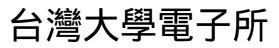
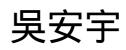


Basic Division Scheme





For Advanced VLSI Course 2002

<u>Outline</u>

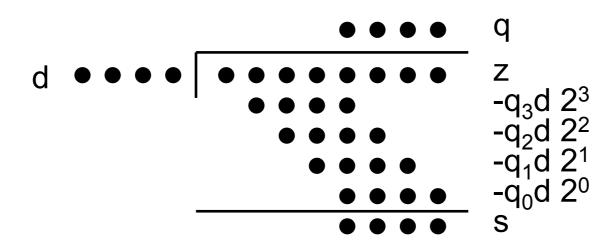
- Shift/subtract division algorithm.
- Programmed division.
- Restoring hardware dividers.
- Nonstoring and signed division.
- Division by constants
- Radix-2 SRT division.
- High-Radix division.

Shift/Subtract Division Algorithms

z Dividend $z_{2k-1}z_{2k-2}...z_1z_0$

ACCESS IC LAB

- $d \quad Divisor \qquad \qquad d_{k-1}d_{k-2}...d_1d_0$
- q Quotient $q_{k-1}q_{k-2}...q_1q_0$
- s Remainder[$z (d \times q)$] $s_{k-1}s_{k-2}...s_1s_0$



Division can be done by a sequence of shifts and subtraction.

Overflow Check

- Multiplication:
 - product of two k-bit numbers is always 2k bits.

integer

$$z = [(d \times q)] + s \quad integer$$
$$z < (2^k - 1)d + d = 2^k d$$

Division:

quotient of a 2k-bit number divided by a k-bit number may more than k bits.

fractions

$$2^{-2k} z = [(2^{-k} d) \times (2^{-k} q)] + 2^{-2k} s \quad fractions$$
$$z_{frac} = [(d_{frac} \times q_{frac})] + 2^{-k} s_{frac}$$
$$Z_{frac} < d_{frac}$$

Sequential Division Algorithm

Left shift partial remainder, align to the term to be subtracted.

$$S^{(j)} = 2s^{(j-1)} - q_{k-j}(2^k d) \quad with \quad s^{(0)} = z \quad and \quad s^{(k)} = 2^k s$$

| Shift left |
| _____ Subtract____|

After k iteration $S^{(k)} = 2^k s^{(0)} - q(2^k d) = 2^k [z - (q \times d)] = 2^k s$

Fractional $S_{frac}^{(j)} = 2s_{frac}^{(j-1)} - q_{-j}d_{frac}$ with $s_{frac}^{(0)} = z_{frac}$ and $s_{frac}^{(k)} = 2^k s_{frac}$

Example of sequential division with integer and fractional operands

Integer division	Fractional division
z 01110101 24d 1010	Z _{frac} .01110101 d _{frac} .1010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
s ⁽⁴⁾ 0111 s 0111 q 1011	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

台灣大學 吳安宇 教授

Programmed Division

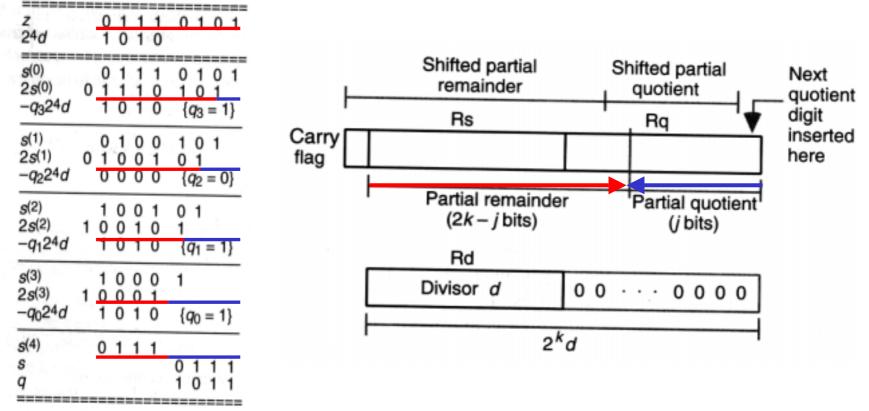
(Using left s z_highlz_lo Registers:	W, storing th R0 holds Rd for di	unsigned 2k-bit dividend, le k-bit quotient and remainder. s 0 Rc for counter visor Rs for z_high & remainder _low & quotient}
{Load opera	inds into reg	pisters Rd, Rs, and Rq}
div;	load load load	Rd with divisor Rs with z_high Rq with z_low
(Check for e	xceptions)	
	branch branch	d_by_0 if Rd = R0 d_ovfi if Rs > Rd
(initialize co	unter)	
	load	k Into Re
(Begin divisi	ion loop)	
d_loop:	shift rotale skip branch sub incr	Rq left 1 {zero to LSB, MSB to carry} Rs left 1 {carry to LSB, MSB to carry} if carry = 1 no_sub if Rs < Rd Rd from Rs Rg (set quotient digit to 1)
no_sub;	decr branch	Rq (set quotient digit to 1) Rc (decrement counter by 1) d_loop if Rc ≠0
(Store the qu	otient and r	remainder)
d_by_0: d_ovfi; d_done;	store store	Rg Into quotient Rs into remainder

