
SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Revision 1.94

SONiX 8-Bit MCU
INSTRUCTION SET
General Release Specification

SSOONNiiXX 88--BBiitt MMiiccrroo--CCoonnttrroolllleerr

SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not
assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent
rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical
implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product
could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or
unauthorized application. Buyer shall indemnify and hold SONIX and its officers, employees, subsidiaries, affiliates and distributors harmless against
all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of
the part.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 2 Revision 1.94

AMENDENT HISTORY

Version Date Description
VER 1.90 Sep. 2002 V1.90 first issue
VER 1.93 Feb. 2003 Change the description of ADD M,A instruction from “M Å M+A” to “M Å A+M”
VER 1.94 Jul. 2004 1. Separate instruction table into two tables.

2. Add PUSH/POP instruction description.
3. Remove the instruction cycle description in each instruction description.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 3 Revision 1.94

Table of Content

111 OVERVIEW.. 5

222 INSTRUCTION SET TABLE... 6

TABLE I: FOR SN8P1XXX (FOUR CLOCKS PER INSTRUCTION CYCLE) .. 6
TABLE II: FOR SN8P2XXX (ONE CLOCK PER INSTRUCTION CYCLE)... 8

INSTRUCTION DESCRIPTION ... 10

DATA TRANSFER INSTRUCTION .. 10
MOV – Memory Read / Write Instruction .. 10
B0MOV – BANK 0 Memory Read / Write Instruction.. 11
XCH – Data Exchange for All Area Memory... 12
B0XCH – Data Exchange for BANK 0 Memory... 13
MOVC – Read Data from ROM ... 14

ARITHMETIC INSTRUCTION.. 15
ADC – Add with Carry ... 15
ADD – Add only.. 16
B0ADD – Add with BANK 0 Memory... 17
SBC – Subtract with Carry ... 18
SUB – Subtract only ... 19
DAA –Decimal-Adjust accumulator ... 20
MUL – Multiply Unsigned.. 21

LOGIC INSTRUCTION .. 22
AND – Logical AND... 22
OR – Logical OR .. 23
XOR – Logical XOR ... 24

PROCESS INSTRUCTION ... 24
SWAP & SWAPM – Memory high/low Nibble Exchange .. 25
RLC & RLCM – Memory Left Rotation.. 26
RRC & RRCM – Memory Right Rotation... 27
CLR – Clear.. 28
BCLR & B0BCLR – Bit Clear .. 29
BSET & B0BSET – Bit Set.. 30

BRANCH INSTRUCTION.. 31

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 4 Revision 1.94

CMPRS – Compare .. 31
INCS & INCMS – Increment and Skip on Zero.. 32
DECS & DECMS – Decrement and Skip on Zero.. 33
BTS0 & B0BTS0 – Bit Test 0 .. 34
BTS1 & B0BTS1 – Bit Test 1 .. 35
JMP – Jump.. 36
CALL – Call Procedure.. 37

MISCELLANEOUS INSTRUCTION ... 38
RET – Return from Call Procedure.. 38
RETI – Return from Interrupt... 39
NOP – No Operation .. 40
PUSH – Save Some System Registers for SN8P1XXX and SN8P270XA.. 41
PUSH – Save A and PFLAG for SN8P260X .. 42
POP – Restore Some System Registers for SN8P1XXX and SN8P270XA ... 43
POP – Restore A and PFLAG for SN8P260X .. 44

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 5 Revision 1.94

111 OVERVIEW

This Manual contains detailed information and programming examples for each instruction of SONiX 8-Bit MCU series
instruction set. Information is arranged in a consistent format to improve readability and for use as a quick-reference
resource for application programmers.

The information elements of the instruction description format are as follows:
— Instruction name (mnemonic)
— Full instruction name
— Operand overview
— Source/destination format of the instruction operand
— Textual description of instructions
— Programming examples to shoe how the instruction is used

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 6 Revision 1.94

222 INSTRUCTION SET TABLE
Table I: For SN8P1XXX (Four clocks per instruction cycle)
Field Mnemonic Description C DC Z Cycle

 MOV A,M A ← M - - √ 1
M MOV M,A M ← A - - - 1
O B0MOV A,M A ← M (bnak 0) - - √ 1
V B0MOV M,A M (bank 0) ← A - - - 1
E MOV A,I A ← I - - - 1
 B0MOV M,I M ← I, (M = only for Working registers R, Y, Z , RBANK & PFLAG) - - - 1
 XCH A,M A ←→M - - - 1
 B0XCH A,M A ←→M (bank 0) - - - 1
 MOVC R, A ← ROM [Y,Z] - - - 2
 ADC A,M A ← A + M + C, if occur carry, then C=1, else C=0 √ √ √ 1

A ADC M,A M ← A + M + C, if occur carry, then C=1, else C=0 √ √ √ 1
R ADD A,M A ← A + M, if occur carry, then C=1, else C=0 √ √ √ 1
I ADD M,A M ← A + M, if occur carry, then C=1, else C=0 √ √ √ 1
T B0ADD M,A M (bank 0) ← A + M (bank 0) , if occur carry, then C=1, else C=0 √ √ √ 1
H ADD A,I A ← A + I, if occur carry, then C=1, else C=0 √ √ √ 1
M SBC A,M A ← A - M - /C, if occur borrow, then C=0, else C=1 √ √ √ 1
E SBC M,A M ← A - M - /C, if occur borrow, then C=0, else C=1 √ √ √ 1
T SUB A,M A ← A - M, if occur borrow, then C=0, else C=1 √ √ √ 1
I SUB M,A M ← A - M, if occur borrow, then C=0, else C=1 √ √ √ 1
C SUB A,I A ← A - I, if occur borrow, then C=0, else C=1 √ √ √ 1
 DAA To adjust ACC’s data format from HEX to DEC. √ - - 1
 MUL A,M R, A ← A * M, The LB of product stored in Acc and HB stored in R register.

ZF affected by Acc. - - √ 2

 AND A,M A ← A and M - - √ 1
L AND M,A M ← A and M - - √ 1
O AND A,I A ← A and I - - √ 1
G OR A,M A ← A or M - - √ 1
I OR M,A M ← A or M - - √ 1
C OR A,I A ← A or I - - √ 1
 XOR A,M A ← A xor M - - √ 1
 XOR M,A M ← A xor M - - √ 1
 XOR A,I A ← A xor I - - √ 1
 SWAP M A (b3~b0, b7~b4) ←M(b7~b4, b3~b0) - - - 1

P SWAPM M M(b3~b0, b7~b4) ← M(b7~b4, b3~b0) - - - 1
R RRC M A ← RRC M √ - - 1
O RRCM M M ← RRC M √ - - 1
C RLC M A ← RLC M √ - - 1
E RLCM M M ← RLC M √ - - 1
S CLR M M ← 0 - - - 1
S BCLR M.b M.b ← 0 - - - 1
 BSET M.b M.b ← 1 - - - 1

