
The Nano-X Window System
Architecture
2000/03/05 Copyright (c) 1999, 2000 Greg Haerr <greg@censoft.com> All Rights
Reserved.
Doc v1.03

This is my first cut at getting the architecture and implementation spilled out. Please
let me know if there's more detail needed in some areas, or whether you're confused
by my explanations. This document is for educational and porting purposes, so please
read on.

Contents

1. Architecture
 1.1 Layered Design
 1.2 Device Drivers
 1.2.1 Screen Driver
 1.2.2 Mouse Driver
 1.2.3 Keyboard Driver
 1.3 MicroGUI - Device Independent Graphics Engine
 1.4 Applications Programmer Interfaces
 1.4.1 Microwindows API
 1.4.2 Nano-X API

2. Device-Independent Engine Features
 2.1 Graphics Engine Features and Implementation
 2.1.1 Regions
 2.1.2 Clipping
 2.1.3 Line Drawing
 2.1.4 Rectangles, Circles, Ellipses
 2.1.5 Polygons
 2.1.6 Area Fills
 2.1.7 Fonts
 2.1.8 Text Drawing
 2.1.9 Color model and palettes
 2.1.10 Image Drawing
 2.1.11 Blitting

3. Microwindows API
 3.1 Message-passing architecture
 3.2 Window creation and destruction
 3.3 Window showing, hiding and moving
 3.4 Window painting
 3.4.1 Client and screen coordinates
 3.4.2 Device contexts
 3.4.3 Graphics drawing API
 3.5 Utility functions

mailto:greg@censoft.com

 3.5.1 Setting window focus
 3.5.2 Mouse capture
 3.5.3 Rectangle, Region and Clipping management

4. Nano-X API
 4.1 Client/Server model
 4.2 Events
 4.3 Window creation and destruction
 4.4 Window showing, hiding and moving
 4.5 Drawing to a window
 4.5.1 Graphics contexts
 4.5.2 Graphics drawing API
 4.6 Utility functions

1. Architecture

1.1 Layered Design

Microwindows is essentially a layered design that allows different layers to be used or
rewritten to suite the needs of the implementation. At the lowest level, screen,
mouse/touchpad and keyboard drivers provide access to the actual display and other
user-input hardware. At the mid level, a portable graphics engine is implemented,
providing support for line draws, area fills, polygons, clipping and color models. At
the upper level, various API's are implemented providing access to the graphics
applications programmer. These APIs may or may not provide desktop and/or
window look and feel. Currently, Microwindows supports the Windows
Win32/WinCE GDI and Nano-X APIs. These APIs provide close compatibility with
the Win32 and X Window systems, allowing programs to be ported from other
systems easily.

1.2 Device Drivers

The device driver interfaces are defined in device.h. A given implementation of
Microwindows will link at least one screen, mouse and keyboard driver into the
system. The mid level routines in the device-independent graphics engine core then
call the device driver directly to perform the hardware-specific operations. This setup
allows varying hardware devices to be added to the Microwindows system without
affecting the way the entire system works.

1.2.1 Screen Driver

There are currently screen drivers written for Linux 2.2.x framebuffer systems, as
well as 16-bit ELKS and MSDOS drivers for real-mode VGA cards. The bare
hardware/pc bios drivers (scr_bios.c, vgaplan4.c, mempl4.c, scr_herc.c) can be
configured to initialize the VGA hardware directly, or utilize the PC BIOS to begin
and end graphics mode. The framebuffer drivers (scr_fb.c, fb.c, fblin?.c) have
routines for 1, 2, 4 and 8bpp palletized displays, as well as 8, 15, 16, 24, and 32 bpp
truecolor displays. The framebuffer system works in Linux by opening /dev/fb0 (or
getenv("FRAMEBUFFER")) and mmap()ing the display memory into a linear buffer

in memory. Some display modes, like the VGA 4 planes mode, require that OUT
instructions be issued by the screen driver, while packed pixel drivers typically can
get away with just reading and writing the framebuffer only. All the graphics mode
initialization and deinitialization is handled by the Linux kernel. Getting this set up
can be a real pain.

The screen driver is the most complex driver in the system, but was designed so that it
can be extremely easy to port new hardware to Microwindows. For this reason, there
are but a few entry points that must actually talk to the hardware, while other routines
are provided that allow just the small set of core routines to be used, if desired. For
example, a screen driver must implement ReadPixel, DrawPixel, DrawHorzLine, and
DrawVertLine. These routines read and write a pixel from display memory, as well
as draw a horizontal and vertical line. Clipping is handled at the device-independent
layer. Currently, all mouse movement, text drawing, and bitmap drawing run on top
of these low level functions. In the future, entry points will be provided for fast text
and bitmap drawing capabilities. If the display is palletized, a SetPalette routine must
be included, unless a static palette that matches the system palette is linked into the
system. The screen driver, on initialization, returns values telling the system the x,y
size of the screen, along with the color model supported.

Two font models are currently provided, to be linked in at your desire. The
proportional font model has in-core font tables built from .bdf and other font
conversion utilities provided. The rom-based font uses the PC BIOS to find the
character generator table address and has routines to draw that fixed-pitch font format.

