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Introduction 
Scaling processing performance beyond the frequency and power envelope of single core systems has led 
to the emergence of multi-core clusters. Data access management within such processing systems becomes 
essential to ensure behavioral consistency. One solution to provide access consistency is the application of 
a memory coherence model such as MESI or MOESI within the L1 data cache hierarchy. For the MIPS 
Technologies MIPS32® 1004K™ Coherent Processing System (CPS), we -applied Open Core Protocol 
(OCP) point-to-point connectivity to establish snoop-based coherence throughout the cluster. Following are 
principles of this communication model. 

Deriving a Message-based Memory Coherence Model 
Historically, memory coherence in multiprocessor systems was often achieved through bus ‘snooping,’ 
where each core was connected to a common multi-tier bus and was able to snoop on memory access traffic 
of processor peers to regulate the coherence status of individual cache lines. For that, each core maintained 
the coherence status of L1 cache lines locally, and posted status changes to peers via the common bus. 
 
The increasing size and complexity of SoCs led to restructuring of the multi-tier bus philosophy in favor of 
localized point-to-point connections with centralized traffic routing. This allowed dramatic speedup and 
power improvements on now localized bus segments due to reduced load and segment length. Also, bus 
contention problems eased, and throughput increased for the localized data exchange. In response to this 
system architectural trend, the Open Core Protocol (OCP) standard emerged to consolidate this design 
philosophy. Further, emergence of IP provider business models catalyzed the standardization of IP 
interconnect and design methodology to facilitate design reuse centered on an open standard. 
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However, localized bus transactions, as conducted through OCP interconnect segments, decouple 
processors throughout a multi-core cluster. Coherence schemes cannot be directly based on bus snooping 
and reliance on bus arbitration to ensure access ordering. Different methods of communication are needed 
to ensure data access consistency. Additional challenges arise in the ordering of competing L1 line data 
requests. One way to addresses these challenges is to add coherence message communication to each 
processing element as depicted in Figure 1. These messages provide the means of snoop type cache 
coherence.  
 
Coherence messages embody a new type of command within the OCP protocol. Members of the processor 
system send coherence messages toward a centralized coherence manager that provides access ordering 
(serialization) and message routing to provide snoop-type access to peer members. These peers will 
respond with their individual L1 line status and post a message response. Depending on responses, the 
coherence manager initiates data movement for coherent data between cores, and funnels access toward 
higher-level memory hierarchies such as L2 and L3 caches. I/O coherence units also provide a means to 
phase-in/out data toward/from the coherent address space, and are part of coherent message exchange. 
 
In addition to new message-type commands within the OCP protocol, individual processors are required to 
respond to coherent status requests, and are therefore not solely initiators (masters) of bus transactions. The 
coherent processing system might address this requirement by providing an OCP slave port to receive and 
respond to messages initiated by the coherence manager. Coherent requests by a processor will utilize the 
OCP master port. Within the processing cluster, coherence message exchanges between cores and the 
coherence manager are dubbed ‘interventions.’ OCP slave ports of processors receiving interventions are 
therefore ‘intervention ports.’ 
 
As depicted in Figure 1, each individual processor of the 1004K system is based on our multi-threaded 
processor architecture, providing two independent threads and processing context within the envelope of a 
single-scalar, 9-stage pipeline. Level 1 data cache tag arrays are duplicated to be accessible simultaneously 
for CPU operation and intervention lookup. MESI style cache line coherency is supported. 
 
The coherence manager of the processing system receives and serializes incoming messages through its 
request unit – OCP slave ports, driven by each CPU and I/O-coherence units. Serialized messages are 
routed depending on their address space and context either to higher-level cache hierarchies using the 
‘Memory Interface Unit,’ or toward processor peers and I/O-coherence units using the ‘Snoop Agent.’ The 
snoop agent initiates OCP master transactions (interventions) to look up the coherent L1 cache line status 
for each processor. Interventions returned to the initiator of a message, called self-interventions, allow the 
initiator to provide access ordering. Responses to coherent messages initiated by CPUs as well as data 
responses are formulated within the ‘Response Unit’ and routed to individual CPUs. 
 
Coherent OCP Commands 
OCP commands used within the 1004K CPS can be classified into three categories.  
 
First are the Coherent Messages that maintain a MESI-style cache line status. These are a result of CPU 
load/store operations and can initiate data movement between CPUs and/or the memory subsystem. All 
peer CPUs of the CPS will receive coherent messages posted by an initiator, and respond according to their 
cache line coherent state. The coherence manager will initiate data movement as required. 
 
Coherent Cache Manipulation Commands are utilized for cache line maintenance within the coherent 
address space. I/O traffic will bring new coherent lines into the domain or remove coherent context from 
cache lines. Further, memory hierarchy synchronization operations are performed. 
 
The third category is Non-Coherent Commands, which perform OCP main port transactions on memory 
regions outside the coherent address space. These represent OCP read and write commands. 
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Coherent Messages 
The coherent processing system may implement four coherent messages that are caused by L1 cache line 
status changes due to CPU load/store activity. The initiating CPU sends this message as an OCP master 
port command. Peer CPUs of the system receive interventions based on this line status change and will 
respond with their local cache line status. 
 
