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Qutline

“* Shift/subtract division algorithm.
*» Programmed division.

** Restoring hardware dividers.
“*Nonstoring and signed division.
*» Division by constants

*Radix-2 SRT division.

» High-Radix division.
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Shift/Subtract Division Algorlthms'

z Dividend 2oy 120k 2 2,
d Divisor d._d,_,..dd,
q Quotient Ok-10k-2---Ch %o
S Remainder[z-(d xQq)] S 1S0-SS

X X X B¢

g 0000 060000000 V4

o000 -(d 23
o000 -q,d 22
o000 -q.d 2’

eoo0e -(d2°
o000 S

Division can be done by a sequence of shifts and subtraction.
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Overflow Check

< Multiplication: integer
% product of two k-bit z=[(dxQ)]+s integer
numbers is always 2k bits. B . =
z<(2-1)d+d =2"d

¢ Division:
** quotient of a 2k-bit number

divided by a k-bit number  fractions
may more than k bits. 2%z =[(2%d)x(2*q)]+2%s fractions

— -k
Zfrac _ [(dfrac X qfrac)] +2 Sfrac
Z.  <d

frac frac
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Sequential Division Algorithm

“ Left shift partial remainder, align to the term to be

subtracted.

S =2s"" -q_,(2d) with s =z and s"=2's
Shift left ‘
_ Subtracti‘

After k _ — _
itereartion S =2 —Q(de) — 2k[z_ (qxd)] -

Fractional g(i) — ogli-D) _ - ) _ (k) K
version Sfrac _ Sfrac q dfrac Wlth Sfrac Zfrac and Sfrac =2 Sfrac
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Integer and fractional operands

I_nEgEr- ciiw'siﬂn Fractional division
z O¥1 %0101 2w .0111 0401
24d 1010 Ohrac 1010 it
ﬂ—n}- ————— E -_.:_-1 1 ﬂ 1 ﬂ=?= z{-ﬁ===:===ﬂ==1=7=?==s=1=====
2s(0) 01110 101 2s(0) []111(}1l]?1
—qa24d 1010 {ga=1) -q_4d 1010 {gi=1)}
s(1) 0100 101 s(1) 0100 1
2s(1) 01001 01 2s(1) U1ﬂﬂ1ﬂ?1
—a24d 0000 {g=0} —q_ad 0000 {go=0)
s(2) 001 01 s(2) 1001 01
2s(2) 10010 1 2si2) 1.0010 1
-¢124d 1010 {g=1) —Q-ad 1010 {ga=1)
s(3) 1000 1 s(3) 100
2s(3) 10001 25(3) 1DUD?1
—gp24d 1010 {go=1) —Qq-4d 1010 {gy=1)
si4) 0111 s(4) 0111
s 0111 Sfrac 0000 0111
1011 Qfrac 1011

e I I e — e T —

e e T e e e e o B
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Programmed Division

{Using left shifte, divide unskgned 2k-bit dividend,
Z_highlz_low, staring the k-bit quetiant and remainder.
e R e D
—
Ag for z_low & quatient} ul

{Load operants inko registers Rd, Rs, and Ag)
" o mmew
koad R with Z_low
(Gheck for eiceptions )

branch  d_by 0 Rd= RO
branch d_?H'FI:.r'I.:H

{inHintize countar)
kad k Into P
{Bagin divislon loop)
dloop:  ghif Rq et 1 o LSB, M5B to cary}
ﬁ;ﬂ Paiefi mhisﬁ.HEBT’E&mw}
branch  na_sub I Fs < Ad
it Emm quatient diglt ta 1)
a1
ne_sub: decr Rc decremant counles
branch  d_loop it Ro # i
(Store the quotlent and remalnder}

By Rq Irto quathent
shore R irto remaincas
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Programmed Division (con't)

% Use shift and add to perform integer division by a processor.
*» Two k-bit reqgister to store the partial remainder and the quotient.

