矩阵变换器多电压矢量及 在交流调速中的应用

张深基¹,梁炳寅²,朱建林²

湖南工程学院 电气与信息工程系,湖南 湘潭 411102;
湘潭大学 信息工程学院,湖南 湘潭 411105)

摘要:在电动机直接转矩控制(DTC)系统中普遍存在低速运转时的转矩脉动,而在矩阵变换器(MC)供 电的 DTC 系统中,可根据 MC 的大小输入电压来合成长、短、零 3 种输出电压矢量,合理应用短零矢量而减少 长电压矢量的使用,可有效地抑制转矩脉动。提出了一种 5 电平输出的滞环比较器,根据其输出确定转矩误 差大小,选取不同的电压矢量。仿真结果表明,该方法能够有效地减小低速时的转矩脉动,增强系统的鲁棒 性,使低速性能得到较大的提高。

关键词:矩阵式变换器;交流调速;直接转矩控制;多电压矢量;空间矢量调制 中图分类号:TM77 **文献标识码**:A

Multiple Voltage Vectors of Matrix Converter and Its Applications in the AC Motor Speed Regulating System

ZHANG Shen-ji, LIANG Bing-yin, ZHU Jian-lin

(1. Department of Electrical and Information, Hu'nan Engineering Institute, Xiangtan 411102, Hu'nan, China; 2. College of Information Engineering, Xiangtan University, Xiangtan 411105, Hu'nan, China)

Abstract: The torque ripple exists universally in motor direct torque control (DTC) system at low-speed. The DTC system supplied by matrix converter (MC) can synthesizes long, short and zero three kinds of output voltage vectors according to MC input voltage value. The reasonably usage of short and zero vectors can decrease the use of voltage vectors and restrain the torque ripple efficiently. A type hysteresis comparator with five-level output was proposed, in the basis of which to determine the torque error and then select various voltage vectors. The simulation results indicate that this method can reduce torque ripple at low-speed, enhance the system robustness, and improve the low-speed performances largely.

Key words: matrix converter; AC motor speed regulating system; direct torque control; multiple voltage vectors; space vector modulation

1 引言

近年来,随着计算机技术和微电子技术的发展,出现了各种高性能的电力变换装置。矩阵变换器输出频率不受输入频率限制,没有直流环节,体积小,结构紧凑,输入和输出电流品质优良,输入功率因数可调,可实现能量双向流动,符合现代电气传动的理想标准,日益受到大家的重视^[1]。 在采用直接转矩控制方法的交流调速中,使用矩阵变换器驱动电动机,一方面能够实现较好的传动性能,另一方面也可以满足日益严格的电网电

作者简介:张深基(1947-),男,教授,Email,zsj527@163.com 16 能质量的要求[2],降低谐波污染。

但是,在过去的 20 年间,国内外对矩阵变换器的研究主要集中于变换器自身的一系列问题, 而对矩阵变换器应用于电动机直接转矩控制调速 系统的研究则相对较少^[3]。

本文研究了以矩阵变换器为功率变换器的交 流电动机直接转矩控制系统,详细阐述了矩阵变 换器输出的长、短、零3种电压矢量。通过对长、 短、零电压矢量的合理使用,减小转矩脉动,提高 系统性能。仿真结果表明这种方法对直接转矩控 制低速性能有明显的提高,是一种较好的控制方法。

2 矩阵变换器模型

矩阵变换器是一个交-交变换器,使用 m×n 双向开关矩阵,连接 m 相电压源和 n 相负载。最 常用的是 3×3 矩阵变换器,3×3 矩阵变换器在 理论上可以等效为一个电压源整流器(VSR) 和一个电压源逆变器(VSI)的虚拟连接,如图 1 所示。

图 1 矩阵变换器拓扑

Fig. 1 Topology of matrix converter

矩阵变换器有很宽的电压选择范围,但输入 相不能短路,而输出相不能开路。所以矩阵变换 器共有 27 种开关组合,可供使用的有 21 种。输 出电压空间矢量(u_o)和输入电流空间矢量(i_i)的 方向是确定的,称为"有效矢量"。后面 3 种开关 组合是每一输出相连接在相同的输入相,称为"零 矢量"。如图 2a 所示,输入相电流参考空间矢量 *i*_i的相位由检测到的电压矢量和设定的相移角 *φ**决定。任意时刻输入相电流参考空间矢量*i*_i 可由两个相邻的非零开关状态矢量和一个零矢量 合成得到,而开关状态矢量在每个采样周期内的 持续时间可根据空间矢量调制原理和正弦定理计 算得到^[4]。

