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Abstract
Quartz crystal microbalances (QCMs) provide sensitive probes for changes
at solid–solid or solid–liquid interfaces. It is essential to obtain a physical
insight into the details of the interface loading mechanism to interpret the
observed behaviour leading to fresh applications of AT-cut quartz resonators.
In this work, a mechanical slip model of the interface between a quartz plate
and a viscoelastic liquid is presented to replace the continuous displacement
assumption. The electrical impedance of a compounded quartz crystal
resonator is expressed as a function of the properties of liquid, and the
quartz and the strength of contact attraction between the solid and liquid.
The interfacial slip parameter between the solid and liquid, which is defined
as the displacement transmission from solid particles to liquid bottom
particles, is explicitly calculated from the complex attraction strength
between the liquid and solid. Comparisons of the physical slip model with
other interfacial modes used in the QCM are presented, including the
continuous mode and the transmission mode based on the friction force
interface. The explicit expression of the slip parameter is presented, and the
influence of interfacial slip on QCM measurements is discussed with
numerical results. A detailed physical description of the solid–liquid
interfacial is useful for exploring fresh ideas for the use of the QCM in
biological industry. A new approach by using the slip parameter measured
with QCM is proposed to determine the attraction strength between the
particles of a viscous liquid and solid particles. The experimental data in the
literatures for a hydrophilic-coated sensor and a hydrophobic-coated sensor
are used for the numerical examples. It is found that the imaginary part of
the interactive strength of these two types of sensor is almost the same. The
real part of the interactive strength contributes significantly to distinguish
the different interface conditions for these two types of sensor.

1. Introduction

Quartz crystal microbalances (QCMs) provide a simple and
effective means for detecting changes in the physical properties
of thin layers at their surfaces. Sauerbrey [1] first reported

3 Author to whom any correspondence should be addressed.

a linear relationship between the resonance frequency of the
AT-cut quartz crystal and the mass of the film attached to its
surface. The Sauerbrey equation is valid under the condition
that the film is rigid and it is rigidly coupled to the oscillatory
motion of the quartz crystal surface. One of the advantages
of AT-cut QCMs is their ability to act as a chemical detector
in a liquid environment. After the discovery that the QCM
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resonator could also be used as a deposition monitor in
liquids by Nomura [2], the application of the QCM has been
extended into the complex liquid environment, including in situ
monitoring as chemical and biological sensors [3, 4]. Many
studies were devoted to the behaviours of QCMs under liquid
loading. When a QCM operates in a liquid environment, the
oscillation of the device’s surface is coupled to the liquid.
There is damping of the resonance of the QCM besides a
resonance frequency shift. The molecular layer attached to the
QCM surfaces is neither rigidly coupled nor is it that of a simple
Newtonian liquid. To understand the resonance characteristics
of QCMs in liquid environments and use it in biological
measurement, development of models of the acoustic device
response to the viscoelastic medium is essentially required.

A general approach to describing the performance of
QCMs in liquid is to consider the acoustic impedance of
the devices with interface acoustic impedance loading. This
surface impedance summarizes the overall acoustic load
acting on the quartz surface and can be easily applied
to multiple viscoelastic layer arrangements [5]. With
some approximations, this model is translated into electrical
analogue approaches [6], which have served effectively as
methods for electrically characterizing the crystal. However,
the analogue method often masks the physical insight into
the detailed nature of the loading mechanism. An alternative
approach is based on a mechanical description so as to solve
a set of acoustic wave equations of the compounded QCM.
The first acoustic-wave analysis of a loaded resonator with
an elastic overlayer was performed by Miller and Bolef
[7] and then simplified by Lu and Lewis [8]. Reed et al
[9] derived the electrical admittance of the QCM with a
viscoelastic medium directly in terms of the physical properties
of the compound resonator. Kanazawa [10] summarized the
mechanical properties of the QCM and overlayer, correlating
them with the observed electrical behaviours. A common
feature of these treatments is that continuous shear stress and
continuous displacement are assumed for the contact interface
between the attached layer and sensor surface. The details of
the contact interface are completely neglected, such as surface
roughness, interface viscosity and interface slip.

