Graduate Institute of Electronics Engineering, NTU

Basic Division Scheme

For Advanced VLSI Course
2002

mmmmmmmm ACCESS IC L

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
— |

Qutline

“* Shift/subtract division algorithm.
*» Programmed division.

** Restoring hardware dividers.
“*Nonstoring and signed division.
*» Division by constants

*Radix-2 SRT division.

» High-Radix division.

L)

4

L/

L)

4

L/

L)

pp. 2

ACCESS IC Graduate Institute of Electronics Engineering, NTU
[T

Shift/Subtract Division Algorlthms'

z Dividend 2oy 120k 2 2,
d Divisor d._d,_,..dd,
q Quotient Ok-10k-2---Ch %o
S Remainder[z-(d xQq)] S 1S0-SS

X X X B¢

g 0000 060000000 V4

o000 -(d 23
o000 -q,d 22
o000 -q.d 2’

eoo0e -(d2°
o000 S

Division can be done by a sequence of shifts and subtraction.

pp. 3

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
— |

Overflow Check

< Multiplication: integer
% product of two k-bit z=[(dxQ)]+s integer
numbers is always 2k bits. B . =
z<(2-1)d+d =2"d

¢ Division:
** quotient of a 2k-bit number

divided by a k-bit number fractions
may more than k bits. 2%z =[(2%d)x(2*q)]+2%s fractions

— -k
Zfrac _ [(dfrac X qfrac)] +2 Sfrac
Z. <d

frac frac

pp. 4

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
L[

Sequential Division Algorithm

“ Left shift partial remainder, align to the term to be

subtracted.

S =2s"" -q_,(2d) with s =z and s"=2's
Shift left ‘
_ Subtracti‘

After k _ — _
itereartion S =2 —Q(de) — 2k[z_ (qxd)] -

Fractional g(i) — ogli-D) _ -) _ (k) K
version Sfrac _ Sfrac q dfrac Wlth Sfrac Zfrac and Sfrac =2 Sfrac

pp. 5

ACCESS |C

Example of sequential division with

Graduate Institute of Electronics Engineering, NTU
T

Integer and fractional operands

I_nEgEr- ciiw'siﬂn Fractional division
z O¥1 %0101 2w .0111 0401
24d 1010 Ohrac 1010 it
ﬂ—n}- ————— E -_.:_-1 1 ﬂ 1 ﬂ=?= z{-ﬁ===:===ﬂ==1=7=?==s=1=====
2s(0) 01110 101 2s(0) []111(}1l]?1
—qa24d 1010 {ga=1) -q_4d 1010 {gi=1)}
s(1) 0100 101 s(1) 0100 1
2s(1) 01001 01 2s(1) U1ﬂﬂ1ﬂ?1
—a24d 0000 {g=0} —q_ad 0000 {go=0)
s(2) 001 01 s(2) 1001 01
2s(2) 10010 1 2si2) 1.0010 1
-¢124d 1010 {g=1) —Q-ad 1010 {ga=1)
s(3) 1000 1 s(3) 100
2s(3) 10001 25(3) 1DUD?1
—gp24d 1010 {go=1) —Qq-4d 1010 {gy=1)
si4) 0111 s(4) 0111
s 0111 Sfrac 0000 0111
1011 Qfrac 1011

e I I e — e T —

e e T e e e e o B

pp. 6

ACCESS IC Graduate Institute of Electronics Engineering, NTU
S N

Programmed Division

{Using left shifte, divide unskgned 2k-bit dividend,
Z_highlz_low, staring the k-bit quetiant and remainder.
e R e D
—
Ag for z_low & quatient} ul

{Load operants inko registers Rd, Rs, and Ag)
" o mmew
koad R with Z_low
(Gheck for eiceptions)

branch d_by 0 Rd= RO
branch d_?H'FI:.r'I.:H

{inHintize countar)
kad k Into P
{Bagin divislon loop)
dloop: ghif Rq et 1 o LSB, M5B to cary}
ﬁ;ﬂ Paiefi mhisﬁ.HEBT’E&mw}
branch na_sub I Fs < Ad
it Emm quatient diglt ta 1)
a1
ne_sub: decr Rc decremant counles
branch d_loop it Ro # i
(Store the quotlent and remalnder}

By Rq Irto quathent
shore R irto remaincas

pp. 7

A—C(:%__Gw;titute of Electronics Engineering, NTU
Programmed Division (con't)

% Use shift and add to perform integer division by a processor.
*» Two k-bit reqgister to store the partial remainder and the quotient.

