
PowerPCB 转 SCH 教程

本文以 PowerPCB 提供的 Pwrdemoa.pcb 为例进行说明。

- 1. 打开 PCB 图 ,选择菜单 File Report , 文件类型选 PowerPCB V3.0 Format Netlist ,将文件另存为 Pwrdemoa.ASC。
- 2.启动程序 Omninet for Windows ,输入文件类型(Type)选 Pads-PowerPCB , Input File 1 里用 Browse 指定网络表文件的位置。

输出文件类型(Type)选 EDIF。Output File 1 指定输出文件的文件名和路径。 然后点击 Run(跑动的小人)。

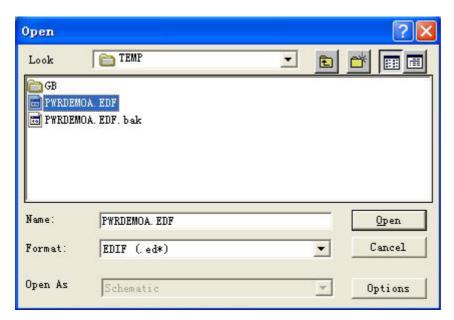
系统弹出一个输出窗口,

点击 Accept Data。完成后点击"确定", 再点击"Done"关闭输出窗口。退出 Omninet for Windows。

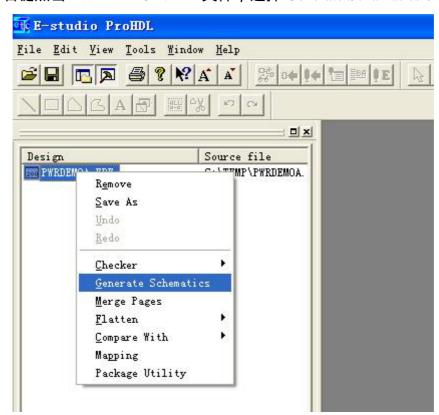
3. 修改 EDIF 网表文件,非常麻烦且容易出错的部分。下面是网络表的一部分;

```
C_COLON_BSLTEMP_BSLPWRDEMOA_DOTEDF
  (edif
             (rename
"C:\TEMP\PWRDEMOA.EDF")
(edifVersion 2 0 0)
(edifLevel 0)
(keywordMap (keywordLevel 0))
(library MAIN_LIB
  (edifLevel 0)
  (technology
   (numberDefinition
    (scale 1 (e 1 -6)(unit distance)))
  )
  (cell &6167 (cellType generic)
   (view NetlistView (viewType netlist)
    (interface
```

```
(cell &6167 (cellType generic)
 (view NetlistView (viewType netlist)
  (interface
   (port &1)
   (port &2)
   (port &3)
   (port &4)
   (port &5)
   (port &6)
   (port &7)
   (port &10)
   (port &13)
   (port &14)
   (port &15)
   (port &16)
   (port &17)
   (port &18)
   (port &19)
   (port &20)
  )
 )
(cell &68HC68R2 (cellType generic)
 (view NetlistView (viewType netlist)
  (interface
   (port &1)
   (port &2)
   (port &3)
   (port &4)
   (port &5)
   (port &6)
   (port &7)
   (port &8)
  )
 )
(cell &68HC68R2 (cellType generic)
 (view NetlistView (viewType netlist)
  (interface
 )
```


```
(cell (rename NE555_MINUSSO "NE555-SO") (cellType generic)
   (view NetlistView (viewType netlist)
    (interface
   )
  (cell (rename R1_FSL4W "R1/4W") (cellType generic)
   (view NetlistView (viewType netlist)
    (interface
   )
  (cell (rename R1_FSL4W "R1/4W") (cellType generic)
   (view NetlistView (viewType netlist)
    (interface
     (port &1)
     (port &2)
    )
   )
    检查一下有(cell.....标记的行,特别要注意红色字体部分,其 Interface 部分
为空,在这个 cell 标记的前面或后面又有一个 cell 行,其 Interface 部分包含有
(port &1)
(port & 2)
```

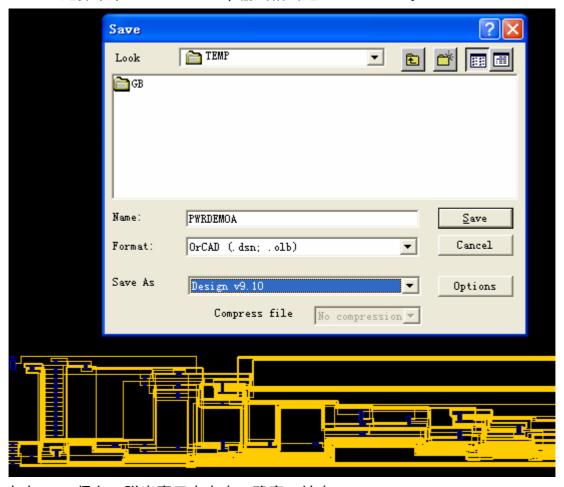
等内容。就是说每种器件出现了两个 cell 定义。


现在要做的就是将无 port 内容的 cell 标记删除(上述 EDIF 文件中红色字体部分)。PCB 板中有多少种 Part Type,就需要删除多少 Cell 标记,还要注意不要把有 port 内容的那些行删掉了。多删了或者少删了都会造成网络不完整,从而丢失信息。