B0BCLR
M.b M(bank 0).b ← 0 - - - 1

 B0BSET M.b M(bank 0).b ← 1 - - - 1

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 7 Revision 1.94

Field Mnemonic Description C DC Z Cycle

 CMPRS A,I ZF,C ← A - I, If A = I, then skip next instruction √ - √ 1 + S
B CMPRS A,M ZF,C ← A – M, If A = M, then skip next instruction √ - √ 1 + S
R INCS M A ← M + 1, If A = 0, then skip next instruction - - - 1 + S
A INCMS M M ← M + 1, If M = 0, then skip next instruction - - - 1 + S
N DECS M A ← M - 1, If A = 0, then skip next instruction - - - 1 + S
C DECMS M M ← M - 1, If M = 0, then skip next instruction - - - 1 + S
H BTS0 M.b If M.b = 0, then skip next instruction - - - 1 + S
 BTS1 M.b If M.b = 1, then skip next instruction - - - 1 + S
 B0BTS0 M.b If M(bank 0).b = 0, then skip next instruction - - - 1 + S
 B0BTS1 M.b If M(bank 0).b = 1, then skip next instruction - - - 1 + S
 JMP d PC15/14 ← RomPages1/0, PC13~PC0 ← d - - - 2
 CALL d Stack ← PC15~PC0, PC15/14 ← RomPages1/0, PC13~PC0 ← d - - - 2
 RET PC ← Stack - - - 2

M RETI PC ← Stack, and to enable global interrupt - - - 2
I RETLW PC ← Stack, and to load a value by PC+A - - - 2
S PUSH To push working registers (080H~087H) into buffers - - - 1
C POP To pop working registers (080H~087H) from buffers √ √ √ 1
 NOP No operation - - - 1

Remark

1. The “M” is memory including system registers and user defined memory.
2. If branch condition is true then “S = 0”, otherwise “S = 1”.
3. Any instruction that writes OSCM register will add an extra cycle.
4. One instruction cycle = 1/Fcpu

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 8 Revision 1.94

Table II: For SN8P2XXX (One clock per instruction cycle)
Field Mnemonic Description C DC Z Cycle

 MOV A,M A ← M - - √ 1
M MOV M,A M ← A - - - 1
O B0MOV A,M A ← M (bnak 0) - - √ 1
V B0MOV M,A M (bank 0) ← A - - - 1
E MOV A,I A ← I - - - 1
 B0MOV M,I M ← I, (M = Working registers, RBANK & PFLAG) - - - 1
 XCH A,M A ←→M - - - 1+N
 B0XCH A,M A ←→M (bank 0) - - - 1+N
 MOVC R, A ← ROM [Y,Z] - - - 2
 ADC A,M A ← A + M + C, if occur carry, then C=1, else C=0 √ √ √ 1

A ADC M,A M ← A + M + C, if occur carry, then C=1, else C=0 √ √ √ 1+N
R ADD A,M A ← A + M, if occur carry, then C=1, else C=0 √ √ √ 1
I ADD M,A M ← M + A, if occur carry, then C=1, else C=0 √ √ √ 1+N
T B0ADD M,A M (bank 0) ← M (bank 0) + A, if occur carry, then C=1, else C=0 √ √ √ 1+N
H ADD A,I A ← A + I, if occur carry, then C=1, else C=0 √ √ √ 1
M SBC A,M A ← A - M - /C, if occur borrow, then C=0, else C=1 √ √ √ 1
E SBC M,A M ← A - M - /C, if occur borrow, then C=0, else C=1 √ √ √ 1+N
T SUB A,M A ← A - M, if occur borrow, then C=0, else C=1 √ √ √ 1
I SUB M,A M ← A - M, if occur borrow, then C=0, else C=1 √ √ √ 1+N
C SUB A,I A ← A - I, if occur borrow, then C=0, else C=1 √ √ √ 1
 DAA To adjust ACC’s data format from HEX to DEC. √ - - 1

 MUL A,M R, A ← A * M, The LB of product stored in Acc and HB stored in R register.
ZF affected by Acc. - - √ 2

 AND A,M A ← A and M - - √ 1
L AND M,A M ← A and M - - √ 1+N
O AND A,I A ← A and I - - √ 1
G OR A,M A ← A or M - - √ 1
I OR M,A M ← A or M - - √ 1+N
C OR A,I A ← A or I - - √ 1
 XOR A,M A ← A xor M - - √ 1
 XOR M,A M ← A xor M - - √ 1+N
 XOR A,I A ← A xor I - - √ 1
 SWAP M A (b3~b0, b7~b4) ←M(b7~b4, b3~b0) - - - 1

P SWAPM M M(b3~b0, b7~b4) ← M(b7~b4, b3~b0) - - - 1+N
R RRC M A ← RRC M √ - - 1
O RRCM M M ← RRC M √ - - 1+N
C RLC M A ← RLC M √ - - 1
E RLCM M M ← RLC M √ - - 1+N
S CLR M M ← 0 - - - 1
S BCLR M.b M.b ← 0 - - - 1+N
 BSET M.b M.b ← 1 - - - 1+N
 B0BCLR M.b M(bank 0).b ← 0 - - - 1+N
 B0BSET M.b M(bank 0).b ← 1 - - - 1+N

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 9 Revision 1.94

Field Mnemonic Description C DC Z Cycle

 CMPRS A,I ZF,C ← A - I, If A = I, then skip next instruction √ - √ 1 + S
B CMPRS A,M ZF,C ← A - M, If A = M, then skip next instruction √ - √ 1 + S
R INCS M A ← M + 1, If A = 0, then skip next instruction - - - 1 + S
A INCMS M M ← M + 1, If M = 0, then skip next instruction - - - 1+N+S
N DECS M A ← M - 1, If A = 0, then skip next instruction - - - 1 + S
C DECMS M M ← M - 1, If M = 0, then skip next instruction - - - 1+N+S
H B0BTS0 M.b If M(bank 0).b = 0, then skip next instruction - - - 1 + S
 B0BTS1 M.b If M(bank 0).b = 1, then skip next instruction - - - 1 + S
 JMP D PC15/14 ← RomPages1/0, PC13~PC0 ← d - - - 2
 CALL D Stack ← PC15~PC0, PC15/14 ← RomPages1/0, PC13~PC0 ← d - - - 2

M RET PC ← Stack - - - 2
I RETI PC ← Stack, and to enable global interrupt - - - 2

S PUSH
a. To push working registers (080H~087H) into buffers
b. To push ACC and PFLAG (except NT0, NPD bit) into buffers.
Note: Refer to instruction description section

- - - 1

 POP
a. To pop working registers (080H~087H) from buffers
b. To pop ACC and PFLAG (except NT0, NPD bit) into buffers
Note: Refer to instruction description section

√ √ √ 1

 NOP No operation - - - 1
 RETLW I PCÅ Stack, AÅ I - - - 2

Remark

1. The “M” is memory including system registers and user defined memory.
2. If branch condition is true then “S = 0”, otherwise “S = 1”.
3. If “M” is system registers (80h ~ FFh of bank 0) then “N” = 0, otherwise “N” = 1
4. Different to SN8P1XXX series, any instruction that writes OSCM register does not add an extra cycle.
5. One instruction cycle = 1/Fcpu
6. Instruction limitations:
z The ROM address 8 only JMP or NOP instruction is valid in following chips:

SN8P2501A, SN8P2602A, SN8P2604, SN8P2606, SN8P2608, SN8P270XA
z For "B0MOV M,I" instruction, the value of I can't be 0E6h or 0E7h in following chips:

SN8P2501A, SN8P2602A, SN8P2604, SN8P270XA
E.g. "B0MOV Y, #0E6h" is invalid

"B0MOV Y, #00h" is valid
z For "B0XCH A,M" instruction, the address range of M can't be 80h ~ FFh in following chips:

SN8P2501A, SN8P2602A, SN8P2604, SN8P270XA
z Read, modify then write back memory instruction can't access T0C register in following chips:

SN8P2602A, SN8P2604, SN8P2606, SN8P2608, SN8P270XA
E.g. "B0ADD T0C, A" is invalid

"B0MOV T0C, A" is valid

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 10 Revision 1.94

INSTRUCTION DESCRIPTION

DATA TRANSFER INSTRUCTION

MOV – Memory Read / Write Instruction

Â Operation:

Mnemonic Description C DC Z
 MOV A,M A ← M - - √

 MOV M,A M ← A - - -
 MOV A,I A ← I - - -

Remark

1. The “I” is immediately value.
2. The “M” is memory including system registers and user defined memory.

Â Description:

The instruction is a memory read/write instruction. It transfers data through ACC. There are three operations of MOV
instruction.