Integer division
z 0111 o101
24d 1010
s 0111 01041 Shifted partial Shifted partial Next
2s0) 01110 101 I| remainder | Quotient | quotient
~q24d TO010 (=1 Rs ' Ha ‘* digit
si1) 0100 101 Carry inserted
28 01001 01 flag here
~ge24d TOO00 {gz=0] | > _.
Partial remainder Partial quotient’

sl2) 1001 01 i i q
2520 10010 1 (2k - j bits) (j bits)
—y24d =
1 TOTUO [Gh=1] Ad
53) 100 T
28 10080 | Divisor d 00 ---0000
—-@2¢d 1010 (g=1) I |

' k =]
sl4) 0111 2°d
] 0111
q 1011
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Restoring Hardware Dividers

“* The basic eq. for signed division is
(dxq)+s along with
sign(s) =sign(z) and |s<|d|
“* For example
z=5 d=3 = (g=1
z=5 d=-3 = g=-1
z=-5 d=3 = g=-1
z=-5 d=-3 = ¢g=1
“* The magnitudes of g and s are unaffected by the input
signs.
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Restoring Hardware Dividers (con't)

“*Because the magnitudes of g and s are
unaffected by the input signs. Signed division
can be converted into unsigned values and,
at the end, the signs is determined by the
sign bits or via complementation.

** This is the method of choice with the restoring
division algorithm.
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Restoring Hardware Dividers (con’t)

Mo overflow, since: -
(0111)pwo < (1010)ye 1 112l difference 4 Qe

L
' Partial

remainder

Positive, so set gz =1
unchanged

Negative, so set gz = 0 Divisor | 4+ k
and restore

Positive, soset gy =1

Positive, so set gp = 1
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Drawback of Restoring Division

“ Timing issues because each k cycles must be long
enough to allow following events in sequence:
+» Shifting of the registers.
“+ Propagation of signals through the adder (check carry)
+» Storing of the quotient digit. (storing)
“* So the sign of the trial difference must be sampled
near the negative edge. (drawback)

“ To avoid such timing issues, nonrestoring division
algorithm can be used.
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% Always store difference in the partial remainder register.
% Allow partial remainder being temporarily incorrect (hence the name

“nonrestoring”).
% For example:

[Restoring]:
cyclen

incorrect partial remainder u—2“d
restoreto u

cyclen+1

2u—2d

[Nonrestoring]:

cyclen

incorrect partial remainder u—2d
skip restore

cyclen+1

2(u-2"d)+2“d = 2u-2"d

(the same as restoring)

pp. 13
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Nonrestoring and Signed Division

(con’t)
“ Quotient digits are selected from the set {1,-1},
(1->sub,-1->add).

% Goal is to end up with a remainder matches the sign
of the dividend. (dividend can be positive or negative).

“* The rule for quotient digit selection becomes:

If sign(s) =sign(d)thenq,_; =1lelseq,_; =-1

pp. 14
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Nonrestoring Unsigned division
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example
z 0111 010 1 No overflow, since:
24d 0 1010 (0111)gyo< (1010) 4o
—244d 1 0110
® 00111 0101 )
25(0) 0 1110 101 Positive,
+-24d) 1 0110 so subtract
s(1) 0 0100 101 |
2s(1) 0 1001 01 Positive, so set g3 = 1
+-24d) 1 0110 and subtract
s(2) 1 1111 01 _
2s(2) i 1110 1 Negative, so set g2 =0
+24d 0 1010 and add
s(3) 0 1000 1 |
2s(3) 1 0001 Positive, so set g1 = 1
+H-24a0) 1 0110 and subtract
s(4) 0 0111 Positive, so set gg = 1
s 0111
q 1011

e e e S S S S B
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Partial Remainder variation for
restoring and nonrestoring dividsion

300 59 57 300 27
234 =180 234
ﬂ -160 ﬂ -160
2001 5 20 x2
-160 143 1 \ 3 / —1su \
117 13 © 11
100 Y 5@ 519 E 100 5{3}
§(0) 5 = s(0) 4
748 -160 s%=16s| =< ?4y -160 s@=16s
s(1) € s1) +160
0 Lo
e {2]
Trial difference negative;
restore previous value
—100 =100

(a) Restoring. (b) Nonrestoring.
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Nonstoring Signed Division:

Two Problems

** The quotient with digits 1 and -1 must be converted
to standard binary.

** If the final remainder s has a sign opposite that of z, a
correction step addition £ d to the remainder and
subtraction of £ 1 from the quotient, is needed.