Programmed Division (con't)

Use shift and add to perform integer division by a processor.

ACCESS IC LAB

Two k-bit register to store the partial remainder and the quotient.
Integer division



Restoring Hardware Dividers

★ The basic eq. for signed division is $(d \times q) + s$ along with sign(s) = sign(z) and |s| < |d|★ For example $z = 5 \quad d = 3 \implies q = 1 \quad s = 2$ $z = 5 \quad d = -3 \implies q = -1 \quad s = 2$ $z = -5 \quad d = 3 \implies q = -1 \quad s = -2$

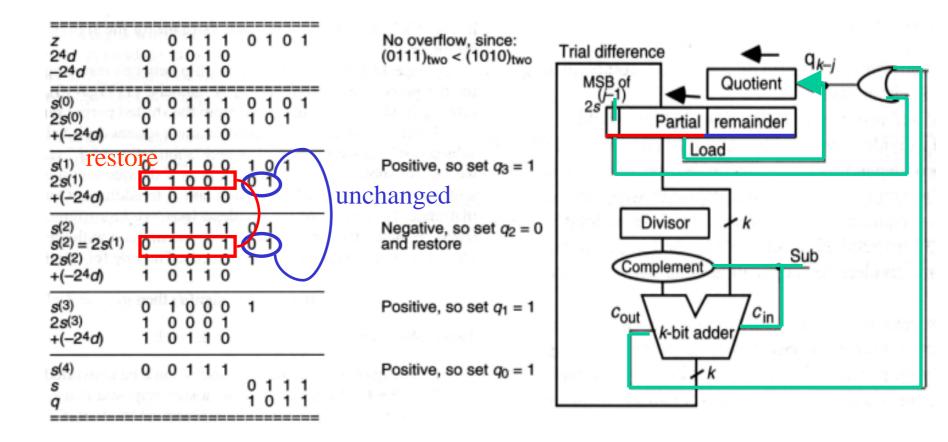
$$z = -5$$
 $d = -3$ \Rightarrow $q = 1$ $s = -2$

The magnitudes of q and s are unaffected by the input signs.

Restoring Hardware Dividers (con't)

- Because the magnitudes of q and s are unaffected by the input signs. Signed division can be converted into unsigned values and, at the end, the signs is determined by the sign bits or via complementation.
- This is the method of choice with the restoring division algorithm.

Restoring Hardware Dividers (con't)



Drawback of Restoring Division

- Timing issues because each k cycles must be long enough to allow following events in sequence:
 - Shifting of the registers.
 - Propagation of signals through the adder (check carry)
 - Storing of the quotient digit. (storing)
- So the sign of the trial difference must be sampled near the negative edge. (drawback)
- To avoid such timing issues, nonrestoring division algorithm can be used.