The role of interfacial slip between the sensor surface
and the attached medium is one of the many controversies
in modelling in the QCM liquid environment. Ferrante [11]
defined the slip parameter as the ratio of the displacements of
the liquid bottom surface and the displacement sensor contact
surface and employed it to replace the continuous displace-
ment assumption as the boundary condition for solving the
equations. The slip parameter was characterized by exper-
iments. Rodahl and Kasemo [12] proposed that slip at the
device interface could be related to the shear stress acting on
the substrate due to the liquid. McHale [13] employed the
slip friction law, which is proportional to the relative velocity
between the contact surfaces, in the acoustic impedance analy-
sis of acoustic wave sensors with multiple viscoelastic layers.

In an early paper [14], a mechanical slip modelling of the
interface between a liquid and quartz plate has been proposed
to analyse the performance of a QCM in liquid. The continuous
displacement and stress assumption boundary conditions are
replaced by the equations of motion of contact molecules. In
this paper, the theoretical analysis of the interface slip model

of a QCM in liquid is reviewed first. The electrical impedance
of a compounded QCM is expressed in terms of the contact
interface properties between solid and liquid, such as attraction
strength, contact molecular size and viscosity of the host liquid.
The slip parameter is expressed explicitly as functions of the
interface attraction strength of the contact layers, G∗, and the
viscosity of the liquid. Correlations between this mechanical
slip model and other slip models are presented. The detailed
mechanical description of the solid–liquid interface of a QCM
in a liquid provides a physical approach to understanding the
performance of a QCM in a liquid. With the mechanical slip
model of the interface, a new approach using the slip parameter
measured with a QCM is proposed to determine the attraction
strength between the particles of a viscous liquid and solid
particles. Experimental data in the literature for a hydrophilic-
coated sensor and a hydrophobic-coated sensor are used for
the numerical examples.

2. Theoretical modelling for analysis

2.1. Interface slip model for a QCM with a surface liquid
layer

A QCM consists of a thin disc of an AT-cut quartz crystal
plate with metal electrodes deposited on both surfaces. With
perturbation of the mechanical load on the quartz surface, the
resonance characteristics of the crystal refer primarily to the
resonance frequency, and the quality factor will be changed
following a certain relationship. A modified geometry of
the one-dimensional analysis modelling of the compounded
QCM is shown schematically in figure 1. The electrodes are
assumed to be highly conducting, but with negligible thickness.
Only the thickness shear displacement is considered, and the
thickness shear displacement on the quartz surface is assumed
to be uniform along the surface [15].

To evaluate the acoustic impedance exerted on the surface
of the quartz plate by the layers compounded on its surface and
the coupling effect of the quartz plate and the surface layers, it
is necessary to solve a set of differential equations, including
equations of piezoelectricity, the thickness shear wave equation
of the quartz plate, and fluid motion equations for a viscous
and incompressible fluid are summarized as follows [10]:

ρqüq = ĉq
∂2uq

∂y2
(TS wave equation for quartz plate)

(1)

e26
∂2uq

∂y2
− ε22

∂2φ

∂y2
= 0

(piezoelectric coupling equation for quartz plate) (2)

Contact interface
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Figure 1. The schematic of the compounded QCM with a
viscoelastic liquid.
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A similar shear wave equation for the viscoelastic overlay can
be expressed as

ρlül = ĉl
∂2ul

∂y2
(TS wave equation in liquid layer) (3)

where uq and ul are the shear displacement of the quartz
plate and liquid, which are functions of the coordinate y and
time t , ρq, ρl are the density of the quartz and liquid, e26 is the
appropriate piezoelectric constant of AT-cut quartz, ε22 is the
permittivity of the quartz crystal, ĉq = c66 + e26/ε22 + jωηq,
with c66 the shear modulus and ηq the fictitious viscosity of
quartz, and ĉl = µl + jωηl with µl the shear modulus of the
liquid and ηl its viscosity.