*» Convert a k-digit BSD quotient to a k-bit 2’s complement
number.
A. replace all -1 digits with Os to get the k-bit number

P = PeaPiz-Por b O{0, T

B. complement p,_, and then shift p left by 1 bit, inserting 1 to
the LSB, get

q - (pk—l pk—2"' p01)2's—compl.

pp. 17
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Convert a k-digit BSD quotient to a Yogat
bit 2’'s complement number

Proof:

k-2 |
(Py-1Pr-2++Pod) prscompr. = ~(1— P_y)2" +1+ Z p, 2™
i=0

k-1
= —(2 -1+ 22 p, 2'
i=0

k-1 |
=), (2p, -2
=0
k-1 |
= of 2! =
1=0

note: (g =2p -1 (2)) 52 =2"-1

pp. 18



ACCESS |C

Graduate Institute of Electronics Engineering, NTU
||

Nonstoring Signed Division:

0 0001

F4 001

24d 1 1001

-24d 0 0111

s(0) 0 0010 0001

25s(0) 0 0100 001

+24d 1 1001

s(1) i 1101 001

2s(1) 1 1010 01

+(—244) 0 011

s(2) 0 0001 01

25(2) 0 0010 1

+24d i 1001

s(3) j R 11 Pl

2s(3) 1 0111

+(—240) 0 0111

s(4) |1 1110 |

+(—244) 0O 0111

s(4) 0 0101

s N 1 0 1

q 1-1 1

p 0101
L A |

Shifted p 11011

Q2s-compl 1100

example

Dividend = (33)gn
Divisor = (=7)ten

sign(s(Q)) # sign(d),

so set gq = -1 and add

sign(s(1)) = sign(d),
so set go = 1 and subtract

sign(s(2)) # sign(d),
so set ¢y =-1 and add

sign(s(3)) = sign(d),
so set gp = 1 and subtract

|sign(ﬂ4}] #sign(d)

Corrective subtraction

Remainder = (5)en
Ucorrected BSD quotient

7 Jo e
2s(~1) -
Partial | remainder
Divisor sign
Divisor £k
Add/Sub

r

k-bit aﬂy

K

/ an

“1s replaced by Os

Add 1 to correct
Quotient = (—4)e,

Complement of

partial remainder sign

pp. 19
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Division by Constants

“» Here, we will consider only division by odd integers,
since division by even integer can be performed by
dividing by a odd integer then shift the result.

“* For example: K/20=K/(5*4)=(K/5)*(1/4)=(K/5)>>2.
“ If only a limited number of constant divisor are of

Interest, their reciprocals can be precomputed with an
appropriate precision and stored in a table.
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Division by Constants (con’t)

% Faster constant division can be obtained for many small odd
divisors by using that: for each odd integer d there exists an odd
integer m such that d*m=2"-1.

iom _ m
d 2"-1 2"(1-2")
:Z—T(1+ 2L+ 2721+ 27M)...
* For example: d=5, m=3 and n=4. Thus for 24 bits of precision,
zZ 3z 3z

5 2°-1 16(1-27)
3z 4 -8 -16
= A2 2)1+ 2).

Note that the next term (1+2-32) would shift out the entire operand.

pp. 21
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Division by Constants (con’t)

** Follow preceding example, to effect division by 5

g < z + z shift-left | [3z computed)

g < g + g shift-right 4 (3z(1 + 274}

g < q + q shift-right 8 (3z(1 +27H(1 + 278y

g + q + g shiftright 16 {3z(1 + 27%(1 +2-8)(1 + 2'6))

g + q shift-right 4 (3z(1 +27H(1 + 2751 + 2-%)/16)

pp. 22
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Radix-2 SRT Division:

Review of nonrestoring division
“ Reconsider radix-2 nonrestoring division algorithm for fractional
operands.
SW=2s""-q.d with s”=z and s*=2"s
* Quotient is obtained with the digit set {-1,1} and is then
converted to the standard digit set {0,1}.
New partial remainder

Py o s“’d Shifted old partial
rem‘ai}der
. -2d “d " e B
For 2s0-1)=0 | a;=-1 i
'\‘"d

pp. 23
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Radix-2 SRT Division (con't)

Quotient is obtained using digit set {-1,0,1}.
Quotient “0” is selected when ;=0 for —d < 2s(-' < d

e

*%

e

*%

\/
0’0

Quotient “0” is simple shift, can speed up the division operation.