Nonrestoring and Signed Division

- Always store difference in the partial remainder register.
- Allow partial remainder being temporarily incorrect (hence the name "nonrestoring").
- For example:

[Restoring]:	[Nonrestoring]:
cycle n	cycle n
incorrect partial remainder $u - 2^{k} d$ restore to u cycle $n+1$ $2u - 2^{k} d$	incorrect partial remainder $u - 2^{k} d$ skip restore cycle $n+1$ $2(u-2^{k} d) + 2^{k} d = 2u - 2^{k} d$ (the same as restoring)

Nonrestoring and Signed Division (con't)

- Quotient digits are selected from the set {1,-1}, (1→sub,-1→add).
- Goal is to end up with a remainder matches the sign of the dividend. (dividend can be positive or negative).
- The rule for quotient digit selection becomes:

if
$$sign(s) = sign(d)$$
 then $q_{k-j} = 1$ else $q_{k-j} = -1$

Nonrestoring Unsigned division

<u>example</u>

z 24d –24d	0 1	0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 0	
======= s(0) 2s(0) +(-2 ⁴ d)	0 0 1	0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0	
s(1) 2s(1) +(-2 ⁴ d)	0 0 1	0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0	
s(2) 2s(2) +24d	1 1 0	1 1 1 1 0 1 1 1 1 0 1 1 0 1 0	
s ⁽³⁾ 2 <i>s</i> ⁽³⁾ +(-2 ⁴ d)	0 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
s(4) s q	0	0111 0111 1011	

No overflow, since: (0111)_{two}< (1010)_{two}

Positive, so subtract

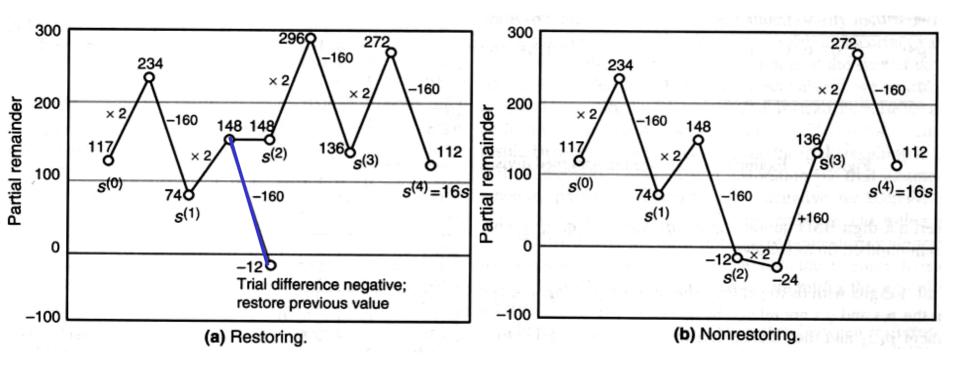
Positive, so set $q_3 = 1$ and subtract

Negative, so set $q_2 = 0$ and add

Positive, so set $q_1 = 1$ and subtract

Positive, so set $q_0 = 1$

Partial Remainder variation for restoring and nonrestoring dividsion



Nonstoring Signed Division: Two Problems

- The quotient with digits 1 and -1 must be converted to standard binary.
- If the final remainder s has a sign opposite that of z, a correction step addition ± d to the remainder and subtraction of ±1 from the quotient, is needed.
 - Convert a k-digit BSD quotient to a k-bit 2's complement number.

A. replace all -1 digits with 0s to get the k-bit number

$$p = p_{k-1}p_{k-2}\dots p_0, p_i \in \{0,1\}$$

B. complement p_{k-1} and then shift *p* left by 1 bit, inserting 1 to the LSB, get

$$q = (\overline{p}_{k-1}p_{k-2}...p_01)_{2's-compl.}$$

Convert a k-digit BSD quotient to a kbit 2's complement number

Proof:

$$(\overline{p}_{k-1}p_{k-2}...p_01)_{2's-compl.} = -(1-p_{k-1})2^k + 1 + \sum_{i=0}^{k-2} p_i 2^{i+1}$$
$$= -(2^k - 1) + 2\sum_{i=0}^{k-1} p_i 2^i$$
$$= \sum_{i=0}^{k-1} (2p_i - 1)2^i$$
$$= \sum_{i=0}^{k-1} q_i 2^i = q$$