同理,如图 2b 所示,任意时刻的输出电压空 间矢量 u。由两个相邻的非零电压开关状态矢量 和一个零矢量合成而成^[5]。

3 矩阵变换器供电的电动机直接转 矩控制系统

在直接转矩控制系统中,采用电机模型观测 出定子磁链,通过计算得到电磁转矩值。主要计 算公式如下:

$$\Psi_{s} = \int (u_{s} - i_{s} R_{s}) dt \qquad (1)$$

式中:Ψ。为定子磁链矢量;u,为定子电压矢量;i, 为定子电流矢量;R。为定子电阻。

在静止的 d-q 坐标系中,交流电机的电磁转 矩方程

$$T_{e} = \frac{3}{2} n_{p} (\Psi_{ds} i_{qs} - \Psi_{qs} i_{ds})$$
 (2)

式中:n_p为电机的极对数; Ψ_{ds}, Ψ_{rs}为 Ψ, 在 d 轴 和 q 轴的分量; i_{ds}, i_{gs}为 i, 在 d 轴和 q 轴的分量。 另一个有用的电磁转矩公式为

$$T_{e} = \frac{3}{2} n_{p} \frac{L_{m}}{\sigma L_{s} L_{r}} |\Psi_{s}| |\Psi_{r}| \sin\theta \qquad (3)$$

式中: L_{s} , L_{r} 为定子和转子电感; L_{m} 为互感; σ 为 漏感系数; Ψ_{s} 为定子磁链矢量; Ψ_{r} 为转子磁链矢 量; θ 为转矩角(是定子磁链矢量和转子磁链矢量 的夹角)。

得到定子磁链观测值 Ψ。和电磁转矩观测值 T。后,分别和它们的参考值 Ψ。和 T。相减得到 2 个误差值,再经过 2 个滞环比较器。根据滞 环比较器的输出和定子磁链的空间位置 S(n), 确定矩阵变换器的下一个开关状态,最终来控 制电机。

标准三相电压源逆变器(VSI)的输出只有 8 个电压矢量,其中 6 个为工作电压矢量($u_1 \sim u_6$) 和 2 个零电压矢量(u_0, u_7)。根据工作电压矢量 位置,坐标平面分为 6 个扇区 S(1)~S(6),如图 3 所示。通过合理的选择这 8 个电压矢量,可以 使定子磁链的幅值基本保持恒定。有关直接转矩 控制的具体内容详见文献[6]。

图 3 磁链控制原理图 Fig. 3 The theory chart of controlling flux

4 矩阵变换器的电压矢量

矩阵变换器的输出相可以与输入相任意连接,且输入为三相正弦电压,因此矩阵变换器的输 出电压空间矢量有很宽的电压选择范围。不同的 开关组合决定不同的输出电压空间矢量。在本文 中,根据相连的输入电压的大小来定义长、短、零 输出电压空间矢量。如图4所示输入线电压幅值 超出横向虚线部分称为大输入电压,横向虚线之 间的部分称为小输入电压。由大输入电压合成的 输出电压矢量称之为长电压矢量,由小输入电压 合成的输出电压矢量称之为短电压矢量。输出为 零的电压矢量称为零电压矢量。本文把矩阵变换 器应用于电机直接转矩控制中,因此结合直接 转矩控制来说明矩阵变换器的输入输出电压 矢量。

Fig. 4 The input line-to-neutral voltage

在矩阵变换器供电的电机直接转矩控制系统 中,设某时刻矩阵变换器需要合成的电压矢量为 图 3 中的 u_1 ,对照图 2 b 可知,其开关组合为 ±1±2±3,而矩阵变换器的输出电压矢量幅值由 输入电压决定。输入电压分为 6 个扇区,如图 4 所示。如果输入电压位于第 2 扇区,可得开关组 合+2,-3,+1 和-1 的输出电压矢量(u_k , u_a , u_{ab}),与 u_1 的方向可能相同。开关组合+2 的输 出电压矢量幅值为(2/3) u_k ,开关组合-3为 -(2/3) u_a ,开关组合 1 和-1 分别为(2/3) u_{ab} 和 -(2/3) u_{ab} 。

从图 4 可以看出,第 2 扇区中 u_{k} 和 u_{∞} 比 u_{ω} 幅值要大,即为大输入电压(在图 4 中用实线表示),而 u_{ω} 为小输入电压(在图 4 中用虚线表示)。 开关组合+2 和-3 的输出电压矢量即为长电压 矢量,1 和-1 的输出电压矢量为短电压矢量。开 关组合 0 的输出为零电压矢量。同理可以得出其 他扇区的大小输入电压和长、短、零电压矢量。 本文对传统的矩阵变换器供电的电机直接转 矩控制系统进行了改进^[3],提出一种新的5电平 转矩滞环比较器(见图5),然后修改了矩阵变换 器的控制开关表。