The screen driver can choose to implement bitblitting, by ORing in PSF_HAVEBLIT
into the returned flags field. When present, bit blitting allows Microwindows to
perform off-screen drawing. Microwindows allows any graphics operation that can
be performed on a physical screen to be performed off-screen, and then copied (bit-
blitted) to the physical screen. Implementing a blitting screen driver can be fairly
complex. The first consideration in implementing a blitting driver is whether the low-
level display hardware can be passed a hardware address for a framebuffer. If so,
then the same routines that draw to the physical screen can be used to draw to off-
screen buffers. This is the method used for the linear framebuffer drivers provided for
Linux packed-pixel displays. The system replaces the mmap()'d physical framebuffer
address with a malloc()'d memory address and calls the original screen driver entry
point. In the case where the system doesn't use an actual physical memory address,
like when running on top of X or MS Windows, then two sets of routines must be
written; one to write the the underlying graphics system hardware, and another to
write to memory addresses. In addition, the blit entry point must then know how to
copy both ways between the two formats. In fact, all four operations, screen-to-
memory, memory-to-screen, memory-to-memory, and screen-to-screen are supported
by Microwindows and may need to be performed. And of course the bit blitting
routine must be _fast_. See the files fblin8.c and mempl4.c for examples of
supporting both types of display hardware.

If writing your first screen driver, I would recommend you start with the PC BIOS
real mode driver, scr_bios.c, or take a look at the framebuffer driver, scr_fb.c, which
is essentially a wrapper around all the fblin?.c routines to read and write various

framebuffer formats. Don't set the PSF_HAVEBLIT flag at first, and you won't have
to write a bitblit routine from the start.

Note that currently, all SCREENDEVICE function pointers must be filled in to at
least a void function. For speed reasons, the system always assumes that the function
pointers are valid. Thus, even if not implementing bitblit, a do-nothing bit-blit
procedure must be provided.

1.2.2 Mouse Driver

There are three mouse drivers currently included in Microwindows. A GPM driver
for Linux, mou_gpm.c, as well as a serial port mouse driver for Linux and ELKS,
mou_ser.c. For MSDOS, an int33 driver mou_dos.c is provided. The provided
mouse drivers decode MS, PC and Logitech mice formats. A mouse driver's basic
function is to decode the mouse data and return either relative or absolute data for the
mouse position and buttons.

In addition, Brad LaRonde has written a touch panel driver mou_tp.c, which
masquerades as a mouse driver. It returns the value of x, y value of the pen on the
display surface, and can be used like a mouse.

Under Linux, the main loop of Microwindows is a select() statement, with file
descriptors for the mouse and keyboard driver always passed in. If the system that
Microwindows is running on doesn't support select() or doesn't pass mouse data
through a file descriptor, a Poll() entry point is provided.

1.2.3 Keyboard Driver

There are two keyboard drivers provided. The first, kbd_tty.c, is used for Linux and
ELKS systems where the keyboard is opened and read as through a file
descriptor. The second, kbd_bios.c, read the PC BIOS for keystrokes and is used in
MSDOS real mode. The keyboard driver currently returns 8-bit data from the
keyboard, but doesn't decode multi-character function key codes. This functionality
will need to be added soon, by reading termcap files or the like.

1.3 MicroGUI - Device Independent Graphics Engine

 The core graphics functionality of Microwindows resides in the device independent
graphics engine, which calls the screen, mouse and keyboard drivers to interface with
the hardware. User applications programs never call the core graphics engine routines
directly, but rather through the programmer API's, discussed in the next sections. The
core engine routines are separated from the applications API's is for a variety of
reasons. The core routines will always reside on the server in a client/server
environment. Also, the core routines use internal text font and bitmap formats that are
designed for speed and may or may not be the same as the structures used in standard
API's. In addition, the core routines always use pointers, never ID's, and can then be
used together to implement more complex functions without always converting
handles, etc.

In Microwindows, the core routines all begin as GdXXX() functions, and are
concerned with graphics output, not window management. In addition, all clipping
and color conversion is handled within this layer. The following files comprise the
core modules of Microwindows:

 devdraw.c Core graphics routines for line, circle, polygon draw and fill, text
and bitmap drawing, color conversion

 devclip.c Core clipping routines. (devclip2.c is the new y-x-banding
algorithm, devclip1.c an older method)

 devrgn.c New dynamically allocated routines for intersect/union/subtract/xor
region creation.

 devmouse.c Core routines for keeping the mouse pointer updated or clipped
from the screen.

 devkbd.c Core keyboard handling routines.

 devpalX.c Linked in static palettes for 1, 2, 4 and 8bpp palletized systems.

Section 2 following discusses the MicroGUI graphics engine routines in detail.

1.4 Applications Programmer Interfaces

Microwindows currently supports two different application programming
interfaces. This set of routines handles client/server activity, window manager
activities like drawing title bars, close boxes, etc, as well as, of course, handling the
programmer's requests for graphics output. Both the API's run on top of the core
graphics engine routines and device drivers.

The basic model of any API on top of Microwindows is to hang in initialize the screen,
keyboard and mouse drivers, then hang in a select() loop waiting for an event. When
an event occurs, if it's a system event like keyboard or mouse activity, then this
information is passed to the user program converted to an expose event, paint message,
etc. If it's a user requesting a graphics operation, then the parameters are decoded and
passed to the appropriate GdXXX engine routine. Note that the concept of a window
versus raw graphics operations are handled at this API level. That is, the API defines
the concepts of what a window is, what the coordinate systems are, etc, and then the
coordinates are all converted to "screen coordinates" and passed to the core GdXXX
engine routines to do the real work. This level also defines graphics or display
contexts and passes that information, including clipping information, to the core
engine routines.

Currently, the Microwindows API code is in mwin/win*.c, while the Nano-X API
code is in nanox/srv*.c.

1.4.1 Microwindows API

The Microwindows API tries to be compliant with the Microsoft Win32 and WinCE
GDI standard. Currently, there is support for most of the graphics drawing and
clipping routines, as well as automatic window title bar drawing and dragging
windows for movement. The Microwindows API is message-based, and allows
programs to be written without regard to the eventual window management policies
implemented by the system. The Microwindows API is not currently client/server,
and will be discussed in more detail in section 4.