¾ MOV A,M : Read memory data and store into ACC buffer. If the result is zero, the zero flag (Z) will be

set as “1”. (Support R/W, R register and memory)

¾ MOV M,A : Write the data from ACC buffer to memory. The operation doesn’t affect PFLAG. (Support

R/W, W register and memory)

¾ MOV A,I : Write a immediate value to ACC buffer. The operation doesn’t affect PFLAG.

Â Example:

 MOV A, #55H ; Write 55H immediate value to ACC

 MOV WK00, A ; Write ACC buffer data to WK00 defined by user.

 MOV A, WK00 ; Read WK00 data and store in to ACC buffer.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 11 Revision 1.94

B0MOV – BANK 0 Memory Read / Write Instruction

Â Operation:

Mnemonic Description C DC Z
 B0MOV A,M A ← M (bnak 0) - - √

 B0MOV M,A M (bank 0) ← A - - -
 B0MOV M,I M ← I, (M = Working registers, RBANK & PFLAG) - - -

Remark

1. The “I” is immediately value.
2. The “M” is BANK 0 memory including system registers and user defined memory.

Â Description:

The instruction is a memory read/write instruction. The memory must be in BANK 0. It transfers data through ACC.
There are three operations of B0MOV instruction.

¾ B0MOV A,M : Read BANK 0 memory data and store into ACC buffer. If the result is zero, the zero flag (Z)

will be set as “1”; otherwise, the zero flag (Z) is cleared. (Support R/W, R register and memory)

¾ B0MOV M,A : Write the data from ACC buffer to BANK 0 memory. The operation doesn’t affect PFLAG.

(Support R/W, W register and memory)

¾ B0MOV M,I : Write a immediate value to BANK 0 memory. The memory must be working register (H, L,

R, X, Y, Z), RBANK or PFLAG. The operation doesn’t affect PFLAG.

Â Example:

 B0MOV A, WK00 ; Read WK00 data and store into ACC. The WK00 is defined

by user
 ; and in BANK 0.

 B0MOV WK00, A ; Write ACC buffer data to WK00 defined by user.

 B0MOV R, #10 ; Write an immediate data into R register directly.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 12 Revision 1.94

XCH – Data Exchange for All Area Memory

Â Operation:

Mnemonic Description C DC Z
 XCH A,M A ←→M - - -

Remark

The “M” is memory including system registers and user defined memory.

Â Description:

The instruction is to exchange the data between ACC and memory. When the XCH is executed, the ACC data is
transferred to the memory, and data of memory transferred to ACC buffer.

¾ XCH M,A : Exchange the data between ACC and the memory. The operation doesn’t affect PFLAG.

(Support R/W register and memory)

Â Example:

 XCH A, WK00 ; Exchange the data between ACC and WK00 defined
 ; by user.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 13 Revision 1.94

B0XCH – Data Exchange for BANK 0 Memory

Â Operation:

Mnemonic Description C DC Z
 B0XCH A,M A ←→M (bank 0) - - -

Remark

The “M” is BANK 0 memory including system registers and user defined memory.

Â Description:

The instruction is to exchange the data between ACC and memory. The memory must be in BANK 0. When the
B0XCH is executed, the ACC data is transferred to the memory, and data of memory transferred to ACC buffer.

¾ B0XCH M,A : Exchange the data between ACC and the BANK 0 memory. The operation doesn’t affect

PFLAG. (Support R/W register and memory)

Â Example:

 B0XCH A, WK00 ; Exchange the data between ACC and WK00 defined
 ; by user and in BANK 0.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 14 Revision 1.94

MOVC – Read Data from ROM

Â Operation:

Mnemonic Description C DC Z
 MOVC R, A ← ROM [X,Y,Z] - - -

Â Description:

The instruction is to read data of ROM. This is a look-up table application. After defining the X, Y, Z data pointed to the
ROM address, to get the ROM data using MOVC instruction. The high byte data is stored in R register and the low byte
is stored in ACC buffer.

¾ MOVC : Read ROM data and store in R register and ACC. The operation doesn’t affect PFLAG.

Â Example: To look up the ROM data located “table_1”.

 B0MOV Y, #TABLE1$M ; Set look-up table’s middle address.
 B0MOV Z, #TABLE1$L ; Set look-up table’s low address.
 MOVC ; Look up data, R = 00H, ACC = 35H
 . ;
 INCMS Z ; Look up next ROM’s data.
 NOP ;
 MOVC ; Look up data, R = 51H, ACC = 05H.
 . . ;
TABLE1: DW 0035H ; Define a word (16 bits) data.
 DW 5105H ; “
 DW 2012H ; “
 . .

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 15 Revision 1.94

ARITHMETIC INSTRUCTION

ADC – Add with Carry

Â Operation:

Mnemonic Description C DC Z
 ADC A,M A ← A + M + C, if occur carry, then C=1, else C=0 √ √ √

 ADC M,A M ← A + M + C, if occur carry, then C=1, else C=0 √ √ √

Remark

1. The “M” is memory including system registers and user defined memory.
2. The “C” is carry flag.

Â Description:

The instruction is to get the sum of ACC, memory and C flag. If the result is zero, the zero flag (Z) will be set as “1”;
otherwise the zero flag (Z) is cleared. If the result occurs overflow signal, the carry flag (C) will be set as “1”; otherwise
the carry flag (C) is cleared. If there is a carry signal from low nibble of the result, the decimal carry flag (DC) will be set
as “1”; otherwise the decimal carry flag (DC) is cleared.

¾ ADC A,M : Add ACC, memory and carry flag (C) up, and store the result in ACC buffer. (Support R/W,R

register and memory)

¾ ADC M,A : Add ACC, memory and carry flag (C) up, and store the result in the memory. (Support R/W

register and memory)

Â Example: The ADC instruction is a useful instruction to do work data adding. There is a word data

separated to DAH and DAL. DAH is high byte and DAL is low byte. Add 0x10ff and 0x0103 up and store
the sum to DAH and DAL.

 MOV A,#03H ; Input the low byte (03H) of 0x0103 into DAL
 B0MOV DAL,A
 MOV A,#01H ; Input the high byte (01H) of 0x0103 into DAH
 B0MOV DAH,A

 MOV A,#0FFH ; Add low byte data. DAL = 02H
 ADD DAL,A

 MOV A,#10H ; Add high byte data. DAH = 12H
 ADC DAH,A
 ; The sum is 0x1202.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 16 Revision 1.94

ADD – Add only

Â Operation:

Mnemonic Description C DC Z
 ADD A,M A ← A + M, if occur carry, then C=1, else C=0 √ √ √

 ADD M,A M ← A + M, if occur carry, then C=1, else C=0 √ √ √

 ADD A,I A ← A + I, if occur carry, then C=1, else C=0 √ √ √

Remark

1. The “M” is memory including system registers and user defined memory.
2. The “C” is carry flag.

Â Description:

The instruction is the add instruction. If the result is zero, the zero flag (Z) will be set as “1”; otherwise the zero flag (Z)
is cleared. If the result occurs overflow signal, the carry flag (C) will be set as “1”; otherwise the carry flag (C) is cleared.
If there is a carry signal from low nibble of the result, the decimal carry flag (DC) will be set as “1”; otherwise the
decimal carry flag (DC) is cleared.