By assuming that shear displacements are harmonic
functions of time with angular frequency ω, the general
solutions for the quartz plate and fluid medium can be
expressed as

uq = [A1e−jkqy + B1ejkqy]ejωt (4)

ul = [A2e−jkvy + B2ejkvy]ejωt (5)

where A1, B1, A2, B2 are constants to be determined by the
boundary conditions, kq and kv are complex wavenumbers in
terms of the shearing displacement of the quartz plate and fluid
medium, respectively, which can be expressed as

kq = ω

√
ρq

ĉq
and kv = ω

√
ρl

ĉl
(6)

The general solution for the electrical potential, φ, can be
obtained by integrating equation (2) and is expressed as

φ = e26

ε33
uq + Cy + D (7)

When QCM operates in the liquid environment, the oscillation
of the quartz plate surface is coupled to the liquid and induces
an oscillation in the liquid. The decay length of the shear
wave in the viscous liquid is δ = (2ηl/ωρl)

1/2, which is small
when the liquid has a small viscosity and the frequency, ω, is
moderate. For water, the decay length is of the order of 2400 Å.
Accordingly, the shearing displacement, ul, is damped out at a
very short distance from the lower boundary and the effect of
the wave reflection from the upper surface of the liquid layer
becomes insignificant as long as hl/δ � 1. In that case, since
there is no reflection from the fluid–air interface, the constant,
A2, of the positive exponential term on the liquid shearing
displacement in equation (5) is equal to zero.

In order to solve the equations of motion with six unknown
constants, six boundary conditions are needed. As shown in
figure 1, the boundary conditions include a stress free boundary
at the plate bottom surface (solid–air interface), zero shear
displacement at the liquid top surface (liquid–air interface),
potential boundaries on both quartz plate surfaces and the
interface slip boundary conditions between the solid and the
liquid interface at the bottom of the liquid layer. The stress
free boundary at the plate bottom surface (solid–air interface),
zero shear displacement at liquid top surface (liquid–
air interface) and potential boundaries can be expressed

as follows:

y = h2, Tv = 0 ⇒ A2ejkvh2 − B2e−jkvh2 = 0 (8)

y = h1, φ(h1) = φ0 ⇒ e26

ε22
(A1ejkqh1 + B1e−jkqh1)

+h1C + D = φ0 (9)

y = 0, Tq(h1) = 0 ⇒ jĉqkq(A1 − B1) + e26C = 0 (10)

y = 0, φ(h1) = −φ0 ⇒ e26

ε22
(A1 + B1) + D = −φ0 (11)

where h1 and h2 are the thickness of the quartz plate and the
liquid layer, respectively, and φ0 is the electrical potential
on the quartz surface. Another two boundary conditions
can be determined from the solid–liquid interface as shown
in figure 2. At the interface between the quartz crystal
surface and the viscoelastic molecular layer, the transverse
vibratory motion of particles at the top of the crystal surface
causes transverse motion of the particles of the attached
layer in contact with the sensor surface. The transverse
shear wave is partially transmitted and partially reflected.
The amount of transmission and reflection depends on the
physical and chemical properties of the interface and attached
viscoelastic layers. The continuous displacement and stress
assumptions mask the detailed mechanical behaviours of the
contact interface.

The interfacial slip between the quartz surface and layer
is modelled as a local molecular mass and interaction element
between the masses as shown in figure 2, which has been
proposed in an early paper [14]. m1 represents the mass of
a particle on the layer surface, and m2 represents the mass
of a particle on the quartz surface. Displacements of both
particles are restricted in the x-direction. The interaction
between the two particles is presented as a spring and damper
with complex parameter G∗, which is the force when a unit
shear displacement occurs between two contacting particles.
Besides the interaction force from the sensor surface particles,
there is an internal attraction force from the bulk liquid. The
interaction is proportional to the gradient of the displacement
in the x-direction. The interaction force between the two
contacting surfaces molecules is modelled as a spring–dashpot
force that is proportional to the relative displacement/velocity
between the molecules of the two surfaces. The shear force
on the interface is equal to the spring force plus the damping
force.

The lateral displacement of the quartz contact surface
molecules is noted as uh

q, and the displacement of the particles

Viscoelastic Liquid
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Figure 2. Mechanical slip model of the contact solid–liquid
interface.
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of contact at the liquid bottom is denoted as uh
l . The relative

displacement in the x-direction can be expressed as �u =
uh

q − uh
l . The attractive force is proportional to the relative

shear displacement. This assumption is valid when the relative
deformation is small, which is within the linear elastic region.
The equivalent shear force of the interface can be expressed as