图 5 5 电平滞环比较器 Fig. 5 The five level torque hysterisis comparator

转矩滞环比较器的运行如下。

 1)当转矩误差 ET。的绝对值大于或者等于
2h 时,HT。值为±2,选用长电压矢量。HT。值
为+2 时减小转矩,HT。值为-2 时,增大转矩, 直到 ET。值为 0,HT。取值为 0 时为止。

2)当转矩误差 ET。的绝对值大于或者等于h 且小于 2h 时,HT。值为±1。短电压矢量可用 时,应用短电压矢量,HT。值为-1时增大转矩, HT。值为+1时减小转矩,直到 ET。为 0,HT。 取值为 0 时为止。短电压矢量不可用时,用零电 压矢量减小转矩。HT。值为+1时,减小到 ET。 为-h,HT。取值为-1时为止。HT。值为-1 时,转矩减小到 ET。为-2h,HT。取值为-2。

3)当转矩误差 ET。的绝对值小于h时,HT。 值为0,用零电压矢量,一直到 HT。=-1 时为 止。当短电压矢量可以用时,转矩增大到 HT。= 0 时为止。当短电压矢量不可以用时,继续使用 零电压矢量,直到 HT。=-2,然后使用长电压矢 量增大转矩。因此,理想状况下,该系统的转矩脉 动为传统系统的一半甚至更小。

5 仿真分析

本文选用三相两极交流电机,仿真参数为:定 子电阻 $R_s = 1.405 \Omega$,转子电阻 $R_r = 1.395 \Omega$,励磁 电感 L=172 mH,漏电感 $L_s = 5.89 \text{ mH}$;定子磁链 幅值给定为 0.65 Wb;系统采样周期为 40 μ s。给定 系统转速为低速(15 r/min)。

为了合理使用矩阵变换器的短电压和零电压 矢量,通过对以下3种方法的仿真对比,来说明合 理使用矩阵变换器长、短、零电压矢量的理想效 果。1)只用长电压矢量;2)用长电压和短电压矢

18

量;3)使用长、短、零电压矢量的方法。同时,对方 法3进行了动态仿真试验。

5.1 3种方法的低速传动性能对比

3种方法的磁链圆、转矩和转速波形如图 6~ 图 10 所示。其中序号 a,b,c 分别表示方法 1、方 法 2、方法 3 的仿真图形。

1)图 6 为定子磁链圆对比,可以看出:方法 3 的定子磁链幅值最小,其中方法 2 约为方法 1 的 0.8 倍,方法 3 约为方法 2 的 0.5 倍,且方法 3 的 圆形更平滑。

2)图 7 为电磁转矩波形,方法 3 的转矩脉动 有明显的减小,最小转矩脉动为 0.2 N •m 左右, 最大转矩脉动为 0.6 N •m 左右;方法 2 为方法 1 的 0.8 倍,方法 3 为方法 2 的 0.5 倍甚至更小。

3)图 8 是图 7 在时间长度为 400 μs 的局部放 大,显示了长、短、零电压矢量的使用情况。其中, ①表示在该时间段内应用 MC 长电压矢量,②表 示在该时间段内应用 MC 短电压矢量,③表示在 该时间段内应用 MC 零电压矢量。

4)图 9 为电机转速波形,方法 3 的速度波动 范围最小,约为方法 1 的 0.5 倍。

仿真结果表明:合理使用矩阵变换器短电压 和零电压矢量使转矩、定子磁链和转速脉动都限 制在很小的范围内。

5.2 方法3的动态仿真试验

1) 加减速仿真试验。初始给定转速为15

电气传动

Fig. 8 The partial enlarged wave Fi

图 9 电机转速 Fig. 9 The speed of motor

r/min,在 0.25 s 时改为 20 r/min,0.525 s 时又恢 复为 15 r/min。仿真结果如图 10 所示。图 10 显 示了电磁转矩、转速和定子电流波形,且可以看 出:转矩可瞬时恢复且速度响应快。

2)负载转矩变化仿真实验。初始负载转矩为 4 N·m,0.25 s 时为一4 N·m。仿真结果如图 11 所示。图 11 显示了负载变换时的转矩、转速和定 子电流波形。可以看出转矩响应快,且速度基本 维持恒定。