note: (1) $q_i = 2p_i - 1$ (2) $\sum_{i=0}^{k-1} 2^i = 2^k - 1$

台灣大學 吳安宇 教授

Nonstoring Signed Division:

example

163 E.L. V.							-		
z 24d –24d	1 0	0 0 1 1 0 0 0 1 1	0 1 1	0	0	0	1		Dividend = (33) Divisor = (-7)
======= s ⁽⁰⁾ +2 ⁴ d	0 0 1	0 0 1 0 1 0 1 0 0	0 0 1	0	0	0	1		sign(<i>s</i> ⁽⁰⁾) ≠ si so set <i>q</i> ₃ = ⁻1
s ⁽¹⁾ 2s ⁽¹⁾ +(-24d)	1 1 0	1 1 0 1 0 1 0 1 1	1 0 1	00	0 1	1	-		$sign(s^{(1)}) = sign(s^{(1)}) = sign(s^{(1)})$
s(2) 2s(2) +24d	0 0 1	0 0 0 0 0 1 1 0 0	1 0 1	0 1	1	-			$sign(s^{(2)}) \neq si$ so set $q_1 = -1$
s(3) 2s(3) +(-24d)	1 1 0	1 0 1 0 1 1 0 1 1	1 1 1	1			_		$sign(s^{(3)}) = sign(s^{(3)}) = sign(s^{(3)}) = sign(s^{(3)})$
s ⁽⁴⁾ +(-2 ⁴ d)	1 0	1 1 1 0 1 1	0 1						sign(<i>s</i> ⁽⁴⁾) ≠sig Corrective su
s(4) s q	0	010	1	0 -1		0 -1		1997) 1997) 1997)	Remainder = Ucorrected B
p Shifted p 9 _{2's-compl}	adia Mala Mala Mala	la faist-se nitrisellei der nofetter och hetter	8 ∂54 ₀ 1	0 / 1 1	1 / 0 1	0 / 1 0	1 / 1 0		-1s replaced t Add 1 to corre Quotient = (-4

3)_{ten} en

qn(d), and add

in(d), and subtract

gn(d), and add

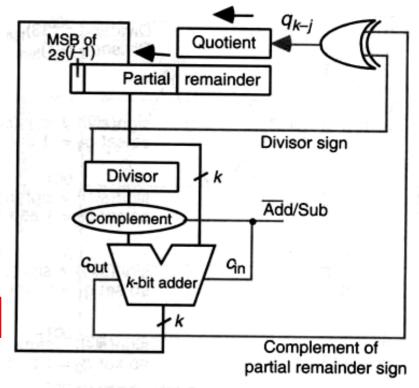
n(d)and subtract

n(*d*) traction

(5)_{ten} SD quotient

y Os

ct)_{ten}



Division by Constants

- Here, we will consider only division by odd integers, since division by even integer can be performed by dividing by a odd integer then shift the result.
- ✤ For example: K/20=K/(5*4)=(K/5)*(1/4)=(K/5)>>2.
- If only a limited number of constant divisor are of interest, their reciprocals can be precomputed with an appropriate precision and stored in a table.

Division by Constants (con't)

Faster constant division can be obtained for many small odd divisors by using that: for each odd integer *d* there exists an odd integer *m* such that d*m=2ⁿ-1.

$$\frac{1}{d} = \frac{m}{2^n - 1} = \frac{m}{2^n (1 - 2^{-n})}$$
$$= \frac{m}{2^n} (1 + 2^{-n})(1 + 2^{-2n})(1 + 2^{-4n})...$$

For example: d=5, m=3 and n=4. Thus for 24 bits of precision,

$$\frac{z}{5} = \frac{3z}{2^4 - 1} = \frac{3z}{16(1 - 2^{-4})}$$
$$= \frac{3z}{16}(1 + 2^{-4})(1 + 2^{-8})(1 + 2^{-16})\dots$$

Note that the next term $(1+2^{-32})$ would shift out the entire operand.