Tb = G∗γ = G∗

δ
(uh

q − uh
l ) (12)

where δ is the distance between the molecules on the quartz
surface and those on the viscoelastic layer contact surface
as illustrated in figure 2. The force keeping the connection
between the two contact surfaces is like the shear stress on
the continuous medium. The single shear vibration mode
is considered in the QCM compound resonator; the particles
on the surface have the same vibration phase. Based on the
equations of motion for particles on both the viscoelastic layer
and the top of quartz plate, another two boundary conditions
on the interface between the liquid and solid can be expressed
as [14]

G∗

δ
ejkqh1A1 +

G∗

δ
e−jkqh1B1 +

[
−ρl�lω

2 + jĉlkv − G∗

δ

]

×ejkvh1A2 +

[
−ρl�lω

2 − jĉlkv − G∗

δ

]
e−jkvh1B2 = 0

(13)[
−ρq�qω

2 + jĉqkq +
G∗

δ

]
ejkqh1A1

+

[
−ρq�qω

2 − jĉqkq +
G∗

δ

]
e−jkqh1B1 + e26C

= G∗

δ
ejkvh1A2 +

G∗

δ
e−jkvh1B2 (14)

where �q and �l are the particle thickness of the quartz
contact layer and liquid layer, respectively, and G∗ = G′ +
jωG′′ is the complex attraction parameter of the contact
interface. The continuous displacement assumption and
continuous stress assumption on the interface are replaced by a
more detailed description of the contact interfacial properties.
Constants A1, B1, A2, B2, C, D can be solved based on the six
equations (8)–(11), (13) and (14).

2.2. Electrical impedance of the compounded QCM in liquid

The wave displacement generates an accompanying electrical
potential through which the piezoelectric wave can be
electrically detected. Impedance/admittance analysis, in
which the spectrum of the impedance/admittance of the
compound sensor is recorded as a function of the excitation
frequency, is widely used to detect the perturbation on the BAW
sensors. The admittance is defined as the ratio of the input
current and voltage. The explicit expression of the current of
the piezoelectric materials is Q = ∫

Ā
D2 dA [9]. The current

across the quartz crystal, which is the time derivative of the
charge, can be expressed as

I = −jωε22CĀ (15)

where Ā is the effective electrode surface area and C is the
constant from equation (7). The admittance of quartz crystal

resonator can be determined as

Z = V

I
= 2φ0

jωε22Ā

1

C
(16)

After the constant C is determined from the boundary
conditions, the spectrum of the admittance can be predicted.

Substituting the constant determined from boundary
conditions into equation (16), the corresponding impedance
of the compounded QCM with a viscoelastic layer based on
mechanical slip interface modelling can be expressed as

Z = V

I
=

[
(e2

26a1 − h1ε22a5 − e2
26)ls2

+

(
e2

26
1

a1
+ h1ε22a5 − e2

26

)
ls1

]

× [jωε2
22Āa5(ls1 − ls2)]−1 (17)

where

ls1 = a2
1(a

2
2 + a2

3)

[(
a5 − a10 − a5

a1

)
(a11 + a8) + a8a11

]

+ a2
1a6(a

2
2 − a2

3)

(
a10 − a5 − a8 +

a5

a1

)

ls2 = (a2
2 + a2

3)[(a5 + a10 − a1a5)(a11 + a8) − a8a11]

+ a6(a
2
2 − a2

3)(−a10 − a5 + a8 + a1a5)

a1 = ejkqh1 , a2 = ejkvh1

a3 = ejkvh2 , a5 = jĉqkq

(18)

a6 = jĉlkv, a8 = G∗

δ

a10 = ρq�qω
2, a11 = ρl�lω

2

(19)

and Ā is the equivalent electrode surface on the quartz plate.
Equation (17) is the general expression of the electrical
impedance of a QCM with a viscoelastic overlayer on the
surface with consideration of the mechanical slip on the solid–
liquid interface. With certain assumptions, the expression can
be simplified and compared with the earlier results.