¾ ADD A,M : Add ACC buffer and the memory up, and store the result in ACC buffer. (Support R/W,R

register and memory)

¾ ADD M,A : Add ACC buffer and the memory up, and store the result in the memory. (Support R/W

register and memory)

¾ ADD A,I : Add ACC buffer and the immediate value up, and store the result in ACC buffer.

Â Example:

 ADD A,WK00 ; A = A + WK00

 ADD WK00,A ; WK00 = A + WK00

 ADD A,#10 ; A = A + 10

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 17 Revision 1.94

B0ADD – Add with BANK 0 Memory

Â Operation:

Mnemonic Description C DC Z
 B0ADD M,A M (bank 0) ← A + M (bank 0), if occur carry, then C=1, else C=0 √ √ √

Remark

1. The “M” is memory including system registers and user defined memory.
2. The “C” is carry flag.

Â Description:

The instruction is the add instruction. The memory must be in BANK0 and the target. If the result is zero, the zero flag
(Z) will be set as “1”; otherwise the zero flag (Z) is cleared. If the result occurs overflow signal, the carry flag (C) will be
set as “1”; otherwise the carry flag (C) is cleared. If there is a carry signal from low nibble of the result, the decimal
carry flag (DC) will be set as “1”; otherwise the decimal carry flag (DC) is cleared.

¾ B0ADD M,A : Add ACC buffer and the BANK 0 memory up, and store the result in the memory.

(Support R/W register and memory)

Â Example:

 B0ADD WK00,A ; WK00 = A + WK00

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 18 Revision 1.94

SBC – Subtract with Carry

Â Operation:

Mnemonic Description C DC Z
 SBC A,M A ← A - M - /C, if occur borrow, then C=0, else C=1 √ √ √

 SBC M,A M ← A - M - /C, if occur borrow, then C=0, else C=1 √ √ √

Remark

1. The “M” is memory including system registers and user defined memory.
2. The “C” is carry flag.

Â Description:

The instruction is to get the difference of ACC, memory and the inverse of C flag. If the result is zero, the zero flag (Z)
will be set as “1”; otherwise the zero flag (Z) is cleared. If the result occurs borrow signal, the carry flag (C) will be
cleared; otherwise the carry flag (C) is as “1”. If there is a borrow signal from low nibble of the result, the decimal carry
flag (DC) will be cleared; otherwise the decimal carry flag (DC) is as “1”.

¾ SBC A,M : Subtract the memory and the inverse of carry flag (C) from ACC buffer, and store the result

in ACC buffer. (Support R/W,R register and memory)

¾ SBC M,A : Subtract the memory and the inverse of carry flag (C) from ACC buffer, and store the result

in the memory. (Support R/W register and memory)

Â Example: The SBC instruction is a useful instruction to do work data subtract. There is a word data

separated to DAH and DAL. DAH is high byte and DAL is low byte. Subtract 0x0103 from 0x10FF and
store the result to DAH and DAL.

 MOV A,#03H ; Input the low byte (03H) of 0x0103 into DAL
 B0MOV DAL,A
 MOV A,#01H ; Input the high byte (01H) of 0x0103 into DAH
 B0MOV DAH,A

 MOV A,#0FFH ; Add low byte data. DAL = 0FCH
 SUB DAL,A

 MOV A,#10H ; Add high byte data. DAH = 0FH
 SBC DAH,A
 ; The sum is 0x0FFC.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 19 Revision 1.94

SUB – Subtract only

Â Operation:

Mnemonic Description C DC Z
 SUB A,M A ← A - M, if occur borrow, then C=0, else C=1 √ √ √

 SUB M,A M ← A - M, if occur borrow, then C=0, else C=1 √ √ √

 SUB A,I A ← A - I, if occur borrow, then C=0, else C=1 √ √ √

Remark

1. The “M” is memory including system registers and user defined memory.
2. The “C” is carry flag.

Â Description:

The instruction is the subtract instruction. If the result is zero, the zero flag (Z) will be set as “1”; otherwise the zero flag
(Z) is cleared. If the result occurs borrow signal, the carry flag (C) will be cleared; otherwise the carry flag (C) is as “1”.
If there is a borrow signal from low nibble of the result, the decimal carry flag (DC) will be cleared; otherwise the
decimal carry flag (DC) is as “1”.

¾ SUB A,M : Subtract the memory from ACC buffer, and store the result in ACC buffer. (Support R/W,R

register and memory)

¾ SUB M,A : Subtract the memory from ACC buffer, and store the result in the memory. (Support R/W

register and memory)

¾ SUB A,I : Subtract the immediate value from ACC buffer, and store the result in ACC buffer.

Â Example:

 SUB A,WK00 ; A = A - WK00

 SUB WK00,A ; WK00 = A - WK00

 SUB A,#10 ; A = A - 10

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 20 Revision 1.94

DAA –Decimal-Adjust accumulator

Â Operation:

Mnemonic Description C DC Z
DAA Adjust ACC’s data format from HEX to DEC √ - -

The instruction is adjust accumulator’s data from Hexadecimal to Decimal. The operand of this instruction divided ACC
into high and low nibble. Each nibble is done by adding 6 to the original value if the original value is greater than 9;
other wise the original value remains unchanged. The result is stored in the accumulator.

For ACC.3~ACC.0 > 9
ACC.3~ACC.0 ←(ACC.3~ACC.0)+6
IF (ACC.7~ACC.4+1) > 9

Then ACC.7~ACC.4 ←(ACC.7~ACC.4)+1+6 (C flag will set to 1)

Else ACC.7~ACC.4 ←(ACC.7~ACC.4)+1

For ACC.3~ACC.0 <=9
ACC.3~ACC.0 ←ACC.3~ACC.0
IF ACC.7~ACC.4 > 9

Then ACC.7~ACC.4 ←(ACC.7~ACC.4)+6 (C flag will set to 1)

Else ACC.7~ACC.4 ←ACC.7~ACC.4

Â Example1:

 MOV A,#055H ; A = 55H

 DAA ; A = 55H

Â Example2:

 MOV A,#01FH ; A = 1FH

 DAA ; A = 25H

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 21 Revision 1.94

MUL – Multiply Unsigned

Â Operation:

Mnemonic Description C DC Z
 MUL A,M R, A ← A * M, The LB of product stored in Acc and HB stored in R register. ZF affected by Acc. - - √

Remark

The “M” is memory including system registers and user defined memory.

Â Description:

The instruction is multiples 2 8-bit unsigned binary value in ACC and memory. The high byte data of multiple results is
stored in R register and the low byte is stored in ACC buffer. If the result is zero, the zero flag (Z) will be set as “1”;
otherwise the zero flag (Z) is cleared.