Division by Constants (con't)

Follow preceding example, to effect division by 5

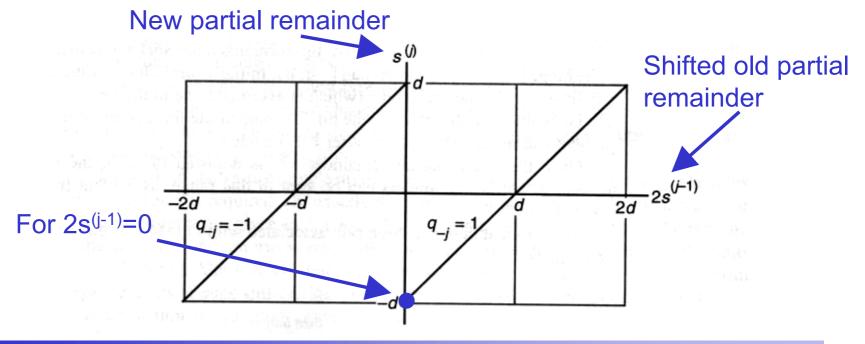
$q \leftarrow z + z$ shift-left 1	{3z computed}
$q \leftarrow q + q$ shift-right 4	$\{3z(1+2^{-4})\}$
$q \leftarrow q + q$ shift-right 8	$\{3z(1+2^{-4})(1+2^{-8})\}\$
$q \leftarrow q + q$ shift-right 16	$\{3z(1+2^{-4})(1+2^{-8})(1+2^{16})\}\$
$q \leftarrow q$ shift-right 4	${3z(1+2^{-4})(1+2^{-8})(1+2^{-16})/16}$

Radix-2 SRT Division: Review of nonrestoring division

Reconsider radix-2 nonrestoring division algorithm for fractional operands.

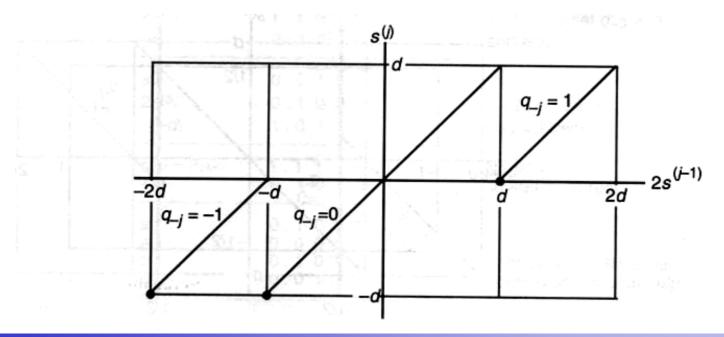
 $S^{(j)} = 2s^{(j-1)} - q_{-j}d$ with $s^{(0)} = z$ and $s^{(k)} = 2^k s$

Quotient is obtained with the digit set {-1,1} and is then converted to the standard digit set {0,1}.



Radix-2 SRT Division (con't)

- Quotient is obtained using digit set {-1,0,1}.
- ♦ Quotient "0" is selected when $q_{-i}=0$ for $-d \le 2s^{(i-1)} < d$
- Quotient "0" is simple shift, can speed up the division operation.
- Sut determined –d ≤ 2s^(j-1) < d need trial subtraction. Would consume more time than they save!</p>



Radix-2 SRT Division (con't)

- SRT: Sweeney, Roberson, and Tocher discovered SRT division about the same time.
- Normalized divisor and normalized partial dividend.
- Divisor and partial dividend is limited in the range [1/2,1) or (-1,-1/2].
- Easier comparison can be used due to normalized divisor.

Radix-2 SRT Division (con't)

- Because of normalized divisor. comparison become:
 - $2s^{(j-1)} > +\frac{1}{2} = (0.1)_{2's-compl} \text{ implies } 2s^{(j-1)} = (0.1u_{-2}u_{-3}...)_{2's-compl}$
 - $2s^{(j-1)} < -\frac{1}{2} = (1.1)_{2's-compl}$ implies $2s^{(j-1)} = (1.0u_{-2}u_{-3}...)_{2's-compl}$
- ♦ $2s^{(j-1)} > +\frac{1}{2}$ is given by $\overline{u}_0 u_{-1}$, and $2s^{(j-1)} < -\frac{1}{2}$ is given by $u_0 \overline{u}_{-1}$. Much easier!.