But determined —d < 2s(-1) < d need trial subtraction. Would
consume more time than they save!

/
0’0

oglF1)

pp. 24
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Radix-2 SRT Division (con’t)

“*SRT: Sweeney, Roberson, and Tocher
discovered SRT division about the same time.

**Normalized divisor and normalized partial
dividend.

*»* Divisor and partial dividend is limited in the
range [1/2,1) or (-1,-1/2].

*» Easier comparison can be used due to
normalized divisor.

pp. 25
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Radix-2 SRT Division (con’t)

**» Because of normalized divisor. comparison

become:
% 2801 > +%% =(0.1) 6 compr iMplies 2861 =(0.1uu ;...)
280 < -2 =(1.1) 6 comp IMplies 2501 =(1.0u_,u_5.

2’'s-compl

. ) 2’s-compl
% 2s0-1)> +v4 is given by Tu, , and 2st-) < - is
given by ut,. Much easier!.

pp. 26



ACCESS IC Graduate Institute of Electronics Engineering, NTU
[ T —

Example of Radix-2 SRT Division

0100 0101 {—1!2 1/2), so OK
d 1010 1/2, 1), so OK
—d 1.0110
s(0) 0.0100 0101
2s(0 0.1000 101 =1/2,soset 1= 1
+(—d) 1.0110 and subtract
s(1) 1.1110 101
2s(1) 1.1)1101 01 In[-1/2, 1/2), sosetgs =0
s(2) = 24(1) 101 01
2s(2) 1.1010 1 <-1/2, so setg-3 = -1
+d 0.1010 and add
s(3) 0.0100 1
2s(3) 0.100 1 >1/2,s0setqyq =1
+(=d) 1 110 and subtract
s(4) = 25(3) 1.1111 Negative,
+d 0.1010 so add to correct
s(4) 0.100 1
s 0.0000 1001
q 0.1011 Uncorrected BSD quotient
q 0.0110 Convert and subtract ulp
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Basic of High-Radix Division

z Dividend 2oy 120k 2 2,
d Divisor d._d,_,..dd,
q Quotient Ok-10k-2---Ch %o

S Remainder[z-(d xQq)] S 1S0-SS

Ex: Radix-4 division (dot notation) oo oo 0|

d.... OO0 0000 0O Z
eecocoo0 -(939) o 04’
e00000 -(0]p d4°

o000

pp. 28



ACCESS |C

Graduate Institute of Electronics Engineering, NTU
— I

High-Radix Division example

Radix-4 integer division Radix-10 fractional division

z 0123 1123 Zirac 7003
44d 1203 dhrac 9 9

s®@ 0123 1123 s(0) 7003
45(0) 01231 123 10s(0) 7.00 3
—g344d 01203 {gz=1} —-q-1d 6.9 3 {g1=7}
s(1) 0022 123 s(1) .07 3

4s(1) 00221 23 10s(1) 0.7 3

—gp44d 00000 {g2=0} —q_od 0.0 0 {go=0)}
s(2) 0221 23 s(2) .7 3

45(2) D2212 3 Strac .007 3

(3) 10033
4s(3) 10033

—qgod4d 03012 {go=2}

s(4) 1021

S 1021

g 1012

B B S ———- r— - e s e e e s i i
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Features of High-Radix Division

¢ Dividing binary number in radix 2b reduces the cycles
required by a factor of b, but each cycle is more
difficult to implement:

“* The higher radix makes the guessing of the correct quotient
digit more difficult.

“* The value to be subtracted are determined sequentially, one
per cycle. Possible value to be subtracted become harder to
generate.

¢ Other variations in division and divider please consult
reference “Computer Arithmetic: algorithm and
hardware designs / Behrooz Parhami, OXFORD

university press” ch13~ch16.

pp. 30
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