Â Example:

 MOV A, #03H ; Input the data=03H into DATA_1
 B0MOV DATA_1,A ; DATA_1 in bank 0
 MOV A, #0FFH ; Input the data=0FFH into ACC
 MUL A, DATA_1 ; Multiple Data_1 and A
 ; R = 02H, A=0FDH, Z_flag=0
 :
 MOV A, #00H ; Input the data=00H into DATA_1
 B0MOV DATA_1,A ; DATA_1 in bank 0
 MOV A, #0FFH ; Input the data=0FFH into ACC
 MUL A, DATA_1 ; Multiple Data_1 and A
 ; R = 00H, A=00H, Z_flag=1

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 22 Revision 1.94

LOGIC INSTRUCTION

AND – Logical AND

Â Operation:

Mnemonic Description C DC Z
 AND A,M A ← A and M - - √

 AND M,A M ← A and M - - √

 AND A,I A ← A and I - - √

Remark

1. The “M” is memory including system registers and user defined memory.
2. The “Z” is zero flag.

Â Description:

The instruction is the logically AND. The logical AND operation results in a “1” bit being stored whenever the
corresponding bits in the two operands are both “1”. If the result is zero, the zero flag (Z) will be set as “1”; otherwise
the zero flag (Z) is cleared.

¾ AND A,M : AND the memory and ACC buffer, and store the result in ACC buffer. (Support R/W,R

register and memory)

¾ AND M,A : AND the memory and ACC buffer, and store the result in the memory. (Support R/W register

and memory)

¾ AND A,I : AND the immediate value and ACC buffer, and store the result in ACC buffer.

Â Example: Read Port 2 value and only keep the low-nibble data.

; Store the result in ACC buffer

 B0MOV A,P2

 AND A,#00001111B ; To clear the high-nibble and compare the low-nibble data.
 ; If the P2 = 10101010B.
 ; The result is “00001010B”.
; or
 B0MOV A, #00001111B

 AND A,P2 ; To clear the high-nibble and compare the low-nibble data.
 ; If the P2 = 10101010B.
 ; The result is “00001010B”.

; Store the result in P2 register

 B0MOV A, #00001111B

 AND P2,a ; To clear the high-nibble and compare the low-nibble data.
 ; If the P2 = 10101010B.
 ; The result is “00001010B”.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 23 Revision 1.94

OR – Logical OR

Â Operation:

Mnemonic Description C DC Z
 OR A,M A ← A or M - - √

 OR M,A M ← A or M - - √

 OR A,I A ← A or I - - √

Remark

1. The “M” is memory including system registers and user defined memory.
2. The “Z” is zero flag.

Â Description:

The instruction is the logically OR. The logical OR operation results in a “1” bit being stored whenever one of the
corresponding bits in the two operands is “1”. If the result is zero, the zero flag (Z) will be set as “1”; otherwise the zero
flag (Z) is cleared.

¾ OR A,M : OR the memory and ACC buffer, and store the result in ACC buffer. (Support R/W,R register

and memory)

¾ OR M,A : OR the memory and ACC buffer, and store the result in the memory. (Support R/W register

and memory)

¾ OR A,I : OR the immediate value and ACC buffer, and store the result in ACC buffer.

Â Example: Read Port 2 value and OR with 0FH.

; Store the result in ACC buffer

 B0MOV A,P2

 OR A,#0FH ; To keep the high-nibble and set all of the low-nibble data
 ; as “1“.
 ; If the P2 = 10101010B.
 ; The result is “10101111B”.
; or
 B0MOV A, #0FH

 OR A,P2 ; To keep the high-nibble and set all of the low-nibble data
 ; as “1“.
 ; If the P2 = 10101010B.
 ; The result is “10101111B”.

; Store the result in P2 register

 B0MOV A, #0FH

 OR P2,a ; To keep the high-nibble and set all of the low-nibble data
 ; as “1“.
 ; If the P2 = 10101010B.
 ; The result is “10101111B”.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 24 Revision 1.94

XOR – Logical XOR

Â Operation:

Mnemonic Description C DC Z
 XOR A,M A ← A xor M - - √

 XOR M,A M ← A xor M - - √

 XOR A,I A ← A xor I - - √

Remark

1. The “M” is memory including system registers and user defined memory.
2. The “Z” is zero flag.

Â Description:

The instruction is the logically XOR. The logical XOR operation results in a “1” bit being stored whenever the
corresponding bits in the two operands are the same. If the result is zero, the zero flag (Z) will be set as “1”; otherwise
the zero flag (Z) is cleared.

¾ XOR A,M : OR the memory and ACC buffer, and store the result in ACC buffer. (Support R/W,R register

and memory)

¾ XOR M,A : OR the memory and ACC buffer, and store the result in the memory. (Support R/W register

and memory)

¾ XOR A,I : OR the immediate value and ACC buffer, and store the result in ACC buffer.

Â Example: Read Port 2 value and invert it.

; Store the result in ACC buffer

 B0MOV A,P2

 OR A,#0FFH ; To invert P2 register.
 ; If the P2 = 10101010B.
 ; The result is “01010101B”.
; or
 B0MOV A, #0FFH

 OR A,P2 ; To invert P2 register.
 ; If the P2 = 10101010B.
 ; The result is “01010101B”.

; Store the result in P2 register

 B0MOV A, #0FFH

 OR P2,a ; To invert P2 register.
 ; If the P2 = 10101010B.
 ; The result is “01010101B”.

PROCESS INSTRUCTION

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 25 Revision 1.94

SWAP & SWAPM – Memory high/low Nibble Exchange

Â Operation:

Mnemonic Description C DC Z
 SWAP M A (b3~b0, b7~b4) ←M(b7~b4, b3~b0) - - -
 SWAPM M M(b3~b0, b7~b4) ← M(b7~b4, b3~b0) - - -

Remark

The “M” is memory including system registers and user defined memory.

Â Description:

The instruction’s operation is to exchange the high/low byte data of a memory. The operation doesn’t affect PFLAG.

¾ SWAP M : Exchange the high/low nibble data and store the result in ACC buffer. (Support R/W,R

register and memory)

¾ SWAPM M : Exchange the high/low nibble data and store the result in the memory. (Support R/W

register and memory)

Â Example: Read P2 value, exchange the high/low nibble data and store in the WK00.

 SWAP P2 ; SWAP P2 register and the result stored in ACC buffer.
 B0MOV WK00,A ; Save the result in ACC buffer.

Â Example: Read P2 value, exchange the high/low nibble data and reload the new value into P2 register.

 SWAPM P2 ; SWAP P2 register and the result stored in P2 register.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 26 Revision 1.94

RLC & RLCM – Memory Left Rotation

Â Operation:

Mnemonic Description C DC Z
 RLC M A ← RLC M √ - -
 RLCM M M ← RLC M √ - -

Remark

1. The “M” is memory including system registers and user defined memory.
2. The “C” is carry flag.

Â Description:

The instruction rotates the memory from right to left one bit. After RLC /RLCM executed, 8-bit rotate one bit. The LSB
is replaced by C flag and the MSB value is moved to C flag position.

Memory C Flag

MSB

Bit 7

LSB

Bit 0

Memory C Flag

MSB

Bit 7

LSB

Bit 0

¾ RLC M : Rotate the memory to left and store the result in ACC buffer. (Support R/W,R register and

memory)

¾ RLCM M : Rotate the memory to left and store the result in the memory. (Support R/W register and

memory)

Â Example: WK00 = 10101010B, change WK00 to 01010101B and store the result in ACC buffer.

 B0BSET FC ; Set the C flag.

 RLC WK00 ; The ACC buffer = 01010101B
 ; The C flag = 1 (MSB of WK00).

Â Example: WK00 = 11110011B, change WK00 to 11001100B and store the result in WK00.

 B0BCLR FC ; Clear C flag.
 RLCM WK00 ; RLCM one time
 ; The WK00 = 11100110B
 ; The C flag = 1 (MSB of WK00).

