned to the initiator of a message, called self-interventions, allow the
initiator to provide access ordering. Responses to coherent messages initiated by CPUs as well as data
responses are formulated within the ‘Response Unit’ and routed to individual CPUs.

Coherent OCP Commands
OCP commands used within the 1004K CPS can be classified into three categories.

First are the Coherent Messages that maintain a MESI-style cache line status. These are a result of CPU
load/store operations and can initiate data movement between CPUs and/or the memory subsystem. All
peer CPUs of the CPS will receive coherent messages posted by an initiator, and respond according to their
cache line coherent state. The coherence manager will initiate data movement as required.

Coherent Cache Manipulation Commands are utilized for cache line maintenance within the coherent
address space. I/O traffic will bring new coherent lines into the domain or remove coherent context from
cache lines. Further, memory hierarchy synchronization operations are performed.

The third category is Non-Coherent Commands, which perform OCP main port transactions on memory
regions outside the coherent address space. These represent OCP read and write commands.

 2

Coherent Messages
The coherent processing system may implement four coherent messages that are caused by L1 cache line
status changes due to CPU load/store activity. The initiating CPU sends this message as an OCP master
port command. Peer CPUs of the system receive interventions based on this line status change and will
respond with their local cache line status.

The first message type is the CohReadOwn, denoting a cache miss that occurred through an attempt to
modify a cache line. Peer cores encountering this line in status ‘Modified’ will force a write-back into the
memory subsystem and perform a local invalidate. As an optimization, locally encountered line data will be
forwarded to the requester CPU to reduce access latency. The requester CPU will install this line as
‘Exclusive’ and perform the line modifying instruction. Then the cache line status will change to
‘Modified.’ While waiting for line refill, the requester CPU will continue execution of another thread.

The CohReadShared message indicates that a cache miss occurred through a line read operation. No line
modification is intended. Peer cores encountering this line in status ‘Modified’ will force a write-back into
the memory subsystem. Hitting peer lines will migrate to ‘Shared’ status. Hit data is forwarded to the
requester core and installed in state ‘Shared.’ Then the line read operation is performed. While waiting for
line refill, the requester CPU will continue execution of another thread.

CohUpgrade indicates that a line modifying instruction encountered a cache hit on a ‘Shared’ line. Peer
cores will be notified to invalidate hitting lines. The ‘Shared’ line is then upgraded to ‘Modified’ after the
modifying instruction is executed.

Finally, the CohWriteBack message signifies eviction of a coherent cache line. The coherence manager
will initiate data movement through the intervention port and forward data to the memory subsystem. The
evicted cache line is then replaced by a new – possibly coherent – address. In this case, a CohReadOwn or
CohReadShared has caused the eviction.

Coherent Cache Manipulation Commands
In response to cache manipulations, coherence messages are initiated and sent to peers.

• CohCopyBack – write back a coherent cache line to the memory subsystem. Cache line hits in
state ‘Modified’ will be written back. Line status migrates to ‘Shared.’ CopyBack data movement
will be initiated by the coherence manager using the intervention port.

• CohInvalidate – purge a coherent cache line without writing back its contents to the memory
subsystem. This command is always data-less and is posted to each peer of the CPS. Invalidate
type cache operations cause a CohInvalidate message.

• CohWriteInvalidate – an I/O coherence unit injects a new cache line into the coherent domain.
Existing peer line data will be invalidated throughout the CPS.

• CohReadInvalidate – an I/O coherence unit notifies the system about a cache line leaving the
coherent domain. Existing peer line data will be invalidated throughout the CPS.

• CohCompletionSync – data-less command to maintain ordering. Local buffers of CPS peers are
flushed towards the memory subsystem. The CPU-SYNC instruction causes the CohCompletion-
Sync for CPUs attending the coherent domain. SYNC command arguments (sync types) help
control the depth of flush operations throughout memory hierarchies. The coherent processing
system reserves certain argument encodings to support low overhead access ordering.

Non-Coherent Commands
Traditional OCP commands such as ‘Read’ and ‘Write’ are supported throughout the coherent processing
system to handle data access for non-coherent memory access. The Read command is issued when a miss
within a cached, non-coherent address or an un-cached access causes a read operation from the memory
subsystem. Response data – if cacheable – will be installed as non-coherent, whereas un-cached data are
consumed directly. Fetch as well as load/store activity causes Read transactions. The Write command is
issued when cached, non-coherent eviction data, or un-cached address range stores will be written back to
the memory subsystem. The OCP main port of a core performs the command and data phases of the
transaction.