1.4.2 Nano-X API

The Nano-X API is modeled after the mini-x server written initially by David Bell,
which was a reimplementation of X on the MINIX operating system. It loosely
follows the X Window System Xlib API, but the names all being with GrXXX()
rather than X...(). Currently, the Nano-X API is client/server, but does not have any
provisions for automatic window dressings, title bars, or user window moves. There
are several groups writing widget sets currently, which will provide such
things. Unfortunately, the user programs must also then write only to a specific
widget set API, rather than using the Nano-X API directly, which means that only the
functionality provided by the widget set will be upwardly available to the applications
programmer. (Although this could be considerable, in the case that, say Gdk was
ported.)

2. Device-Independent Engine Features

This section discusses in the capabilities and implementation of Microwindows' core
graphics engine in detail. It's purpose is both educational and to allow extending an
API by understanding how the engine works.

 2.1 Graphics Engine Features and Implementation

These routines concern themselves with drawing operations to off-screen or screen
surfaces. Each routine starts with Gd... and is passed a pointer to the
SCREENDEVICE structure (PSD) as it's first parameter. The PSD parameter
specifies the low level display details, like the x, y size of the device and the color
model used by the hardware, for example. In addition, the actual routines to perform
drawing are function pointers in this structure. All screen coordinates are of type
COORD, and specified in device coordinates, that is, offsets from the upper left
corner of the screen.

Colors are always specified as an RGB COLORVAL value into the graphics
engine. They are then possibly converted to palette indices and sent to the display
hardware as PIXELVAL values. In the case of 32bpp truecolor displays, no
conversion is required. The color model will be discussed in detail below.

 2.1.1 Regions

Regions are used to describe arbitrary sets of pixels on the screen. A simple, square
region of pixels can be described by a single rectangle. More complex sets of pixels
require more complex data structures. In Microwindows, regions are described by an

array of non-overlapping rectangles. Currently, there are two different
implementations of regions in Microwindows, the original design for systems with
limited memory, and a new design with dynamically allocated sets of rectangles. The
original design used a single static array of MWCLIPRECTs to describe complex
regions. Any point within any rectangle in the array was considered to be in the
region. The array wasn't sorted in any particular order, but was always guaranteed to
contain non-overlapping rectangles. Another global variable, clipcount, specified the
number of rectangles in the array. This original design had no engine entry points for
region management, the entire array was passed to the clipping functions, described
below.

In the new design set with #define DYNAMICREGIONS 1, any number of regions
can be created, as the regions (MWCLIPREGION *) are stored as dynamically
allocated arrays of rectangles. In this implementation, the non-overlapping rectangles
are always kept in "y-x" sorted bands, such that each band's y height is the same for
all rectangles in the band. This means that only the x position and width of the
rectangles in each band varied. Because of this, it is easier to create a set of functions
for combining regions, since effectively only a single dimension had to be compared
for each region operation. The new region handling routines allow for creating and
destroying regions, as well as combining rectangles and regions with regions using
Intersection, Union, Subtraction, and Exclusive Or. This model allows regions to be
implemented apart from the clipping routines, unlike the first version. Following are
the new region routines:

 GdAllocRegion - Create a region
 GdAllocRectRegion - Create a rectangular region from left,top,right,bottom
 GdAllocRectRegionIndirect - Create a rectanglular region from a MWRECT
 GdSetRectRegion - Set a region to a single rectangle
 GdDestroyRegion - Destroy a region
 GdCopyRegion - Copy a region
 GdUnionRectWithRegion - Union a rectangle with a region
 GdIntersectRegion - Create a region from the intersection of two regions
 GdSubtractRegion - Create a region from the difference of two regions
 GdUnionRegion - Create a region from the union of two regions
 GdXorRegion - Create a region from the XOR of two regions

 2.1.2 Clipping

Clipping in Microwindows is closely tied to the region management code. At any
point in time, the graphics engine has a single clipping region, that is a set of
rectangles, defined for any graphics operation. A point is drawn if it is "inside" any of
the current set of clip rectangles. Two slightly modified versions of the clipping
algorithm are supplied, devclip1.c for the original, static rectangle array, and
devclip2.c for the newer dynamically allocated array. A single entry point
GdSetClipRects, or GdSetClipRegion for dynamic regions, takes the passed region
and specifies it's use for all subsequent graphics operations. All the drawing routines
then use the two additional routines to determine whether or not to
draw. GdClipPoint takes an x,y point in screen coordinates and returns TRUE if the
point can be drawn, that is, the point is within one of the region

rectangles. GdClipArea takes an upper left and lower right point, and returns one of
the following: CLIP_VISIBLE, if the specified area is completely within the region,
CLIP_INVISIBLE, if the area is completely not in the region, which means that no
drawing should be performed, or CLIP_PARTIAL, if a part but not the whole area is
within the region. A typical graphics primitive will call the screen driver with
unmodified passed inputs if CLIP_VISIBLE is returned, or return if
CLIP_INIVISIBLE is returned. In the CLIP_PARTIAL case, the primitive must
break up the original request into areas that are within the clip region before calling
the screen driver. This slows down the operation considerably.

Because the clipping code is called constantly before drawing operations,
Microwindows keeps a global cache rectangle of the last rectangle checked with
GdClipArea, for speed and also to allow the mid level to quickly calculate how partial
drawing lengths.

 2.1.3 Line Drawing

Line drawing is the simplest of graphics operations. Microwindows supports GdPoint
to draw a point, and GdLine to draw a horizontal, vertical or diagonal (using
Bresenham algorithm) line. Just before any call to the screen driver, a call to
GdCheckCursor assures that the software cursor is removed prior to
drawing. GdFixCursor restores the cursor if previously visible.