 B0BCLR FC ; Clear C flag.
 RLCM WK00 ; RLCM two time
 ; The WK00 = 11001100B
 ; The C flag = 1 (MSB of WK00).

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 27 Revision 1.94

RRC & RRCM – Memory Right Rotation

Â Operation:

Mnemonic Description C DC Z
 RRC M A ← RRC M √ - -
 RRCM M M ← RRC M √ - -

Remark

1. The “M” is memory including system registers and user defined memory.
2. The “C” is carry flag.

Â Description:

The instruction rotates the memory from left to right one bit. After RRC /RRCM executed, 8-bit rotate one bit. The MSB
is replaced by C flag and the LSB value is moved to C flag position.

¾ RRC M : Rotate the memory to right and store the result in ACC buffer. (Support R/W,R register and

memory)

¾ RRCM M : Rotate the memory to right and store the result in the memory. (Support R/W register and

memory)

Â Example: WK00 = 10101010B, change WK00 to 01010101B and store the result in ACC buffer.

 B0BCLR FC ; Clear C flag.

 RRC WK00 ; The ACC buffer = 01010101B
 ; The C flag = 0 (LSB of WK00).

Â Example: WK00 = 11110011B, change WK00 to 00111100B and store the result in WK00.

 B0BCLR FC ; Clear C flag.
 RRCM WK00 ; RRCM one time
 ; The WK00 = 01111001B
 ; The C flag = 1 (LSB of WK00).

 B0BCLR FC ; Clear C flag.
 RRCM WK00 ; RRCM two time
 ; The WK00 = 00111100B
 ; The C flag = 1 (LSB of WK00).

C Flag Memory

MSB

Bit 7

LSB

Bit 0

C Flag Memory

MSB

Bit 7

LSB

Bit 0

C Flag Memory

MSB

Bit 7

LSB

Bit 0

Memory

MSB

Bit 7

LSB

Bit 0

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 28 Revision 1.94

CLR – Clear

Â Operation:

Mnemonic Description C DC Z
 CLR M M ← 0 - - -

Remark

The “M” is memory including system registers and user defined memory.

Â Description:

The instruction is to clear memory data. The operation is read the memory data, clear and writer back. The operation
doesn’t affect PFLAG.

¾ CLR M : Clear memory value. (Support R/W register and memory)

Â Example: Clear system registers.

 CLR Y ; Clear Y register

 CLR P0 ; Error. “CLR” doesn’t support read only register.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 29 Revision 1.94

BCLR & B0BCLR – Bit Clear

Â Operation:

Mnemonic Description C DC Z
 BCLR M.b M.b ← 0 - - -
 B0BCLR M.b M(bank 0).b ← 0 - - -

Remark

The “M” is memory including system registers and user defined memory.

Â Description:

The instruction is to clear a bit of memory. The operation doesn’t affect PFLAG.

¾ BCLR M.b: Clear the bit called “b” of the memory. (Support R/W register and memory)

¾ B0BCLR M.b: Clear the bit called “b” of the memory. The memory must be in BANK 0. (Support R/W

register and memory)

Â Example: Clear carry flag (C).

 B0BCLR FC

Â Example: Clear the bit 6 of WK00. WK00 is user defined.

 BCLR WK00.6 ; Clear the bit 6 of WK00.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 30 Revision 1.94

BSET & B0BSET – Bit Set

Â Operation:

Mnemonic Description C DC Z
 BSET M.b M.b ← 1 - - -
 B0BSET M.b M(bank 0).b ← 1 - - -

Remark

The “M” is memory including system registers and user defined memory.

Â Description:

The instruction is to set a bit of memory. The operation doesn’t affect PFLAG.

¾ BSET M.b: Set the bit called “b” of the memory. (Support R/W register and memory)

¾ B0BSET M.b: Set the bit called “b” of the memory. The memory must be in BANK 0. (Support R/W

register and memory)

Â Example: Set carry flag (C).

 B0BSET FC

Â Example: Set the bit 6 of WK00. WK00 is user defined.

 BSET WK00.6 ; Set the bit 6 of WK00.

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 31 Revision 1.94

BRANCH INSTRUCTION

CMPRS – Compare

Â Operation:

Mnemonic Description C DC Z
 CMPRS A,I ZF,C ← A - I, If A = I, then skip next instruction √ - √

 CMPRS A,M ZF,C ← A - M, If A = M, then skip next instruction √ - √

Remark

1. The “M” is memory including system registers and user defined memory.
2. The “C” is carry flag.
3. The “Z” is zero flag.

Â Description:

The instruction compares ACC buffer with the memory or an immediate value. If the result is equal, the program
counter will skip next instruction. “CMPRS” is to subtract the memory or an immediate value from ACC buffer. The zero
flag and carry flag will be changed by the result. If the result is zero, the zero flag (Z) will be set as “1”; otherwise the
zero flag (Z) is cleared. If the result occurs borrow signal, the carry flag (C) will be cleared; otherwise the carry flag (C)
is as “1”. The decimal carry flag (DC) won’t be affect and keeps zero.

¾ CMPRS A,I: Compare the ACC buffer with an immediate value.

¾ CMPRS A,M: Compare the ACC buffer with the memory. (Support R/W,R register and memory)

Â Example: Compare ACC buffer with 55H. If ACC is equal to 55H, jump to SUB1, or jump to SUB2.

 CMPRS A,#055H
 JMP SUB2 ; ACC is not 55H.
 JMP SUB1 ; ACC = 55H

Â Example: Compare the memory called WK00 with 55H. If the memory is equal to 55H, jump to SUB1, or

jump to SUB2.

 B0MOV A,#055H

 CMPRS A,WK00
 JMP SUB2 ; WK00 is not 55H.
 JMP SUB1 ; WK00 = 55H

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 32 Revision 1.94

INCS & INCMS – Increment and Skip on Zero

Â Operation:

Mnemonic Description C DC Z
 INCS M A ← M + 1, If A = 0, then skip next instruction - - -
 INCMS M M ← M + 1, If M = 0, then skip next instruction - - -

Remark

The “M” is memory including system registers and user defined memory.

Â Description:

The instruction increases the ACC buffer or the memory by one. If the result is zero, the program counter will skip the
next instruction. The operation doesn’t affect PFLAG.

¾ INCS M: Increase the memory value by one and store the result in ACC buffer. (Support R/W register

and memory)

¾ INCMS M: Increase the memory value by one and store the result in the memory. (Support R/W register

and memory)

Â Example: Increase WK00 until the overflow occurring.

 MOV A, #0xFD
 MOV WK00, A
INCSTEST:
 INCS WK00
 NOP
 MOV WK00, A
 CMPRS A, #0x00
 JMP INCSTEST ; WK00 is not zero.
 .

Â Example: Increase Y and Z flags. The Y is high byte and the Z is low byte. Y will increase by one when the

Z is overflow.

 INCMS Z
 JMP EXIT ; Z is not zero.

 INCMS Y ; Z = 0, Y = Y+1
 NOP
EXIT:
 .

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 33 Revision 1.94

DECS & DECMS – Decrement and Skip on Zero

Â Operation:

Mnemonic Description C DC Z
 DECS M A ← M - 1, If A = 0, then skip next instruction - - -
 DECMS M M ← M - 1, If M = 0, then skip next instruction - - -

Remark

The “M” is memory including system registers and user defined memory.

Â Description:

The instruction decreases the ACC buffer or the memory by one. If the result is zero, the program counter will skip the
next instruction. The operation doesn’t affect PFLAG.