 3

Example – CohReadOwn

CPU 0 encounters a store miss and
initiates a cohReadOwn (intent to
modify) message toward the coherence
manager. The coherence manager sends
interventions toward all cores. None of
the peers have this cache line available,
and an OCP read request is directed
toward the L2 cache. Returning data
will be installed with the coherence
attribute ‘Exclusive’ at the requester
core. After the store operation
completes, the cache line status
migrates to ‘Modified.’

Core0 D$$
INVALID

Store
Miss

cohReadOwn OC_MCmd

cohReadOwn IV_MCmd

Lookup
Core
1,2,3 INVALID

Miss

OK IV_SResp

Read L2_MCmd

Fill DATA L2_SData

Core0 D$$
EXCLUSIV

Fill

SResp OC_SResp

Core0 D$$
MODIFIED

Store

M
A

IN

C
O

R
E

D
C

A
C

H
E

PO
R

T
IN

TE
R

V.

PO
R

T
L2

 M
A

IN

PO
R

T
O

TH
ER

D

C
A

C
H

ES

Core initiated Core initiated Coh. Manager

Figure 2: Coherent Read Own Messaging

SHARED

Core0 D$$
INVALID

Load
Miss

cohROC_MCmd eadShared

cohReadShared IV_MCmd

Lookup
Core

3 1,2,MODIFIED

Hit

DVA
IV_SResp

WRITE
L2_MCmd

WR DATAL2_SData

Core0 D$$
SHARED

Fill

SResp OC_SResp

Core0 D$$
SHARED

Load

M
A

IN

PO
R

T
IN

TE
R

V.

PO
R

T
L2

 M
A

IN

PO
R

T
C

O
R

E
D

C
A

C
H

E
O

TH
ER

D

C
A

C
H

ES

Core initiated Core initiated Coh. Manager

WR DATAIV_SDATA

Example – CohReadShared

CPU0 encounters a load miss on a
coherent cache line and initiates a
cohReadShared message (no intent to
modify). The coherence manager
sends interventions to all cores where
core 1 responds with a hit –
‘Modified.’ The coherence manager
now initiates a write-back of the
modified line, and moves line data
from the core 1 intervention port to the
memory subsystem. The hitting Core 1
cache line migrates to ‘Shared’ status.
Line data movement also forwards to
core 0 where it is installed in the
‘Shared’ state.

Figure 3: Coherent Read Shared Messaging

 4

M
A

IN

PO
R

T
IN

TE
R

V.

PO
R

T
L2

 M
A

IN

PO
R

T
C

O
R

E
D

C
A

C
H

E
O

TH
ER

D

C
A

C
H

ES

 5

Example – CohUpgrade
Core 0 encounters a store hit on a
‘Shared’ marked cache line. A
cohUpgrade request is sent and the
coherence manager initiates interventions
to all cores. Core 1 responds with a hit
‘Shared’ and invalidates its line. Core 0
is permitted to upgrade its cache line to
‘Exclusive.’ After the store has
completed, the cache line status migrates
to ‘Modified.’ State ‘Exclusive’ is
required (rather than ‘Modified’
immediately) since between intervention
response and store execution, other cores
could intervene and force a modified
write-back—migrating to ‘Shared’
without awaitin

Core0 D$$

Figure 4: Coherent Upgrade Messaging

Conclusion
The Open Core Protocol (OCP) interconnect lent itself well to support message-based coherence
implementations. A centralized coherence manager serializes coherence messages emanating from an
individual core and inquires about the coherence status of peer cores. Data forwarding between cores
decreases access latency and reduces traffic to higher levels of memory hierarchy. Individual cores posses
an OCP master port to initiate data access and an OCP slave port to receive inquiries from the coherence
manager.

About the Author
Matthias Knoth is a Design Engineer for MIPS Technologies, Inc., responsible for low-power micro-
architecture and 1004K™ processor implementation. Knoth has more than 13 years experience in the
semiconductor industry with companies including Siemens Research., Siemens Microelectronics, Infineon
Technologies and Quicksilver Technology. Knoth holds a Masters Degree in Electronics from the
University of Technology, Chemnitz, Germany.

INVALID

SHARED

Store
Hit

cohUpgrade OC_MCmd

cohUpgradeIV_MCmd

Lookup
Core

2,3 1,SHARED

Hit

OK IV_SResp

L2_MCmd

L2_SData

Core0 D$$
EXCLUSIV

Core0 D$$
MODIFIED

Store

OKOC_SResp

Core initiated Core initiated Coh.
Manager g the core 0 store.

	Leveraging OCP for Cache Coherent TrafficWithin an Embedded Multi-core Cluster
	Introduction
	Deriving a Message-based Memory Coherence Model
	Conclusion
	About the Author