There is a tricky part to line drawing that had to be added during the support for
multiple API's. This has to do with whether or not the last point in specified line
segment is drawn or not. There are two schools of thought on this, and to make it
short, Microwindows supports both of them. The last parameter to GdLine specifies
whether or not to draw the last point. The Microwindows API doesn't draw the last
point, but the Nano-X API does.

Most drawing functions, including line drawing draw using the "current" foreground
color, specified using GdSetForeground. In addition a drawing mode, currently either
MODE_SET or MODE_XOR can be specified using GdSetMode.

 2.1.4 Rectangles, Circles, Ellipses

Rectangles, circles and ellipses are drawn using the GdRect and GdEllipse
routines. A circle is an ellipse with the same x and y radius. As with lines, rectangles
and ellipses are drawn using the current foreground color and mode.

 2.1.5 Polygons

Microwindows supports polygon drawing by specifying an array of x, y points. The
points are then connected using the GdLine function. The current foreground color,
drawing mode, and clip region is used during output.

 2.1.6 Area Fills

Microwindows supports filled rectangular areas using the GdFillRect function. The
rectangle's outline and contents are filled using the current foreground color. Filled
circles and ellipses are performed with GdFillEllipse, and polygon fills with
GdFillPoly. Area filling is implemented through successive calls to the
DrawHorzLine in the screen driver, and are much faster if fully not clipped.

 2.1.7 Fonts

Both fixed pitch and proportional fonts are supported in Microwindows. Because of
potentially large differences in display hardware, the actual font format is known only
to the screen driver, although a set of standard functions are supplied for dealing with
converted .bdf fonts and Microsoft Windows fonts, if you have a license. The engine
function GdSetFont specifies a font number that is passed to the driver and used to
index a static array of linked in fonts. Screen driver entry points GetTextSize return
the font height and width for a passed string, and GetTextBits returns an individual
character bitmap. The engine layer uses these values to calculate a clipping region for
text drawing, as well as to draw the character as a monochrome bitmap.

The screen drivers currently supplied implement both fixed pitch PC ROM based
fonts, as well as a proportional font format that is linked into the screen driver. A few
conversion programs allow conversion of fonts from different formats to the driver
format. Bdftobogl converts X Window System .bdf files to Microwindows
format. Convfnt32 converts raster and truetype Microsoft Windows fonts, if you have
a license, to Microwindows format. Convrom converts PC ROM bios fonts.

A number of free fonts are supplied with the system, a heavier proportional 14x16
system font, and a sans-serif 11x13 font for title bar and edit box displays. Any
number of fonts can be linked into the system, and it's fairly easy to dynamically load
fonts if one writes the routines for it.

 2.1.8 Text Drawing

Text output is performed by first selecting the desired font with GdSetFont, and then
calling the GdText function. Full text clipping is performed, although currently there
is no "fast" text output entry point in the screen driver, so each character bitmap is
grabbed using the GetTextBits entrypoint and then drawn using Drawpixel. While
this will have to remain the same for partially clipped text, a screen driver entry point
to draw fast text will probably be required shortly.

Text is drawn using the current foreground color. The background is drawn if the
current "use background" mode set via GdUseBackground is TRUE. In this case the
background is drawn using the current background color set via
GdSetBackground. The GdText function also takes a bottomAlign parameter that
specifies whether the text is to be bottom or top aligned, to help with differing API's.

 2.1.9 Color model and palettes

The Microwindows graphics engine requires all colors to be specified as either 24-bit
RGB color values, or in rare cases, as palette indices for speed. The palette index
method will only work on systems that have hardware palettes, so it's not

recommended. All of the upper-level color parameters are specified to the engine
routines using a COLORVAL value, which is a long containing the desired RGB
color, created using the RGB() macro. The engine then converts the COLORVAL to
a PIXELVAL value, which is normally a long also, but on some smaller systems can
be compiled as an unsigned char. The PIXELVAL value is the actual value passed to
any screen driver entry point requiring a color. So the mid level routines all work
with RGB COLORVALs, while the device driver routines all work with
PIXELVALs. The graphics engine converts these values using two routines,
GdFindColor and GdFindNearestColor, described below.

GdFindColor takes a hardware independent RGB value and converts it to a hardware
dependent PIXELVAL pixel value. In the case of 32bpp display drivers, no
conversion is required. Otherwise for truecolor systems, Microwindows converts the
RGB value to a 5/5/5 15-bit or 5/6/5 16 bit truecolor value. For 8bpp truecolor
displays, the RGB value is converted to 3/3/2. For palletized displays, the
GdFindNearestColor function is called to convert the RGB color to the nearest palette
index in the current system palette. GdFindNearestColor uses a weighted distance-
cubed method to find the palette value nearest to the requested color, and returns
it. Standard palettes for 1, 2, 4 and 8bpp are included in the files devpal1, devpal2,
devpal4 and devpal8.c. These palettes associate an RGB value with an index, but
may be overwritten.

The GdSetPalette function determines whether there are any free entries in the system
palette (discussed shortly) and if so, adds entries to the system palette, and calls the
screen driver SetPalette entry point to set the hardware palette. There is a single
global variable, gr_firstuserpalentry, that contains the index of the next available
system palette entry. Initially, this is set to 24. Thus, systems with less than 24 total
palette entries will never have an available palette entry to remap. On systems that do,
like 256 color systems, then images requiring more color entries keep calling
GdSetPalette until the system palette is full. To reset marker, the function
GdResetPalette is called. This allows upper level API's to distinguish between
different images and force the system palette to be rewritten.

 2.1.10 Image Drawing

Microwindows supports two styles of images, monochrome and
palettized. Monochrome images are specified with an IMAGEBITS structure, which
is an array of words with 1 bits specifying the foreground color and 0 bits the
background. The IMAGEBITS bits are short-word padded to the width of the
bitmap. The GdBitmap routine draws monochrome bitmaps, similar to GdText, by
drawing all the 1 bits in the foreground color, and the 0 bits in the background color if
the "use background" set by GdUseBackground is TRUE.