2.3. Unperturbed quartz resonator—with zero attraction
strength assumption

When the attractive strength between solid–liquid interfaces
is equal to zero, i.e. there is no interactive couple between
liquid and solid, the QCM works in the condition without
any overlayer. Substituting attraction strength, G∗ = 0, into
equation (17) and neglecting the mass inertial exposure of
the surface particles to the air, i.e. a8 = 0 and a10 = 0,
the electrical impedance of the unperturbed QCM can be
expressed as

Zm = e2
26

ĉqkqε
2
22ωĀ

ejkqh1 − 1

1 + ejkqh1
− j

h1

ε22Āω

= j
e2

26

ĉqkqε
2
22ωĀ

tan

(
kqh1

2

)
− j

h1

ε22Āω
(20)

The zero of the electrical impedance of the unperturbed QCM
appears when

tan

(
kqh1

2

)
= ε22h1ĉqkq

e2
26

(21)

901



F Lu et al

which gives the series resonant frequency of the AT-cut quartz
crystal resonator with first shearing mode vibration. The result
derived from the mechanical model is the same as that derived
from transmission line modelling [6].

2.4. Continuous displacement assumption with viscoelastic
liquid—infinite attraction strength assumption

When the interfacial attraction strength is infinitely large, there
is no slip between two contact interfaces. By neglecting
the mass inertia of the contacting particles, the continuous
displacement assumption at the solid–liquid interface is
recalled and the results derived by Reed [9] and Kanazawa
[10] can be reproduced. When the QCM is immersed into a
liquid and the liquid depth is much larger than the decay length
of the shearing wave, the QCM with infinite liquid coating can
be obtained by setting a2 � a3. The electrical impedance of
the QCM can be expressed as a function of the properties of
the compounded liquid for QCM operating in half infinite bulk
liquid as follows:

ls1 = a2
1a5 − a5a1 + a2

1a6 (22)

ls2 = a5 − a1a5 − a6 (23)

Z = V

I
=

[
(e2

26a1 − h1ε22a5 − e2
26)ls2

+

(
e2

26
1

a1
+ h1ε22a5 − e2

26

)
ls1

]

× [jωε2
22Āa5(ls1 − ls2)]−1 (24)

2.5. Slip parameter for the compounded QCM in a
viscoelastic liquid

The ratio between the complex displacement of the bottom
particles of the liquid and the displacement of the sensor
surface displacement is defined as the slip parameter by
Ferrante [11].

α = uh
l

uh
q

(25)

Based on the mechanical slip modelling of the interface, the
slip parameter can be expressed as

α = A2ejkvh1 + B2e−jkvh1

A1ejkqh1 + B1e−jkqh1
(26)

Substituting the expression term of A1, B1, B2 into the
equation, the slip parameter can be expressed as

α = G/δ

G/δ + ρl�lω2 + jĉlkv
(27)

From equation (27), the slip parameter can be calculated
from the complex attraction strength value and the viscosity
properties of the liquid environment. Inversely, the attraction
strength between solid–liquid interfaces can be determined by
measuring the slip parameter using a QCM, which will be
discussed in the last section of this paper as an extensional
application of the QCM.

3. Results and discussions

3.1. QCM impedance response in liquid with mechanical slip
interface

With the parameters of the QCM as shown in table 1, the
impedance spectrum of the unperturbed QCM can be obtained
by setting the attraction strength G∗ = 0 as in equation (22).
The resonance frequency and anti-resonance frequency of the
first thickness shear mode are 9.0032 MHz and 9.0233 MHz,
respectively. Because the acoustic loss in the quartz crystal is
extremely small, the impedance curve is considerably sharp
as shown in figure 3. When the QCM is immersed into
a viscoelastic liquid, its impedance spectrum sharpness is
changed besides the resonance frequency shift. Under non-
slip assumption, equation (24) can be used to determine
the relationship between the viscosity of the liquid and the
frequency shift as well as the Q-factor of the resonator. The
amplitude and phase of the impedance and of the QCM in
several kinds of liquid are computed as plotted in figures 4
and 5 with dotted lines. It can be seen from the figures that the
Q-factor of the impedance spectrum is reduced significantly
as the QCM is immersed into the liquid.

Based on the mechanical slip modelling, the response of
the QCM in a viscoelastic liquid is affected by the contact
condition of the interface. The amplitude and phase angle
of the electrical impedance of the QCM results, evaluated
from the mechanical slip model, with real attraction strength
G∗ = 3000 N m−2, are presented in figures 4 and 5 with solid
lines. For the numerical simulation, the interactive distance
between atoms is set to be δ = 10−10 m. Compared with the
results of the non-slip model, the series resonance frequency
changes and changes in the Q-factor of the QCM are larger than

Table 1. Parameters for AT-cut QCM.