¾ DECS M: Decrease the memory value by one and store the result in ACC buffer. (Support R/W register

and memory)

¾ DECMS M: Decrease the memory value by one and store the result in the memory. (Support R/W

register and memory)

Â Example: Decrease WK00 until equal to zero.

DECSTEST:
 DECMS WK00
 JMP DECSTEST ; Not zero.
 . ; WK00 = 0.
 .

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 34 Revision 1.94

BTS0 & B0BTS0 – Bit Test 0

Â Operation:

Mnemonic Description C DC Z
 BTS0 M.b If M.b = 0, then skip next instruction - - -
 B0BTS0 M.b If M(bank 0).b = 0, then skip next instruction - - -

Remark

The “M” is memory including system registers and user defined memory.

Â Description:

The instruction compares the bit of memory with 0. If the result is 0, the program counter will skip the next instruction.
The operation doesn’t affect PFLAG.

¾ BTS0 M.b: Compare the bit of memory with 0. (Support R/W register and memory)

¾ B0BTS0 M.b: Compare the bit of memory with 0. The memory must be in Bank 0. (Support R/W register

and memory)

Â Example: Check the carry flag. If C = 0, jump to SUB1, or jump to SUB2.

 B0BTS0 FC
 JMP SUB2 ; C = 1
 JMP SUB1 ; C = 0

Â Example: Check the bit 3 of WK00. If WK00.3 = 0, increase WK00 by one, or exit.

 B0BTS0 WK00.3 ; Check bit 3 of WK00
 JMP EXIT ; WK00.3=1
 INCMS WK00 ; WK00.3=0
 NOP ;

EXIT:

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 35 Revision 1.94

BTS1 & B0BTS1 – Bit Test 1

Â Operation:

Mnemonic Description C DC Z
 BTS1 M.b If M.b = 1, then skip next instruction - - -
 B0BTS1 M.b If M(bank 0).b = 1, then skip next instruction - - -

Remark

The “M” is memory including system registers and user defined memory.

Â Description:

The instruction compares the bit of memory with 1. If the result is 1, the program counter will skip the next instruction.
The operation doesn’t affect PFLAG.

¾ BTS1 M.b: Compare the bit of memory with 1. (Support R/W register and memory)

¾ B0BTS1 M.b: Compare the bit of memory with 1. The memory must be in Bank 0. (Support R/W register

and memory)

Â Example: Check the carry flag. If C = 1, jump to SUB1, or jump to SUB2.

 B0BTS1 FC
 JMP SUB2 ; C = 0
 JMP SUB1 ; C = 1

Â Example: Check the bit 3 of WK00. If WK00.3 = 1, increase WK00 by one, or exit.

 B0BTS1 WK00.3 ; Check bit 3 of WK00
 JMP EXIT ; WK00.3=0
 INCMS WK00 ; WK00.3=1
 NOP ;

EXIT:

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 36 Revision 1.94

JMP – Jump

Â Operation:

Mnemonic Description C DC Z
 JMP d PC15/14 ← RomPages1/0, PC13~PC0 ← d - - -

Remark

The “d” is the label name of the destination address.

Â Description:

“JMP” is a unconditional branch to indicate address by replacing the contents of the program counter (PC) with the
destination address. The destination address can be anywhere in the program memory (ROM). The operation doesn’t
affect PFLAG.

¾ JMP d: Program jumps to “d” address.

Â Example: Jump to SUB1.

 JMP SUB1
 .
SUB1:
 .

Â Example: Using program counter and JMP instruction can be a jump table function. Program can execute

different subroutines by the program counter.

 MOV A,WK00 ; Limit WK00 from 0 to 7.
 AND A,#00000111B
 MOV WK00,A

 B0ADD PCL,A
 JMP SUB0 ; WK00=0
 JMP SUB1 ; WK00=1
 JMP SUB2 ; WK00=2
 JMP SUB3 ; WK00=3
 JMP SUB4 ; WK00=4
 JMP SUB5 ; WK00=5
 JMP SUB6 ; WK00=6
 JMP SUB7 ; WK00=7
 .
 .
 .

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 37 Revision 1.94

CALL – Call Procedure

Â Operation:

Mnemonic Description C DC Z
 CALL d Stack ← PC15~PC0, PC15/14 ← RomPages1/0, PC13~PC0 ← d - - -

Remark

The “d” is the label name of the destination address.

Â Description:

“CALL” calls a subroutine in the program memory (ROM). When the instruction is executing, the program counter is
stored in stack buffer and the stack point decrease by one. The new address of the subroutine label is loaded in
program counter and executed. The subroutine can begin anywhere in all program memory (ROM). The operation
doesn’t affect PFLAG.

¾ CALL d: Program jumps to “d” address.

Â Example: The SUB1 address is 0x0213. The CALL command address is 0x0030. The stack point is 0FH.

After executing CALL, the stack buffer is 0x0031,stack point is 0EH (decrease by one) and the program
counter is 0x0213.

 ORG 0X0030
 CALL SUB1 ; Address = 0x0030
 . ; Address = 0x0031. Program return address.
 .

 ORG 0X0213
SUB1: ; Address = 0x0213
 .
 .
 RET

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 38 Revision 1.94

MISCELLANEOUS INSTRUCTION

RET – Return from Call Procedure

Â Operation:

Mnemonic Description C DC Z
 RET PC ← Stack - - -

Â Description:

“RET” returns to the last ROM address after finishing the call subroutine. When the instruction is executing, the
program counter is re-loaded from stack buffer and the stack point increase by one. The program returns to last stack
and continues to execute. The subroutine can end anywhere in all program memory (ROM). The operation doesn’t
affect PFLAG.

¾ RET: Return to the last stack level.

Â Example: The SUB1 address is 0x0213. The CALL command address is 0x0030. The stack point is 0FH.

After executing RET, the stack buffer is load to program counter, stack point is 0FH (increase by one) and
the program continues running from 0x0031.

 ORG 0X0030
 CALL SUB1 ; Address = 0x0030.
 . ; Address = 0x0031. Program return address.
 .

 ORG 0X0213
SUB1: ; Address = 0x0213
 .
 .
 RET ; Return to 0x0031

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 39 Revision 1.94

RETI – Return from Interrupt

Â Operation:

Mnemonic Description C DC Z
 RETI PC ← Stack, and to enable global interrupt - - -

Â Description:

When any interrupt occurs, the program counter content is stored into stack buffer and the stack point increases by
one. The global interrupt flag disables, the program jumps to interrupt vector (ORG 8) and executes the interrupt
service routine. The RETI is the end of interrupt service routine. It loads stack buffer content to program counter and
enable the global interrupt flag. And program exit the interrupt service routine. The operation doesn’t affect PFLAG.

¾ RETI: Return from interrupt and enable global interrupt flag.

Â Example:

 ORG 8 ; Interrupt vector.
 B0XCH A,ACCBUF
 B0MOV A,PFLAG
 B0MOV PFLAGBUF,A
 .
 .
 .
 B0MOV A,PFLAGBUF
 B0MOV PFLAG,A
 B0XCH A,ACCBUF
 RETI ; Exit interrupt service routine.

MAIN:
 .
 . ; An interrupt occurs. Program jumps to interrupt vector.
 . ; Return from interrupt vector.
 .

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 40 Revision 1.94

NOP – No Operation

Â Operation:

Mnemonic Description C DC Z
 NOP No operation - - -

Â Description:

“NOP” is no operation. It is typically used from timing delay. One “NOP” instruction is one instruction cycle (Fcpu). The
operation doesn’t affect PFLAG.