Color bitmaps are specified using a 1, 4 or 8bpp image palette, and an array of indices
into this palette, all stuffed into an IMAGEHDR structure, and drawn via
GdDrawImage. First, the system creates a conversion palette by calling
GdMakePaletteConversionTable, which converts the images' palette entries into
system indices. At the same time, the system attempts to increase the system palette
if necessary by calling the GdSetPalette function described above. At the end of this
operation, the image has a converted palette which necessarily corresponds to the

system palette. In the case of truecolor hardware, the image's palette entries are
converted to hardware truecolor pixel values, and output directly.

After converting the image color entries the GdDrawImage determines the whether
the image is clipped, and outputs the image, pixel by pixel. In the future, a blitting
routine could be used for faster image drawing.

 2.1.11 Blitting

Blitting functionality is required in the screen driver for offscreen drawing capability,
discussed earlier in the screen drivers section. The engine function GdBlit allows
upper level APIs to implement copy operations from offscreen memory to the display,
or vice versa. The blit format is driver specific, and generally only works for memory
images created by the screen driver during runtime. The upper level APIs implement
this by allocating a new SCREENDRIVER structure, copying an existing
SCREENDRIVER structure into it, replacing the address field with a malloc()'d value,
and setting the PSF_MEMORY bit, which indicates to the display driver that this is
now an offscreen surface. Any subsequent calls to the engine routines then draw onto
this surface. When it is desired to copy the offscreen surface back to the physical
display, the GdBlit routine is called. Currently, only SRCCOPY operations are
performed, but future plans will add blitting opcodes.

The function GdCalcMemGCAlloc calculates the byte size and line length (pitch) of
an offscreen memory area given the passed bpp and planes parameters. This is before
calling the screen driver to allocate an offscreen screen device.

3. Microwindows API

 3.1 Message-passing architecture

The fundamental communications mechanism in the Microwindows API is the
message. A message consists of a well-known message number, and two parameters,
known as wParam and lParam. Messages are stored in an application's message-
queue, and retrieved via the GetMessage function. The application blocks while
waiting for a message. There are messages that correspond to hardware events, like
WM_CHAR for keyboard input or WM_LBUTTONDOWN for mouse button
down. In addtiion, events signaling window creation and destruction WM_CREATE
and WM_DESTROY are sent. In most cases, a message is associated with a window,
identified as an HWND. After retrieving the message, the application sends the
message to the associated window's handling procedure using
DispatchMessage. When a window class is created, it's associated message handling
procedure is specified, so the system knows where to send the message.

The message-passing architecture allows the core API to manage many system
functions by sending messages on all sorts of events, like window creation, painting
needed, moving, etc. By default, the associated window handling function gets a
"first pass" at the message, and then calls the DefWindowProc function, which
handles default actions for all the messages. In this way, all windows can behave the

same way when dragged, etc, unless specifically overridden by the user. Major
window management policies can be redefined by merely re-implementing
DefWindowProc, rather than making changes throughout the system.

The following functions deal with messages directly:

 SendMessage Send a message directly to a window
 PostMessage Queue a message on the application's message queue for
later dispatch
 PostQuitMessage Queue a WM_QUIT message telling the application to
terminate when read
 GetMessage Block until a message is queued for this application
 TranslateMessage Translate up/down keystrokes to WM_CHAR messages
 DispatchMessage Send a messages to it's associated window procedure

A Microwindows application's entry point is the function WinMain, rather than main.

 3.2 Window creation and destruction

The basic unit of screen organization in Microwindows API is the window. Windows
describe an area of the screen to draw onto, as well as an associate "window
procedure" for handling messages destined for this window. Applications
programmers can create windows from pre-defined classes, like buttons, edit boxes,
and the like, or define their own window classes. In both cases, the method of
creating and communicating with the windows remains exactly the same. The
following functions deal with window registration, creation, and destruction:

 RegisterClass Define a new window class name and associated window
procedure
 UnRegisterClass Undefine a window class
 CreateWindowEx Create an instance of a window of a certain class
 DestroyWindow Destroy a window instance
 GetWindowLong Return information about a window
 SetWindowLong Set information about a window
 GetWindowWord Return user information about a window
 SetWindowWord Set user information about a window
 GetClassLong Return information about a window class
 GetWindowText Get a window's title or text
 SetWindowText Set a window's title or text

The WM_CREATE message is just after window creation, before returning from
CreateWindowEx. The WM_DESTROY message is sent just before destroying a
window with DestroyWindow.

When a window is registered, extra bytes can be allocated to the window structure
when created. The GetWindowLong, GetWindowWord, SetWindowLong and
SetWindowWord manipulate these bytes. In addition, a fixed number of extra bytes
per window class can be allocated on registration and retrieved via the GetClassLong
function.

 3.3 Window showing, hiding and moving

The ShowWindow function allows windows to be made visible or hidden. In addition,
this can be specified during the creation of the window, through
CreateWindowEx. MoveWindow is called to change a window's position or size. A
WM_MOVE message is sent if the window's position changes, and WM_SIZE is sent
on size changes.

 3.4 Window painting

The Microwindows system determines when a window needs to be initially painted or
repainted as the result of other window movement, and a WM_PAINT message is
sent to the associated window procedure. At this point, it's up the the application to
use the graphics primitives available to paint the window, described
below. Microwindows keeps track of a windows' "update" region, and sends
WM_PAINT whenever the region is non-empty. For speed reasons, the WM_PAINT
message is only sent when there are no other messages in the application's
queue. This allows the application to repaint in one, rather than possibly many,
steps. To force a repaint rather than waiting, the UpdateWindow function can be
called. The InvalidateRect function specifies a rectangle to add to the update region,
causing a subsequent WM_PAINT.