Quartz
parameters Value Description

ρq 2649 kd m−3 Density
c66 2.91 × 1010 N m−2 Shear modulus
e26 7.98 × 10−2 C m−2 Piezoelectric constant
ε22 3.982 × 10−11 C V−1 m−1 Permittivity
ηq 8.376 × 10−3 N s m−1 Effective viscosity of

quartz crystal
Ā 0.2984 cm2 Effective electrode

surface area
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Figure 3. Impedance spectrum of the unperturbed QCM.
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Figure 4. Amplitude of the impedance of the QCM in three kinds of
liquid (· · · · · ·, non-slip modelling; ——, slip modelling).

Figure 5. Phase angle of the impedance of the QCM in three kinds
of liquid (· · · · · ·, non-slip modelling; ——, slip modelling).

Table 2. Results for series resonant frequency shift for immersion
of one face of the QCM in a liquid.

Frequency shift (kHz)

Density Viscosity Slip with
Liquid (kg m−3) (N s m−2) Non-slip G∗ = 3000 N m−2

Water 997 0.089 −25.2 −28.2
Nitro-benzene 1198.6 0.1811 −43.2 −49.2
20% glycerol 1025.2 0.7550 −86.2 −103.2

in water

that evaluated from the corresponding non-slip mode when
setting the attraction strength G∗ = 3000 N m−2 (table 2). The
difference between these two models is that the inertia effect
and phase changes between two contact interfaces are included
in the mechanical slip modelling.

The sensitivity of the series resonant frequency and its
impedance resonance amplitude to the viscosity of the liquid,
ηv with differing attraction strength is plotted in figures 6
and 7, respectively. For the numerical simulation, the tiny
shear storage of the liquid is set to be µl = 10 N m−2 and the
density of the liquid is kept constant, ρl = 1020 kg m−3. As
the liquid viscosity increases, the energy dissipated into the
liquid increases during each vibration cycle. The attraction
strength at the solid–liquid interface transforms the vibration
of the top surface of the quartz plate into the liquid medium.
Different values of the attraction strength result in different
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Figure 6. Series frequency of the compounded QCM as a function
of the liquid viscosity.
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Figure 7. Amplitude of impedance at series resonance as a function
of the liquid viscosity.

amounts of energy transformation. From the figures, it can
be seen that when the QCM is subject to lower viscosity
liquid loading, the frequency shift evaluated from the non-
slip modelling is smaller than that evaluated from mechanical
slip modelling. However, with a lower attraction strength,
G∗ = 3000 N m−2, the resonance frequency is increased after
the viscosity reaches a certain value and even higher than
that of the unperturbed QCM. This is because the coupling
of the viscosity and the interactive strength of the interface are
considered. The response of the compounded QCM depends
on the attraction strength when it is operating in the liquid
environment. In the normal condition, when the interface
attraction strength is higher than a critical value, the results
evaluated from the mechanical slip modelling approaches that
evaluated from non-slip modelling. It is an intuitive conclusion
that when the attraction strength is infinitely large, there is
no slip between the two interfaces, which is the same as the
continuous displacement assumption.

3.2. Discussion on solid–liquid interfacial slip parameter

Ferrante [11] described the interfacial slip phenomenon of
the compounded QCM in a liquid environment using a slip
parameter, which was defined as the ratio between the particle
displacement of the top surface of the quartz plate and that of
the bottom surface of the liquid layer. From equation (27), the
slip parameter is a function of the attraction strength as well
as the properties of the bulk liquid. The distance between
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the atomic particles is of the order of 10−10 m. The part
of the mass inertia of the contact particles ρl�lω

2 is much
smaller compared with the other two parts, G∗/δ and jĉlkv,
with operating frequency at several megahertz. Neglecting the
mass inertia of the liquid particles at the contact interface, the
slip parameter can be rewritten as

α = G∗/δ

G∗/δ + jω
√

ρlĉl

(28)

Recalling the definition of the slip parameter, the
relationship between the displacement of the liquid layer and
the quartz crystal plate at the contact interface can be written as

uh
l + �u̇h

l = uh
q (29)

where � is a function of the contact interface properties and
bulk liquid properties,

� = δ
√

ρlĉl

G∗ (30)

McHale [13] introduced a single parameter, s, to consider
the slip boundary condition in his impedance analysis of the
acoustic wave sensors in a liquid environment. Comparing
equations (29) and (31) of [13], the parameter � in this paper
is the same as the parameter s proposed by McHale [13], in
whose paper the parameter s is assumed to be a real parameter.