¾ NOP : No operation.

Â Example: A 1024 instruction cycles delay time. If the oscillator is 4MHz, the delay is 1024u seconds.

DLY1024U:
 MOV A,#0 ; Clear ACC buffer

DLY1024U_10:
 ADD A,#01H ; Increase ACC by one
 B0BTS1 FZ ; Check ACC overflow.
 JMP DLY1024U_10 ; No overflow, continues to increase ACC.
 . ; Exit the delay routine.
 .

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 41 Revision 1.94

PUSH – Save Some System Registers for SN8P1XXX and SN8P270XA

`
Â Operation:

Mnemonic Description C DC Z
 PUSH To push working registers (080H~087H) into buffers - - -

Â Description:

There are two kinds of PUSH instruction. In SN8P1XXX series and SN8P270XA (SN8P2704A, SN8P2705A,
SN8P2706A, SN8P2707A and SN8P2708A), the push instruction save some system registers (80H ~ 87H) into buffers.
Please refer to datasheet for detailed information.

¾ PUSH: Save some system registers (80H ~ 87H) into buffers (doesn’t occupy stack buffer).

Â Example: Save 80H ~ 87H system registers after enter interrupt service routine

INT_SERVICE:

 B0XCH A, ACCBUF ; B0XCH doesn’t change C, Z flag
 PUSH ; Save 80H ~ 87H system register
 . .
 . .
EXIT_INT:
 POP ; Pop 80H ~ 87H system register
 B0XCH A, ACCBUF ; Restore ACC value.

 RETI ; Exit interrupt vector

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 42 Revision 1.94

PUSH – Save A and PFLAG for SN8P260X

`
Â Operation:

Mnemonic Description C DC Z
 PUSH To push ACC and PFLAG (except NT0, NPD bit) into buffers. - - -

Â Description:

There are two kinds of PUSH instruction. In SN8P260X series (SN8P2602A, SN8P2604, SN8P2606 and SN8P2608),
the push instruction save Accumulator and PFLAG register (except NT0, NPD bits) into buffers. Please refer to
datasheet for detailed information.

¾ PUSH: Save Accumulator and PFLAG (except NT0, NPD bits) into buffers (doesn’t occupy stack buffer).

Â Example: Save A and PFLAH after enter interrupt service routine

 ORG 8 ; Interrupt vector
 JMP INT_SERVICE
INT_SERVICE:

 PUSH ; Save ACC and PFLAG to buffers.

 . .
 . .
EXIT_INT:
 POP ; Load ACC and PFLAG from buffers.

 RETI ; Exit interrupt vector

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 43 Revision 1.94

POP – Restore Some System Registers for SN8P1XXX and SN8P270XA

`
Â Operation:

Mnemonic Description C DC Z
 POP To pop working registers (080H~087H) from buffers √ √ √

Â Description:

There are two kinds of POP instruction. In SN8P1XXX series and SN8P270XA (SN8P2704A, SN8P2705A,
SN8P2706A, SN8P2707A and SN8P2708A), the pop instruction restores some system registers (80H ~ 87H) from
buffers. Please refer to datasheet for detailed information.

¾ POP: Restore some system registers (80H ~ 87H) from buffers (not from stack buffer).

Â Example: Restore 80H ~ 87H system registers before exit interrupt service routine

INT_SERVICE:

 B0XCH A, ACCBUF ; B0XCH doesn’t change C, Z flag
 PUSH ; Save 80H ~ 87H system registers
 . .
 . .
EXIT_INT:
 POP ; Restore 80H ~ 87H system registers
 B0XCH A, ACCBUF ; Restore ACC value.

 RETI ; Exit interrupt vector

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 44 Revision 1.94

POP – Restore A and PFLAG for SN8P260X

`
Â Operation:

Mnemonic Description C DC Z
 POP To pop ACC and PFLAG (except NT0, NPD bit) from buffers. √ √ √

Â Description:

There are two kinds of POP instruction. In SN8P260X series (SN8P2602A, SN8P2604, SN8P2606 and SN8P2608),
the pop instruction restores Accumulator and PFLAG register (except NT0, NPD bits) from buffers. Please refer to
datasheet for detailed information.

¾ POP: Restore Accumulator and PFLAG (except NT0, NPD bits) from buffers (not from stack buffer).

Â Example: Restore A and PFLAH before exit interrupt service routine

 ORG 8 ; Interrupt vector
 JMP INT_SERVICE
INT_SERVICE:

 PUSH ; Save ACC and PFLAG to buffers.

 . .
 . .
EXIT_INT:
 POP ; Load ACC and PFLAG from buffers.

 RETI ; Exit interrupt vector

SONiX 8-Bit MCU
INSTRUCTION SET

SONiX TECHNOLOGY CO., LTD Page 45 Revision 1.94

SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or
design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed,
intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a
situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such
unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers , employees, subsidiaries,
affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use
even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.

Main Office:
Address: 9F, NO. 8, Hsien Cheng 5th St, Chupei City, Hsinchu, Taiwan R.O.C.
Tel: 886-3-551 0520
Fax: 886-3-551 0523
Taipei Office:
Address: 15F-2, NO. 171, Song Ted Road, Taipei, Taiwan R.O.C.
Tel: 886-2-2759 1980
Fax: 886-2-2759 8180
Hong Kong Office:
Address: Flat 3 9/F Energy Plaza 92 Granville Road, Tsimshatsui East Kowloon.
Tel: 852-2723 8086
Fax: 852-2723 9179
Technical Support by Email:
Sn8fae@sonix.com.tw

	OVERVIEW
	INSTRUCTION SET TABLE
	Table I: For SN8P1XXX (Four clocks per instruction cycle)
	Table II: For SN8P2XXX (One clock per instruction cycle)

	INSTRUCTION DESCRIPTION
	DATA TRANSFER INSTRUCTION
	MOV – Memory Read / Write Instruction
	B0MOV – BANK 0 Memory Read / Write Instruction
	XCH – Data Exchange for All Area Memory
	B0XCH – Data Exchange for BANK 0 Memory
	MOVC – Read Data from ROM

	ARITHMETIC INSTRUCTION
	ADC – Add with Carry
	ADD – Add only
	B0ADD – Add with BANK 0 Memory
	SBC – Subtract with Carry
	SUB – Subtract only
	DAA –Decimal-Adjust accumulator
	MUL – Multiply Unsigned

	LOGIC INSTRUCTION
	AND – Logical AND
	OR – Logical OR
	XOR – Logical XOR

	PROCESS INSTRUCTION
	SWAP & SWAPM – Memory high/low Nibble Exchange
	RLC & RLCM – Memory Left Rotation
	RRC & RRCM – Memory Right Rotation
	CLR – Clear
	BCLR & B0BCLR – Bit Clear
	BSET & B0BSET – Bit Set

	BRANCH INSTRUCTION
	CMPRS – Compare
	INCS & INCMS – Increment and Skip on Zero
	DECS & DECMS – Decrement and Skip on Zero
	BTS0 & B0BTS0 – Bit Test 0
	BTS1 & B0BTS1 – Bit Test 1
	JMP – Jump
	CALL – Call Procedure

	MISCELLANEOUS INSTRUCTION
	RET – Return from Call Procedure
	RETI – Return from Interrupt
	NOP – No Operation
	PUSH – Save Some System Registers for SN8P1XXX an
	PUSH – Save A and PFLAG for SN8P260X
	POP – Restore Some System Registers for SN8P1XXX
	POP – Restore A and PFLAG for SN8P260X