万方数据

始符<R和1字节结束符。当下位机 ADuc814 收到命令后就产生中断,执行中断服务程序。PC 机串口每收到100字节数据就触发 MSComm的 OnComm事件,在OnComm事件子程序中,从接 收缓冲区中提取2字节开始命令后的12字节实 时数据并进行求和校验,如接收正确就将接收的 数据存储到相应文件中并刷新屏幕显示,否则提 示"接收错误!"并要求重发。具体帧格式为:

2 字节帧	12 字节	2 字节	1 字节
开始 <r< th=""><th>故障数据</th><th>校验码</th><th>结束符\$</th></r<>	故障数据	校验码	结束符\$

4 系统的运行与测试结果

在系统投入运行前,必须对装置进行标定,即 模拟不同工况时的发电机转子电压和电流值,并 计算出理论转子温度,与实际显示的温度进行比 较,通过调整有关参数使系统温度偏差最小。最 后将调试的相关参数固化到 FLASHI中。

在模拟试验装置上对标定后的系统进行测试,结果表明,整个装置运行良好,达到了设计 指标,励磁电压的测量精度为±0.5%,测量范围 为 0~800 V;励磁电流的测量精度为±0.8%,测 量范围为 0~2 000 A;温度的测量精度为±2%, 测量范围为 0~150 ℃。

本系统充分利用了 ADuc814 芯片的内置功 能模块,减少了外围电路,降低了成本,提高了产 品的可靠性。该系统可用于同步发电机转子实时 监控、故障记录、故障分析等方面。

参考文献

- 1 李阳. ADuc8XX 系列单片机原理与应用技术[M]. 北京:北京 航空航天大学出版社,2002.
- 2 邱建东,胡永红.铁路货车零部件通用智能检测系统设计[J]. 计算机测量与控制,2005,13(6):522-523,526.
- 3 钱雪忠. 新编 Visual Basic 程序设计实用教程[M]. 北京:机械 工业出版社,2004.
- 4 范逸之,陈立元. Visual Basic 与 RS 232 串行通信控制[M]. 北京:中国青年出版社,2002.
- 5 王永骧,曾明,徐桂英,等.同步发电机励磁装置计算机辅助测 试系统[J].电气传动,2001,31(4):60-62.

收稿日期:2007-05-15 修改稿日期:2008-01-11

(上接第19页)

仿真结果表明:合理使用长、短、零电压矢量 的方法不仅转矩和定子磁链的脉动小,且保留了 直接转矩控制原有的高动、静态响应性能,较大地 提高了低速传动性能。

6 结论

本文提出了矩阵变换器的大小输入电压和 长、短、零输出电压矢量,即多电压矢量,且把其应 用在电机直接转矩控制中,引出了一种新的矩阵 变换器供电的电机直接转矩控制方法。此控制方 法实现简单,根据转矩和磁链滞环比较器的输出, 选择电压矢量控制开关状态。为了合理使用短电 压和零电压矢量,该控制方法还提出了5电平滞环 比较器。仿真试验表明系统的动态响应速度快,转 矩、磁链和电流的脉动很小,大大提高了直接转矩 控制系统的低速性能;而且还发挥矩阵变换器的优 势,使输入功率因数可调。理论分析和仿真结果都 表明了该方法是一种较为理想的控制方法。 nology Review [J]. IEEE Trans. on Industrial Electronics, 2002, 49(2): 276-288.

- 2 Sunter S, Clare J C. A True Four Quadrant Matrix Converter Induction Motor Drive with Servo Performance [C]. IEEE Proc of PESC. Baveno, Italy: IEEE, 1996; 146-151.
- 3 Casadei D, Serra G, Tani A. The Use of Matrix Converters in Direct Torque Control of Induction Machines [J]. IEEE Trans. on IE, 2001, 48(6): 1057-1064.
- 4 Casadei D, Grandi G, Serra G, et al. Space Vector Control of Matrix Converter with Unity Input Power Factor and Sinusoidal Input/Output Waveforms [C]. in Proc. EPE, Brighton, U. K, 1993, 7:170-175.
- 5 Huber L, Borojevic D. Space Vector Modulate Three Phase to Three Phase Matrix Converter with Input Power Factor Correction[J]. IEEE Trans. on Ind. Appl, 1995, 31(6), 1234-1246.
- 6 李夙.异步电机直接转矩控制[M].北京:机械工业出版社, 2001.

参考文献

1 Patrick W, Jose R, Jon C, et al. Matrix Converters: a Tech-