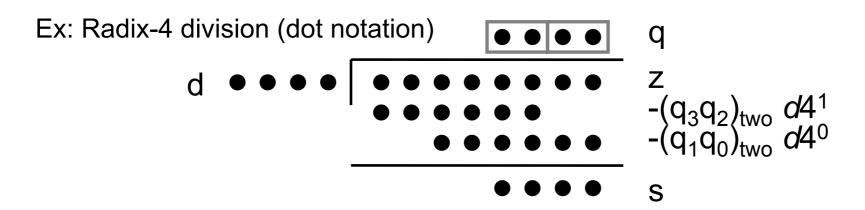
Example of Radix-2 SRT Division

z d –d	.0100 .1010 1.0110	0101	In [–1/2, 1/2), so OK In [1/2, 1), so OK
s(0) 2s(0) +(-d)	0.0100 0.1000 1.0110	0101 101	\geq 1/2, so set $q_{-1} = 1$ and subtract
s(1) 2s(1)	1.1110 1.1101	101 01	In [–1/2, 1/2), so set <i>q</i> _2 = 0
$s^{(2)} = 2s^{(1)}$ $2s^{(2)}$ +d	$\begin{array}{c} 1 . 1 1 0 1 \\ 1 . 1 0 1 0 \\ 0 . 1 0 1 0 \end{array}$	01 1	< -1/2, so set $q_{-3} = -1$ and add
s(3) 2s(3) +(d)	0.0100 0.1001 1.0110	1	\geq 1/2, so set $q_{-4} = 1$ and subtract
$s^{(4)} = 2s^{(3)}$ +d	$\begin{array}{c} 1 . 1 1 1 1 \\ 0 . 1 0 1 0 \end{array}$		Negative, so add to correct
s ⁽⁴⁾ s q q	0.1001 0.0000 0.1011 0.0110	1001	Uncorrected BSD quotient Convert and subtract <i>ulp</i>

台灣大學 吳安宇 教授

Basic of High-Radix Division

- *z Dividend* $z_{2k-1}z_{2k-2}...z_1z_0$
- $d \quad Divisor \qquad \qquad d_{k-1}d_{k-2}...d_1d_0$
- q Quotient $q_{k-1}q_{k-2}...q_1q_0$
- s Remainder[$z (d \times q)$] $s_{k-1}s_{k-2}...s_1s_0$



High-Radix Division example

Radix-4 integer division						
z 4 ⁴ d			1 2			1123
s(0) 4s(0) -q ₃ 4 ⁴ d	0	0 1 1	1 2 2	2 3 0	3 1 3	1 1 2 3 1 2 3 {q ₃ = 1}
s(1) 4s(1) -q ₂ 44d	00	0000	0 2 0	2 2 0	2 1 0	1 2 3 2 3 { <i>q</i> ₂ = 0}
s(2) 4s(2) -q144d	0	0 2 1	222	2 1 0	1 2 3	2 3 3 { $q_1 = 1$ }
s ⁽³⁾ 4s(3) –q ₀ 44d	1 0	1 0 3	000	0 3 1	3 3 2	3 { <i>q</i> ₀ = 2}
s(4) s q		1	0			1021 1012

Radix-10	fractional division
Z _{frac}	.7003
Ø _{frac}	.99
======= s(0) 10 <i>s</i> (0) –q_1 <i>d</i>	.7003 7.003 6.93 {q ₋₁ = 7}
s(1)	.073
10 <i>s</i> (1)	0.73
–q_2d	0.00 {q_2 = 0}
<i>S</i> (2)	.73
<i>S</i> frac	.0073
9frac	.70

台灣大學 吳安宇 教授

Features of High-Radix Division

- Dividing binary number in radix 2b reduces the cycles required by a factor of b, but each cycle is more difficult to implement:
 - The higher radix makes the guessing of the correct quotient digit more difficult.
 - The value to be subtracted are determined sequentially, one per cycle. Possible value to be subtracted become harder to generate.
- Other variations in division and divider please consult reference "Computer Arithmetic: algorithm and hardware designs / Behrooz Parhami, OXFORD university press" ch13~ch16.