The window title is automatically painted and is set with the SetWindowText function,
and retrieved with the GetWindowText function.

 3.4.1 Client and screen coordinates

Every window is drawn on the screen using the device global screen coordinate
system for absolute reference to any pixel on the screen. The Microwindows API
allows applications programmers to be concerned with only the relative coordinates
from the upper left portion of their window, not including the title bar and 3d
effects. This coordinate system is called "client coordinates." As will be explained
below, the Microwindows programmer has the option of getting a device context in
either screen or client coordinates. If device coordinates are specified, then the
coordinate system is device-based and includes the title area and 3d areas of the
window. Otherwise, the drawable region is clipped to just that area that is reserved
by the system for the application's drawing. The GetClientRect and GetWindowRect
functions return client or screen coordinates for the passed window. ClientToScreen
and ScreenToClient can be called to translate between window coordinate systems.

 3.4.2 Device contexts

An applications programmer must obtain a "device context" before calling any
graphics drawing API functions. As explained above, this specifies to the system
which window and what coordinate system are desired, so that these don't have to be
passed to every graphics function. In addition, various other attributes like
foreground and background color are also set in a device context, so that these
parameters don't have to be specified for every graphics operation. The device
context selects the appropriate clipping region based on the window specified and the

coordinate system. When a device context is obtained, various graphics values are set
to default values.

To obtain a client device context, call GetDC. To obtain a screen device context,
required when drawing onto title bars and the like, call GetWindowDC. In addition,
fancy clipping operations and child/sibling window clipping can be specified if
GetDCEx is called. When finished drawing, the ReleaseDC function must be called
to deallocate the DC.

On receipt of the WM_PAINT message, two special calls, BeginPaint and EndPaint
are called, that serve as replacements to the GetDC/ReleaseDC functions. These
functions essentially allocate a DC but also validate the update region so that no
subsequent WM_PAINT messages are generated. BeginPaint also combines the
update region and the clipping region so that user output will only occur where
previously invalidated.

 3.4.3 Graphics drawing API

There are many graphics drawing API's in the Microwindows API. Following is a list,
most of these match up to the engine GdXXX functions discussed in section 2.

 SetTextColor Set the foreground text color in a DC
 SetBkColor Set the background color in a DC
 GetSysColor Get the system color defined for the current look and feel
scheme
 SetSysColor Set a system color
 SetBkMode Set the use background flag in a DC
 SetROP2 Set the drawing mode (XOR, SET, etc) for drawing
 SetPixel Draw a pixel in the current fg color
 MoveToEx Prepare to draw a line
 LineTo Draw a line from the last location to this one in the
current fg color
 Rectangle Draw a rectangle in the current pen color
 FillRect Fill a rectangle with the current brush color
 TextOut Draw text in the current fg/bg color
 ExtTextOut Draw text in the current fg/bg color
 DrawText Draw text or compute text height and width sizes
 DrawDIB Draw a color bitmap
 SelectObject Select a pen, brush or font to use in a DC
 GetStockObject Get a predefined standard pen, brush or font
 CreatePen Create a pen of a certain color
 CreateSolidBrush Create a brush of a certain color
 CreateCompatibleBitmap Create an offscreen area to draw onto
 DeleteObject Delete a pen, brush or bitmap
 CreateCompatibleDC Create an offscreen DC
 DeleteDC Delete an offscreen DC
 BitBlit Copy from one bitmap in a DC to another
 GetSystemPaletteEntries Get the currently in-use system palette entries

 3.5 Utility functions

A number of routines are provided for various purposes, described below. In addition,
Microwindows currently exports some helper routines, named WndXXX, that are
useful but subject to change. These are detailed following:

 WndSetDesktopWallpaper Set the desktop background image
 WndSetCursor Set the cursor for a window
 WndRaiseWindow Raise a window's z-order
 WndLowerWindow Lower a window's z-order
 WndGetTopWindow Return the topmost window's handle
 WndRegisterFdInput Register to send a message when file
descriptor has read data available
 WndUnregisterFdInput Unregister file descriptor for read data
messages

 GetTickCount Return # milliseconds elapsed since startup
 Sleep Delay processing for specified milliseconds
 SetTimer Create a millisecond timer
 KillTimer Destroy a millsecond timer
 GetCursorPos Return mouse cursor coordinates

 3.5.1 Setting window focus

The SetFocus routine is used to pass keyboard focus from one window to
another. Keystrokes are always sent to the window with focus. The
WM_SETFOCUS and WM_KILLFOCUS messages are sent to windows just
receiving and losing focus. The GetActiveWindow routines returns the first non-child
ancestor of the focus window, which is the window that is currently highlighted. The
GetDesktopWindow routine returns the window handle of the desktop window.

 3.5.2 Mouse capture

Normally, Microwindows sends WM_MOUSEMOVE messages to the window the
mouse is currently moving over. If desired, the 7applications programmer can
"capture" the mouse and receive all mouse move messages by calling
SetCapture. ReleaseCapture returns the processing to normal. In addition, the
GetCapture function will return the window with capture, if any.