Integer division
z 0111 o101
24d 1010
s 0111 01041 Shifted partial Shifted partial Next
2s0) 01110 101 I| remainder | Quotient | quotient
~q24d TO010 (=1 Rs ' Ha ‘* digit
si1) 0100 101 Carry inserted
28 01001 01 flag here
~ge24d TOO00 {gz=0] | > _.
Partial remainder Partial quotient’

sl2) 1001 01 i i q
2520 10010 1 (2k - j bits) (j bits)
—y24d =
1 TOTUO [Gh=1] Ad
53) 100 T
28 10080 | Divisor d 00 ---0000
—-@2¢d 1010 (g=1) I |

' k =]
sl4) 0111 2°d
] 0111
q 1011

pp. 8

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
— [

Restoring Hardware Dividers

“* The basic eq. for signed division is
(dxq)+s along with
sign(s) =sign(z) and |s<|d|
“* For example
z=5 d=3 = (g=1
z=5 d=-3 = g=-1
z=-5 d=3 = g=-1
z=-5 d=-3 = ¢g=1
“* The magnitudes of g and s are unaffected by the input
signs.

pp. 9

ACCESS |C

Restoring Hardware Dividers (con't)

“*Because the magnitudes of g and s are
unaffected by the input signs. Signed division
can be converted into unsigned values and,
at the end, the signs is determined by the
sign bits or via complementation.

** This is the method of choice with the restoring
division algorithm.

pp. 10

ACCESS IC L Graduate Institute of Electronics Engineering, NTU |H|
[T — — 8

Restoring Hardware Dividers (con’t)

Mo overflow, since: -
(0111)pwo < (1010)ye 1 112l difference 4 Qe

L
' Partial

remainder

Positive, so set gz =1
unchanged

Negative, so set gz = 0 Divisor | 4+ k
and restore

Positive, soset gy =1

Positive, so set gp = 1

pp. 11

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
| [

Drawback of Restoring Division

“ Timing issues because each k cycles must be long
enough to allow following events in sequence:
+» Shifting of the registers.
“+ Propagation of signals through the adder (check carry)
+» Storing of the quotient digit. (storing)
“* So the sign of the trial difference must be sampled
near the negative edge. (drawback)

“ To avoid such timing issues, nonrestoring division
algorithm can be used.

pp. 12

ACCESS |C

Nonrestoring and Signed Division

Graduate Institute of Electronics Engineering, NTU
[[

% Always store difference in the partial remainder register.
% Allow partial remainder being temporarily incorrect (hence the name

“nonrestoring”).
% For example:

[Restoring]:
cyclen

incorrect partial remainder u—2“d
restoreto u

cyclen+1

2u—2d

[Nonrestoring]:

cyclen

incorrect partial remainder u—2d
skip restore

cyclen+1

2(u-2"d)+2“d = 2u-2"d

(the same as restoring)

pp. 13

ACCESS IC Graduate Institute of Electronics Engineering, NTU
S |

Nonrestoring and Signed Division

(con’t)
“ Quotient digits are selected from the set {1,-1},
(1->sub,-1->add).

% Goal is to end up with a remainder matches the sign
of the dividend. (dividend can be positive or negative).

“* The rule for quotient digit selection becomes:

If sign(s) =sign(d)thenq,_; =1lelseq,_; =-1

pp. 14

ACCESS |C

Graduate Institute
T I

Nonrestoring Unsigned division

of Electronics Engineering, NTU

example
z 0111 010 1 No overflow, since:
24d 0 1010 (0111)gyo< (1010) 4o
—244d 1 0110
® 00111 0101)
25(0) 0 1110 101 Positive,
+-24d) 1 0110 so subtract
s(1) 0 0100 101 |
2s(1) 0 1001 01 Positive, so set g3 = 1
+-24d) 1 0110 and subtract
s(2) 1 1111 01 _
2s(2) i 1110 1 Negative, so set g2 =0
+24d 0 1010 and add
s(3) 0 1000 1 |
2s(3) 1 0001 Positive, so set g1 = 1
+H-24a0) 1 0110 and subtract
s(4) 0 0111 Positive, so set gg = 1
s 0111
q 1011

e e e S S S S B

pp. 15

Partial remainder

ACCESS IC Graduate Institute of Electronics Engineering, NTU
I R e

Partial Remainder variation for
restoring and nonrestoring dividsion

300 59 57 300 27
234 =180 234
ﬂ -160 ﬂ -160
2001 5 20 x2
-160 143 1 \ 3 / —1su \
117 13 © 11
100 Y 5@ 519 E 100 5{3}
§(0) 5 = s(0) 4
748 -160 s%=16s| =< ?4y -160 s@=16s
s(1) € s1) +160
0 Lo
e {2]
Trial difference negative;
restore previous value
—100 =100

(a) Restoring. (b) Nonrestoring.

pp. 16

ACCESS IC Graduate Institute of Electronics Engineering, NTU
S I

Nonstoring Signed Division:

Two Problems

** The quotient with digits 1 and -1 must be converted
to standard binary.

** If the final remainder s has a sign opposite that of z, a
correction step addition £ d to the remainder and
subtraction of £ 1 from the quotient, is needed.