The first message type is the CohReadOwn, denoting a cache miss that occurred through an attempt to 
modify a cache line. Peer cores encountering this line in status ‘Modified’ will force a write-back into the 
memory subsystem and perform a local invalidate. As an optimization, locally encountered line data will be 
forwarded to the requester CPU to reduce access latency. The requester CPU will install this line as 
‘Exclusive’ and perform the line modifying instruction. Then the cache line status will change to 
‘Modified.’ While waiting for line refill, the requester CPU will continue execution of another thread. 
 
The CohReadShared message indicates that a cache miss occurred through a line read operation. No line 
modification is intended. Peer cores encountering this line in status ‘Modified’ will force a write-back into 
the memory subsystem. Hitting peer lines will migrate to ‘Shared’ status. Hit data is forwarded to the 
requester core and installed in state ‘Shared.’ Then the line read operation is performed. While waiting for 
line refill, the requester CPU will continue execution of another thread. 
 
CohUpgrade indicates that a line modifying instruction encountered a cache hit on a ‘Shared’ line. Peer 
cores will be notified to invalidate hitting lines. The ‘Shared’ line is then upgraded to ‘Modified’ after the 
modifying instruction is executed. 
 
Finally, the CohWriteBack message signifies eviction of a coherent cache line. The coherence manager 
will initiate data movement through the intervention port and forward data to the memory subsystem. The 
evicted cache line is then replaced by a new – possibly coherent – address. In this case, a CohReadOwn or 
CohReadShared has caused the eviction. 
 
Coherent Cache Manipulation Commands 
In response to cache manipulations, coherence messages are initiated and sent to peers.  

• CohCopyBack – write back a coherent cache line to the memory subsystem. Cache line hits in 
state ‘Modified’ will be written back. Line status migrates to ‘Shared.’ CopyBack data movement 
will be initiated by the coherence manager using the intervention port. 

• CohInvalidate – purge a coherent cache line without writing back its contents to the memory 
subsystem. This command is always data-less and is posted to each peer of the CPS. Invalidate 
type cache operations cause a CohInvalidate message. 

• CohWriteInvalidate – an I/O coherence unit injects a new cache line into the coherent domain. 
Existing peer line data will be invalidated throughout the CPS. 

• CohReadInvalidate – an I/O coherence unit notifies the system about a cache line leaving the 
coherent domain. Existing peer line data will be invalidated throughout the CPS. 

• CohCompletionSync – data-less command to maintain ordering. Local buffers of CPS peers are 
flushed towards the memory subsystem. The CPU-SYNC instruction causes the CohCompletion-
Sync for CPUs attending the coherent domain. SYNC command arguments (sync types) help 
control the depth of flush operations throughout memory hierarchies. The coherent processing 
system reserves certain argument encodings to support low overhead access ordering. 

 
Non-Coherent Commands 
Traditional OCP commands such as ‘Read’ and ‘Write’ are supported throughout the coherent processing 
system to handle data access for non-coherent memory access. The Read command is issued when a miss 
within a cached, non-coherent address or an un-cached access causes a read operation from the memory 
subsystem. Response data – if cacheable – will be installed as non-coherent, whereas un-cached data are 
consumed directly. Fetch as well as load/store activity causes Read transactions. The Write command is 
issued when cached, non-coherent eviction data, or un-cached address range stores will be written back to 
the memory subsystem. The OCP main port of a core performs the command and data phases of the 
transaction. 
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Example – CohReadOwn 
 
CPU 0 encounters a store miss and 
initiates a cohReadOwn (intent to 
modify) message toward the coherence 
manager. The coherence manager sends 
interventions toward all cores. None of 
the peers have this cache line available, 
and an OCP read request is directed 
toward the L2 cache. Returning data 
will be installed with the coherence 
attribute ‘Exclusive’ at the requester 
core. After the store operation 
completes, the cache line status 
migrates to ‘Modified.’ 
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Figure 2: Coherent Read Own Messaging 
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Example – CohReadShared 
 
CPU0 encounters a load miss on a 
coherent cache line and initiates a 
cohReadShared message (no intent to 
modify). The coherence manager 
sends interventions to all cores where 
core 1 responds with a hit – 
‘Modified.’ The coherence manager 
now initiates a write-back of the 
modified line, and moves line data 
from the core 1 intervention port to the 
memory subsystem. The hitting Core 1 
cache line migrates to ‘Shared’ status. 
Line data movement also forwards to 
core 0 where it is installed in the 
‘Shared’ state. 

 
Figure 3: Coherent Read Shared Messaging 
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Example – CohUpgrade 
Core 0 encounters a store hit on a 
‘Shared’ marked cache line. A 
cohUpgrade request is sent and the 
coherence manager initiates interventions 
to all cores. Core 1 responds with a hit 
‘Shared’ and invalidates its line. Core 0 
is permitted to upgrade its cache line to 
‘Exclusive.’ After the store has 
completed, the cache line status migrates 
to ‘Modified.’ State ‘Exclusive’ is 
required (rather than ‘Modified’ 
immediately) since between intervention 
response and store execution, other cores 
could intervene and force a modified 
write-back—migrating to ‘Shared’ 
without awaitin

Core0 D$$ 

Figure 4: Coherent Upgrade Messaging 

 

Conclusion 
The Open Core Protocol (OCP) interconnect lent itself well to support message-based coherence 
implementations. A centralized coherence manager serializes coherence messages emanating from an 
individual core and inquires about the coherence status of peer cores. Data forwarding between cores 
decreases access latency and reduces traffic to higher levels of memory hierarchy. Individual cores posses 
an OCP master port to initiate data access and an OCP slave port to receive inquiries from the coherence 
manager. 
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