It is reasonable that the slip parameter has a certain
relationship with the bulk liquid viscosities besides the contact
interface itself. With the model proposed in this paper, the slip
parameter, α [11], and s [13] are explored in greater detail for
more physical meanings.

The contact attraction strength between two contact layers
is a complex value; the physical concept can be illustrated with
a spring and dashpot connected between the contact interfaces:

G∗ = G′ + jωG′′ (31)

The slip parameter is a function of the attraction strength
and the bulk liquid viscosity. Figures 8 and 9 give the
amplitude of the slip parameter, |α|, and its phase as G′ and
the imaginary part, G′′, are varied, in which the operating
frequency f = 8.98 MHz, the bulk liquid viscosity is set at
ηl = 0.29 N s m−2, the interface distance is set as δ = 10−10 m
and the density of the liquid ρl = 1020 kg m−3. The attraction
strength can be a complex value. As shown in figures 8
and 9, when the attraction strength goes to infinity, the slip
parameter approaches 1. This is the maximal amplitude of
the slip parameter when the imaginary part of the interactive
strength is 0. As the interactive slip parameter goes to 0,
the slip parameter approaches 0 as well. When the real part
is set to be 0, the modelling is the same as in the friction
model discussed in McHale’s paper [13], that the interface
force is related to the relative velocity of the contact layers
with a friction coefficient. The slip parameter increases with
increasing magnitude of the imaginary part of the interactive
strength.

The slip parameter is not linearly proportional to the liquid
viscosity. The changing trend of the amplitude of the slip
parameter as a function of the liquid viscosity varies with
varying interface attraction strength [14]. With zero imaginary

Figure 8. Amplitude of slip parameter as a function of the
interactive strength, G′, and G′′.

Figure 9. Phase of the slip parameter as a function of the interactive
strength, G′, and G′′.

part of the attraction strength, i.e. G′′ = 0, when the interactive
strength is smaller than a value corresponding to the maximum
amplitude of the slip parameter, the slip parameter decreases as
the viscosity of the bulk liquid increases. However, for a higher
interactive strength at the solid–liquid interface, the amplitude
of the slip parameter increases as the viscosity of the bulk liquid
increases.

3.3. Determine the solid–liquid interface interactive strength
with the QCM

An insight into the slip parameter of the QCM operating in
the liquid environment it might be used for a fresh application
of the QCM, for example, to measure the attraction strength
between the solid and liquid by measuring the slip parameter.

From equation (28), the attraction strength can be
expressed as

G∗

δ
= jα

1 − α
ĉlkv = α

1 − α
ω

√
−ρlĉl (32)

where α is the slip parameter, which can be measured by
experiments.

Using the experimental results from Ferrante [11] as
listed in table 3, the attraction strength of a liquid of
different viscosity to a hydrophilic-coated (using 1-mercapto
undecanoic acid) sensor and a hydrophobic-coated (using
1-mercapto hexadecane) sensor used in that paper can be
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Table 3. Interactive strength calculated from slip parameters from Ferrante’s paper.

Glycerol in water Hydrophilic-coated Hydrophobic-coated

G∗

δ
(1014 N m−3)

G∗

δ
(1014 N m−3)

Density Viscosity α |α| (phase)
Fraction (kg m−3) (N s m−2) (no unit) (no unit)