*» Convert a k-digit BSD quotient to a k-bit 2’s complement
number.
A. replace all -1 digits with Os to get the k-bit number

P = PeaPiz-Por b O{0, T

B. complement p,_, and then shift p left by 1 bit, inserting 1 to
the LSB, get

q - (pk—l pk—2"' p01)2's—compl.

pp. 17

ACCESS IC Graduate Institute of Electronics Engineering, NTU
S S

Convert a k-digit BSD quotient to a Yogat
bit 2’'s complement number

Proof:

k-2 |
(Py-1Pr-2++Pod) prscompr. = ~(1— P_y)2" +1+ Z p, 2™
i=0

k-1
= —(2 -1+ 22 p, 2'
i=0

k-1 |
=), (2p, -2
=0
k-1 |
= of 2! =
1=0

note: (g =2p -1 (2)) 52 =2"-1

pp. 18

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
||

Nonstoring Signed Division:

0 0001

F4 001

24d 1 1001

-24d 0 0111

s(0) 0 0010 0001

25s(0) 0 0100 001

+24d 1 1001

s(1) i 1101 001

2s(1) 1 1010 01

+(—244) 0 011

s(2) 0 0001 01

25(2) 0 0010 1

+24d i 1001

s(3) j R 11 Pl

2s(3) 1 0111

+(—240) 0 0111

s(4) |1 1110 |

+(—244) 0O 0111

s(4) 0 0101

s N 1 0 1

q 1-1 1

p 0101
L A |

Shifted p 11011

Q2s-compl 1100

example

Dividend = (33)gn
Divisor = (=7)ten

sign(s(Q)) # sign(d),

so set gq = -1 and add

sign(s(1)) = sign(d),
so set go = 1 and subtract

sign(s(2)) # sign(d),
so set ¢y =-1 and add

sign(s(3)) = sign(d),
so set gp = 1 and subtract

|sign(ﬂ4}] #sign(d)

Corrective subtraction

Remainder = (5)en
Ucorrected BSD quotient

7 Jo e
2s(~1) -
Partial | remainder
Divisor sign
Divisor £k
Add/Sub

r

k-bit aﬂy

K

/ an

“1s replaced by Os

Add 1 to correct
Quotient = (—4)e,

Complement of

partial remainder sign

pp. 19

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
| [

Division by Constants

“» Here, we will consider only division by odd integers,
since division by even integer can be performed by
dividing by a odd integer then shift the result.

“* For example: K/20=K/(5*4)=(K/5)*(1/4)=(K/5)>>2.
“ If only a limited number of constant divisor are of

Interest, their reciprocals can be precomputed with an
appropriate precision and stored in a table.

pp. 20

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
— |

Division by Constants (con’t)

% Faster constant division can be obtained for many small odd
divisors by using that: for each odd integer d there exists an odd
integer m such that d*m=2"-1.

iom _ m
d 2"-1 2"(1-2")
:Z—T(1+ 2L+ 2721+ 27M)...
* For example: d=5, m=3 and n=4. Thus for 24 bits of precision,
zZ 3z 3z

5 2°-1 16(1-27)
3z 4 -8 -16
= A2 2)1+ 2).

Note that the next term (1+2-32) would shift out the entire operand.

pp. 21

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
| [

Division by Constants (con’t)

** Follow preceding example, to effect division by 5

g < z + z shift-left | [3z computed)

g < g + g shift-right 4 (3z(1 + 274}

g < q + q shift-right 8 (3z(1 +27H(1 + 278y

g + q + g shiftright 16 {3z(1 + 27%(1 +2-8)(1 + 2'6))

g + q shift-right 4 (3z(1 +27H(1 + 2751 + 2-%)/16)

pp. 22

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
— I

Radix-2 SRT Division:

Review of nonrestoring division
“ Reconsider radix-2 nonrestoring division algorithm for fractional
operands.
SW=2s""-q.d with s”=z and s*=2"s
* Quotient is obtained with the digit set {-1,1} and is then
converted to the standard digit set {0,1}.
New partial remainder

Py o s“’d Shifted old partial
rem‘ai}der
. -2d “d " e B
For 2s0-1)=0 | a;=-1 i
'\‘"d

pp. 23

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
— [

Radix-2 SRT Division (con't)

Quotient is obtained using digit set {-1,0,1}.
Quotient “0” is selected when ;=0 for —d < 2s(-' < d

e

*%

e

*%

\/
0’0

Quotient “0” is simple shift, can speed up the division operation.

But determined —d < 2s(-1) < d need trial subtraction. Would
consume more time than they save!

/
0’0

oglF1)

pp. 24

ACCESS IC Graduate Institute of Electronics Engineering, NTU

Radix-2 SRT Division (con’t)

“*SRT: Sweeney, Roberson, and Tocher
discovered SRT division about the same time.