 3.5.3 Rectangle, Region and Clipping management

There are a number of functions that are used for rectangles and regions. Following is
the group:

 SetRect Define a rectangle structure
 SetRectEmpty Define an empty rectangle
 CopyRect Copy a rectangle
 IsRectEmpty Return TRUE if empty rectangle
 InflateRect Enlarge a rectangle

 OffsetRect Move a rectangle
 PtInRect Determine if a point is in a rectangle
 IntersectRect Intersect two rectangles
 UnionRect Union two rectangles
 SubtractRect Difference two rectangles
 EqualRect Determine if two rectangles are the same

The following functions are used for region creation and manipulation:

 CreateRectRgn Create a rectangular region
 CreateRectRgnIndirect Create a rectangular region from a RECT
 SetRectRgn Set a region to a single rectangle
 CreateRoundRectRgn Create a round rectangular region
 CreateEllipticRgn Create an elliptical or circular region
 CreateEllipticRgnIndirect Create an elliptical or circular region from a RECT
 OffsetRgn Offset a region by x, y values
 GetRgnBox Get a region's bounding rect
 GetRegionData Get a region's internal data structure
 PtInRgn Determine if a point is in a region
 RectInRegion Determine if a rectangle intersects a region
 EqualRgn Determine if two regions are equal
 CombineRgn Copy/And/Or/Xor/Subtract a region from another

The following regions are used to set user specified clipping regions. These regions
are then intersected with the visible clipping region that Microwindows maintains
prior to drawing:

 SelectClipRegion Assign a user specified clipping region
 ExtSelectClipRegion And/Or/Xor/Subtract user clipping region with another
region

4. Nano-X API

The Nano-X API was originally designed by David Bell, with his mini-x package for
the MINIX operating system. Nano-X is now running on top of the core graphics
engine routines discussed in section 2. Nano-X was designed for a client/server
environment, as no pointers to structures are passed to the API routines, instead a call
is made to the server to get an ID, which is passed to the API functions and is used to
reference the data on the server. In addition, Nano-X is not message-oriented, instead
modeled after the X protocol which was designed for speed on systems where the
client and server machines were different.

 4.1 Client/Server model

In Nano-X, there are two linking mechanisms that can be used for applications
programs. In the client/server model, the application program is linked with a client
library that forms a UNIX socket connection with the Nano-X server, a separate

process. Each application then communicates all parameters over the UNIX
socket. For speed and debugging, it is sometimes desirable to link the application
directly with the server. In this case, a stub library is provided that just passes the
client routines parameters to the server function.

The Nano-X naming convention uses GrXXX to designate client side callable
routines, with a marshalling layer implemented in the files nanox/client.c,
nanox/nxproto.c, and nanox/srvnet.c. The client/server network layer currently uses
a fast approach to marshalling the data from the Gr routine into a buffer, and sent all
at once to the receiving stubs in nanox/srvnet.c, before calling the server drawing
routines in nanox/srvfunc.c. In the linked application scenario, the Nano-X client
links directly with the functions in nanox/srvfunc.c, and the nanox/client.c and
nanox/srvnet.c files are not required.

A Nano-X application must call GrOpen before calling any other Nano-X function,
and call GrClose before exiting. These functions establish a connection with the
server when running the client/server model, and return an error status if the server
can't be found or isn't currently running.

The main loop in a Nano-X application is to create some windows, define the events
you want with GrSelectEvents, and then wait for an event with GrGetNextEvent. If it
is desired to merely check for an event, but not wait if there isn't one,
GrCheckNextEvent can be used. GrPeekEvent can be used to examine the next event
without removing it from the queue.

When running Nano-X programs in the client/server model, it's currently necessary to
run the server first in a shell script, then wait a second, then run the application. Some
rewriting is needed to fire up the server when an application requires it, I believe.

 4.2 Events

Nano-X applications specify which events they would like to see on a per-window
basis using GrSelectEvents. Then, in the main loop, the application calls
GrGetNextEvent and waits for one of the event types selected for in any of the
windows. Typically, a switch statement is used to determine what to do after
receiving the event. This is similar to the Microwindows's API
GetMessage/DispatchMessage loop, except that in Microwindows API,
DispatchMessage is used to send the event to the window's handling procedure,
typically located with the window object. In Nano-X, all the event handling code for
each of the windows must be placed together in the main event loop, there is no
automatic dispatching. Of course, widget sets serve to provide object-orientation, but
this is in addition to the Nano-X API.

Following are the event types that Nano-X programs can recieve:

 GR_EVENT_TYPE_NONE, ERROR, EXPOSURE, BUTTON_DOWN,
BUTTON_UP, MOUSE_ENTER, MOUSE_EXIT, MOUSE_MOTION,
MOUSE_POSITION, KEY_UP, KEY_DOWN, FOCUS_IN, FOCUS_OUT,
FDINPUT, UPDATE, CHLD_UPDATE

Note that Nano-X API provides mouse enter and exit events whereas Microwindows
API does not. Also, the exposure events are calculated and sent immediately by the
server, and not combined and possibly delayed for better paint throughput as in the
Microwindows API.

 4.3 Window creation and destruction

Windows are created in Nano-X with the GrNewWindow function. Windows can be
specified to be input-only, in which case the GrNewInputWindow function is
used. The window border and color is specified in these calls, but will have to be
rewritten when fancier window dressings are required. The return value from these
functions is an ID that can be used in later calls to get a graphics context or perform
window manipulation.

Pixmaps, which are offscreen windows, are created with GrNewPixmap. The ID
returned can be used with any drawing function. Pixmaps are copied to windows
using the GrCopyArea function, and destroyed like windows with GrDestroyWindow.

 4.4 Window showing, hiding and moving

Windows are shown by calling the GrMapWindow function, and hidden using
GrUnmapWindow. Mapping a window is required for all ancestors of a window in
order for it to be visible. The GrRaiseWindow call is used to raise the Z order of a
window, while GrLowerWindow is used to lower the Z order. GrMoveWindow is
used to change the position of a window, and GrResizeWindow is used to resize a
window. A window can be reparented with GrReparentWindow.