0.0 1000.0 0.100 2 4.419(31.350) −0.031 − 0.042i 5.503(24.600) −0.0324 − 0.0389i
0.1 1012.6 0.290 32 2.911(25.340) −0.056 − 0.086i 3.501(21.030) −0.0591 − 0.0783i
0.2 1025.2 0.755 08 2.022(18.790) −0.101 − 0.187i 2.446(16.420) −0.1072 − 0.1576i
0.3 1037.8 1.761 20 1.727(13.390) −0.186 − 0.350i
0.4 1050.4 4.103 02 1.447(8.4610) −0.383 − 0.745i 1.405(6.0860) −0.4682 − 0.7940i
0.5 1063.1 7.168 15 1.321(5.1100) −0.718 − 1.260i
0.6 1075.7 15.285 1 1.174(3.3930) −0.1529 − 3.082i 1.176(0.1420) −2.5310 − 2.6032i
0.7 1088.3 36.010 9 0.937(1.0000) 10.492 + 5.932i
0.8 1100.9 62.981 3 0.893(−0.2850) 6.267 + 6.878i 0.868(−2.8550) 2.8325 + 6.3171i
0.9 1113.5 109.846 0.844(−3.2340) 3.208 + 6.901i
1.0 1126.1 157.429 0.832(−4/5560) 2.679 + 7.659i 0.823(−8.2020) 0.5205 + 6.6720i

∗ The slip parameters α are taken from Ferrante’s paper [11].
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Figure 10. Real part of the interactive strength of the liquid–solid
interface, G′/δ, as a function of the bulk liquid viscosity (calculated
from experimental results of Ferrante [11]).
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Figure 11. Imaginary part of the interactive strength of interface,
G′′/δ, as a function of bulk liquid viscosity (calculated from
experimental results of Ferrante [11]).

calculated as listed in table 3. The real part of the attraction
strength, G′/δ, and the imaginary part of the attraction strength,
G′′/δ, are plotted versus the kinematic viscosity of the liquid
in figures 10 and 11, respectively.

When the viscosity of the liquid is lower (mole fraction is
lower), the real part and the imaginary part of the interface
attraction strength for hydrophilic-coated and hydrophobic-
coated sensors are quite close. However, as the glycerol

fraction increases (viscosity is higher), the hydrophilic-coated
sensor (dotted line in figure) gives a higher attraction strength
than the hydrophobic-coated sensor (solid line in figure). It
is found that the imaginary parts of the interactive strengths
of these two types of sensors are almost the same. The real
part of the interactive strength of the hydrophilic-coated sensor
is larger than that of the hydrophilic-coated sensor. This is
not in conflict with the reality that the hydrophilic-coated
surface has a larger attraction strength with the viscosity liquid.
In addition, the imaginary part of the attraction strength for
both types of sensor is reduced with an increased fraction of
glycerol. From the results, it is shown that with a real friction
coefficient (imaginary part interactive strength G′′) alone as
in McHale’s paper [13] it is not enough to distinguish the
different interface conditions for different types of sensor. The
real part of the interactive strength contributes significantly
to distinguish the different interface conditions for these two
types of sensors.

Of course, it is not fair to draw a conclusion that the
relationship between the viscosity of liquid and the solid–
liquid interface attraction strength follows a simple curve as
in this paper because the physical details of atomic attraction
are much more complicated. The physical mechanism of the
atomic attraction between glycerol and the coating materials
used in Ferrante’s experiment [11] has not been considered.
However, the model presented in this paper is an attempt to
evaluate the solid–liquid interface attraction strength using a
QCM by measuring the slip parameter.

4. Conclusions

A continuous displacement assumption for a QCM in a
liquid masks the physical details of the contact interface
between the solid and liquid when the QCM operates in a
liquid environment. In this paper, a mechanical slip model
that involves the properties of the contact interface, such as
interactive strength, contact molecular size and viscosity of
the liquid, is discussed and used to describe the response of
the QCM in a viscous liquid. The slip parameter is expressed
explicitly as a function of the interface attraction strength of
contact layers, G∗, and the viscosity of the liquid. The detailed
mechanical description of the solid–liquid interface of the
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QCM in a liquid provides a physical approach to understanding
the performance of the QCM in a liquid.

The detailed physical description of the solid–liquid
interface is useful for exploring the use of the QCM in
the biological industry. With the mechanical slip model of
the interface, a new approach by using the slip parameter
measured with the QCM is proposed to determine the attraction
strength between the particles of a viscous liquid and solid
particles. The experimental data reported in the literature for
a hydrophilic-coated sensor and a hydrophobic-coated sensor
are used for the numerical examples. It is found that the
imaginary parts of the interactive strength of two types of
sensor are almost the same and the real parts of the interactive
strength contribute significantly to distinguish the different
interface conditions for these two types of sensor.
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