**Normalized divisor and normalized partial
dividend.

» Divisor and partial dividend is limited in the
range [1/2,1) or (-1,-1/2].

*» Easier comparison can be used due to
normalized divisor.

pp. 25

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
| [[

Radix-2 SRT Division (con’t)

**» Because of normalized divisor. comparison

become:
% 2801 > +%% =(0.1) 6 compr iMplies 2861 =(0.1uu ;...)
280 < -2 =(1.1) 6 comp IMplies 2501 =(1.0u_,u_5.

2’'s-compl

.) 2’s-compl
% 2s0-1)> +v4 is given by Tu, , and 2st-) < - is
given by ut,. Much easier!.

pp. 26

ACCESS IC Graduate Institute of Electronics Engineering, NTU
[T —

Example of Radix-2 SRT Division

0100 0101 {—1!2 1/2), so OK
d 1010 1/2, 1), so OK
—d 1.0110
s(0) 0.0100 0101
2s(0 0.1000 101 =1/2,soset 1= 1
+(—d) 1.0110 and subtract
s(1) 1.1110 101
2s(1) 1.1)1101 01 In[-1/2, 1/2), sosetgs =0
s(2) = 24(1) 101 01
2s(2) 1.1010 1 <-1/2, so setg-3 = -1
+d 0.1010 and add
s(3) 0.0100 1
2s(3) 0.100 1 >1/2,s0setqyq =1
+(=d) 1 110 and subtract
s(4) = 25(3) 1.1111 Negative,
+d 0.1010 so add to correct
s(4) 0.100 1
s 0.0000 1001
q 0.1011 Uncorrected BSD quotient
q 0.0110 Convert and subtract ulp

pp. 27

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
— |

Basic of High-Radix Division

z Dividend 2oy 120k 2 2,
d Divisor d._d,_,..dd,
q Quotient Ok-10k-2---Ch %o

S Remainder[z-(d xQq)] S 1S0-SS

Ex: Radix-4 division (dot notation) oo oo 0|

d.... OO0 0000 0O Z
eecocoo0 -(939) o 04’
e00000 -(0]p d4°

o000

pp. 28

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
— I

High-Radix Division example

Radix-4 integer division Radix-10 fractional division

z 0123 1123 Zirac 7003
44d 1203 dhrac 9 9

s®@ 0123 1123 s(0) 7003
45(0) 01231 123 10s(0) 7.00 3
—g344d 01203 {gz=1} —-q-1d 6.9 3 {g1=7}
s(1) 0022 123 s(1) .07 3

4s(1) 00221 23 10s(1) 0.7 3

—gp44d 00000 {g2=0} —q_od 0.0 0 {go=0)}
s(2) 0221 23 s(2) .7 3

45(2) D2212 3 Strac .007 3

(3) 10033
4s(3) 10033

—qgod4d 03012 {go=2}

s(4) 1021

S 1021

g 1012

B B S ———- r— - e s e e e s i i

pp. 29

ACCESS |C

Graduate Institute of Electronics Engineering, NTU
| e

Features of High-Radix Division

¢ Dividing binary number in radix 2b reduces the cycles
required by a factor of b, but each cycle is more
difficult to implement:

“* The higher radix makes the guessing of the correct quotient
digit more difficult.

“* The value to be subtracted are determined sequentially, one
per cycle. Possible value to be subtracted become harder to
generate.

¢ Other variations in division and divider please consult
reference “Computer Arithmetic: algorithm and
hardware designs / Behrooz Parhami, OXFORD

university press” ch13~ch16.

pp. 30

	Basic Division Scheme
	Outline
	Shift/Subtract Division Algorithms
	Overflow Check
	Sequential Division Algorithm
	Example of sequential division with integer and fractional operands
	Programmed Division
	Programmed Division (con’t)
	Restoring Hardware Dividers
	Restoring Hardware Dividers (con’t)
	Restoring Hardware Dividers (con’t)
	Drawback of Restoring Division
	Nonrestoring and Signed Division
	Nonrestoring and Signed Division (con’t)
	Nonrestoring Unsigned divisionexample
	Partial Remainder variation for restoring and nonrestoring dividsion
	Nonstoring Signed Division:Two Problems
	Convert a k-digit BSD quotient to a k-bit 2’s complement number
	Nonstoring Signed Division:example
	Division by Constants
	Division by Constants (con’t)
	Division by Constants (con’t)
	Radix-2 SRT Division:Review of nonrestoring division
	Radix-2 SRT Division (con’t)
	Radix-2 SRT Division (con’t)
	Radix-2 SRT Division (con’t)
	Example of Radix-2 SRT Division
	Basic of High-Radix Division
	High-Radix Division example
	Features of High-Radix Division