 4.5 Drawing to a window

Nano-X requires both a window ID and a graphics context ID in order to draw to a
window. Nano-X sends expose events to the application when a window needs to be
redrawn. Unlike the Microwindows API, Nano-X clients are typically required to
create their drawing graphics contexts early on and keep them for the duration of the
application. Like Microwindows though, the graphics contexts record information
like the current background and foreground colors so they don't have to be specified
in every graphics API call.

 4.5.1 Graphics contexts

To allocate a graphics context for a window, call GrNewGC. On termination, call
GrDestroyGC. GrCopyGC can be used to copy on GC to another. GrGetGCInfo is
used to retrieve the settings contained in a GC. After creating a graphics context, the
server returns a graphics context ID. This is then used as a parameter in all the
graphics drawing API functions. In Nano-X programs, the current clipping region
and window coordinate system aren't stored with the GC, as they are in
Microwindows' DCs. This is because, first, Nano-X doesn't support dual coordinate
systems for drawing to the "window dressing" area versus the "user" area of the
window (window and client coordinates in Microwindows). User programs can't
draw the border area of the window, only a single color and width can be

specified. Although resembling X, this will have to change, so that widget sets can
specify the look and feel of all aspects of the windows they maintain. Since the
clipping region isn't maintained with the graphics context, but instead with the
window data structure, Nano-X applications must specify both a window ID and a
graphics context ID when calling any graphics API function. Because of this, many
Nano-X applications allocate all graphics contexts in the beginning of the program,
and hold them throughout execution, since the graphics contexts hold only things like
foreground color, etc, and no window information. This cannot be done with
Microwindows API because the DC's contain window clipping information and must
be released before processing the next message.

 4.5.2 Graphics drawing API

Following are the graphics drawing functions available with Nano-X. Like
Microwindows API, these all match up eventually to the graphics engine GdXXX
routines.

 GrGetGCTextSize Return text width and height information
 GrClearWindow Clear a window to it's background color
 GrSetGCForeground Set the foreground color in a graphics context
 GrSetGCBackground Set the background color in a graphics context
 GrSetGCUseBackground Set the "use background color" in a graphics context
 GrSetGCMode Set the drawing mode
 GrSetGCFont Set the font
 GrPoint Draw a point in the passed gc's foreground color
 GrLine Draw a line in the passed gc's foreground color
 GrRect Draw a rectangle in passed gc's foreground color
 GrFillRect Fill a rectangle with the passed gc's foreground
color
 GrEllipse Draw a circle or ellipse with the passed gc's
foreground color
 GrFillEllipse Fill a circle or ellipse with the passed gc's
foreground color
 GrPoly Draw a polygon using the passed gc's foreground
color
 GrFillPoly Fill a polygon using the passed gc's foreground
color
 GrText Draw a text string using the foreground and
possibly background colors
 GrBitmap Draw an image using a passed monocrhome bitmap,
use fb/bg colors
 GrBMP Draw an image from a .bmp file
 GrJPEG Draw an image from a .jpg file
 GrArea Draw a rectangular area using the passed device-
dependent pixels
 GrReadArea Read the pixel values from the screen and return
them
 GrGetSystemPaletteEntries Get the currently in-use system palette entries
 GrFindColor Translate an RGB color value to a PIXELVAL pixel
value

 4.6 Utility functions

Various functions serve as utility functions to manipulate windows and provide other
information. These include the following:

 GrSetBorderColor Set the border color of a window. Not suitable for
3d look and feel.
 GrSetCursor Set the cursor bitmap for the window.
 GrMoveCursor Move the cursor to absolute screen coordinates.
 GrSetFocus Set the keyboard input focus window.
 GrRedrawScreen Redraw the entire screen.
 GrGetScreenInfo Return information about the size of the physical
display.
 GrGetWindowInfo Return information about the passed window.
 GrGetGCInfo Return information about the passed graphics
context.
 GrGetFontInfo Return information about the passed font number.
 GrRegisterInput Register a file descriptor to return an event when
read data available
 GrPrepareSelect Prepare the fd_set and maxfd variables for using
Nano-X as a passive library
 GrServiceSelect Callback the passed GetNextEvent routine when
Nano-X has events requiring processing
 GrMainLoop A convenience routine for a typical Nano-X
application main loop

	 The Nano-X Window System Architecture
	Contents
	1. Architecture
	1.1 Layered Design
	1.2 Device Drivers
	1.2.1 Screen Driver
	1.2.2 Mouse Driver
	1.2.3 Keyboard Driver
	1.3 MicroGUI - Device Independent Graphics Engine
	1.4 Applications Programmer Interfaces
	1.4.1 Microwindows API
	1.4.2 Nano-X API
	2. Device-Independent Engine Features
	 2.1 Graphics Engine Features and Implementation
	 2.1.1 Regions
	 2.1.2 Clipping
	 2.1.3 Line Drawing
	 2.1.4 Rectangles, Circles, Ellipses
	 2.1.5 Polygons
	 2.1.6 Area Fills
	 2.1.7 Fonts
	 2.1.8 Text Drawing
	 2.1.9 Color model and palettes
	 2.1.10 Image Drawing
	 2.1.11 Blitting
	3. Microwindows API
	 3.1 Message-passing architecture
	 3.2 Window creation and destruction
	 3.3 Window showing, hiding and moving
	 3.4 Window painting
	 3.4.1 Client and screen coordinates
	 3.4.2 Device contexts
	 3.4.3 Graphics drawing API
	 3.5 Utility functions
	 3.5.1 Setting window focus
	 3.5.2 Mouse capture
	 3.5.3 Rectangle, Region and Clipping management
	4. Nano-X API
	 4.1 Client/Server model
	 4.2 Events
	 4.3 Window creation and destruction
	 4.4 Window showing, hiding and moving
	 4.5 Drawing to a window
	 4.5.1 Graphics contexts
	 4.5.2 Graphics drawing API
	 4.6 Utility functions