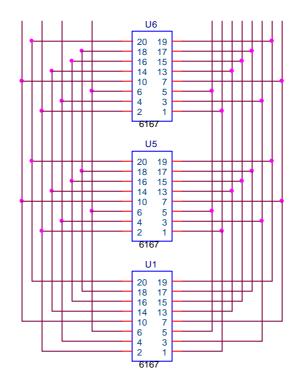
将修改后的 EDIF 文件存盘。

4.启动 E-Studio 软件,打开第3步保存的 EDIF 文件。

5. 右键点击 PWRDEMOA.EDF 文件,选择 Generate Schamatics:



系统弹出窗口。


点击确定。

6. 选择菜单 File - Save As,输出格式选 ORCAD 9.10。

点击 Save 保存。弹出窗口中点击"确定"结束。

生成的原理图已经可以在 ORCAD 中打开了。图纸显得特别长。如果 PCB 比较复杂,可能会出现原理图太大,以致软件都没法处理的情况。下图只是原理图的一部分。

6.在 ORCAD 中打开生成的原理图,启动 PCBNavigator,打开 ITC 连接 PowerPCB。选择菜单 PCB->Compare Netlist with PCB,生成的报告文件如下:

PADS-ECO-V3.0-MILS

 $*REMARK* \quad old \ file: D:\padspwr\Files\ecogtmp0.asc$

REMARK new file: C:\TEMP\pwrdemoa.asc

REMARK created by ECOGEN (Version 6.0g) on 2004-10-8 21:39:40

PART DIFFERENCES

OLD DESIGN	NE	NEW DESIGN	
Ref-des Part-type:Decal	Ref-des	Part-type:Decal	
P2 CON\60P\100\ED	P2	ED	
J1 CON\RIB14HL	J1	RIB14HL	
R1 R1/4W	R1	4W	
R10 R1/4W	R10	4W	
R11 R1/4W	R11	4W	
R12 R1/4W	R12	4W	
R14 R1/4W	R14	4W	
R16 R1/4W	R16	4W	
R2 R1/4W	R2	4W	
R5 R1/4W	R5	4W	
R6 R1/4W	R6	4W	
R7 R1/4W	R7	4W	
R8 R1/4W	R8	4W	
R9 R1/4W	R9	4W	

NET DIFFERENCES	
OLD DESIGN	NEW DESIGN
SWAPPED GATE DIFFERENCES	
OLD DESIGN	NEW DESIGN
SWAPPED PIN DIFFERENCES	
OLD DESIGN	NEW DESIGN
UNMATCHED NET PINS IN OLD DESIGN	
UNMATCHED NET PINS IN NEW DESIGN	
ATTRIBUTE DIFFERENCES	

可以看出,除了器件类型中包含有斜杠(不论正反)被改名外,网络表没有任何差

Old Value

New Value

[OLD DESIGN Parent -> NEW DESIGN Parent]

异。 如果要求完美,可以对照 PCB 图将原理图中的器件型号再改回去,这样就

如果没有 PCBNavigator,可以用 ORCAD 生成 PADSPCB 格式的网络表,在 PowerPCB 的 Tools 菜单的 Compare/ECO Tools 中进行比较,第一个文件选当前设计文件,第二个文件选 ORCAD 生成的 ASCII 网表文件,其比较结果是一样

到此, PowerPCB 转 ORCAD 原理图结束。

Attribute Level

的。

Attribute Name

能实现原理图与 PCB 的完全对应。

需要说明的是,这样的转换对于 PCB 上元件较少的情况可能好用,但如果 PCB 上元件很多,则转换出来的原理图非常庞大,网络连接极其复杂,它没有层次、总线概念,也不会分成多张子图,所有网络是全部连接的,要能看懂可能还是比较困难。

另外, PCB 中没有连接的管脚在转换出来的原理图上不再存在,可能会出现有些器件管脚数不对的情况。若要修改原理图,必须修改生成的器件符号。

还有一点不完善的地方是器件的封装信息没有了,必须重新填写。不过用 ORCAD 做原理图有个优势,就是不写封装,生成网络表时会以器件的 Value 作为封装,不影响网络表生成。