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Abstract
Acoustic wave devices, such as quartz crystal microbalances (QCM), are
extended to applications in liquid environments. An interfacial slip
phenomenon is expected to occur at the interface between the surface of a
quartz crystal sensor and the contacted liquid environment. Assumptions of
continuous displacement and stress at the liquid–solid interface mask the
physical details of the contact interface. In this paper, the motion equations
of the interfacial particles are employed to replace the interfacial continuous
displacement and continuous stress assumptions. The electrical impedance
of QCM in the liquid environment is derived based on this proposed
modeling. The comparison of the present result with that of the continuous
stress and displacement model is presented. The slip parameter, which is
defined as the amount of displacement transmission between the quartz
crystal top surface and bottom liquid particles, is presented as a function of
the contact properties. The effects of interactive force strength, liquid
viscosity and attached-particles size are included in the numerical studies.
The detailed modeling of the interface is useful in interpreting the slip
phenomenon between the sensor surface and the liquid.

1. Introduction

Quartz crystal microbalances (QCM) provide a simple and
effective means for detecting physical property changes of thin
layers at their surfaces. Sauerbrey [1] first reported that a
film attached to the surface of the electrodes of a piezoelectric
quartz crystal resonator caused a decrease in the resonance
frequency proportional to the mass of the film attached. The
Sauerbrey equation is valid under the condition that the film
is rigid and it is rigidly coupled to the oscillatory motion
of the quartz crystal surface. One of the advantages of AT-
cut QCM is their ability to act as a chemical detector in
the liquid environment. After the discovery that the QCM
resonator could also be used as a deposition monitor in liquids
by Nomura [2], many studies were devoted to the behavior of
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QCM under complex liquid loading. When a QCM operates
in a liquid environment, the oscillation of the device’s surface
is coupled into the liquid. The molecular layer attached to the
QCM surface is neither rigidly coupled nor a simple Newtonian
liquid. It has therefore become essential that models of the
response of an acoustic device to the viscoelastic medium be
developed.

The electrical analogue approaches [3], as well as the
equivalent circuit of the resonating resonator and transmission
line, have served effectively as methods for electrically
characterizing the crystal. However, the analogue method
often masks the physical insight into the detailed nature of
the loading mechanism. The first acoustic wave analysis
of a loaded resonator with elastic overlayer was performed
by Miller and Bolef [4] and then simplified by Lu et al
[5]. Reed et al [6] derived the electrical admittance of the
QCM with a viscoelastic medium directly in terms of the
physical properties of the compound resonator. Kanazawa [7]
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Figure 1. Quartz crystal resonator with electrodes on surface.

summarized the mechanical properties of QCM and overlayer
correlating to the observed electrical behavior. A common
feature of these treatments is that continuous shear stress and
continuous displacement are assumed for the contact interface
between the attached layer and sensor surface.

The role of interfacial slip between the sensor surface and
the attached medium is one of the controversies in modeling
the QCM liquid environment. Ferrante [8] defined the slip
parameter as the ratio between the displacement of the liquid
bottom surface and the displacement sensor contact surface and
employed it to replace the continuous displacement assumption
as the boundary condition for solving the equations. The slip
friction force, which is proportional to the relative velocity
between the contact surfaces, is employed by McHale [9] to
analyze the interfacial slip influence.

In this paper, a detailed mechanical modeling of the
contact interface for QCM operation in a liquid is proposed.
The continuous displacement and stress assumption boundary
conditions are replaced by the motion equations of contact
molecules. The interface modeling includes the properties
of the contact interface, such as attraction strength, contact
molecular size and viscosity of the host liquid. The electrical
admittance of QCM is derived directly in terms of mechanical
properties. The slip parameter between the sensor surface and
the liquid are evaluated as functions of the contact attraction
strength and viscosity of the bulk liquid.

2. Quartz crystal microbalance with viscoelastic
liquid loading

As shown in figure 1, the quartz crystal resonator is composed
of a quartz crystal plate and two metal electrodes on its surfaces.
To simplify the problem, the thickness of the electrode is
neglected in the modeling. Changes in the properties of the
liquid or in the surface mass density of the coating produce
changes in the electrical impedance of the sensor. Normally,
the quartz crystal is an AT-cut sample, with polarization axis
y normal to the interface. When an electrical field is applied
across the quartz crystal along the y direction, the mechanical
displacement in the lateral direction is generated.

When the QCM is immersed in a liquid, the shear wave
propagates into the liquid environment through the liquid–solid
interface. The compound resonator is immersed in the liquid
as shown in figure 2. The properties of the liquid and the
contact conditions are reflected in the admittance spectrum of
the QCM.

2.1. Motion equations of QCM with viscoelastic liquid
loading

The QCM operates with the thickness shear vibration mode or
its odd harmonics. Based on Newton’s law, the wave equation

of the piezoelectric resonator in the thickness shear mode can
be expressed in the form [10]

ρq
∂2uq

∂t2
=

(
cq

66 + jωηq +
e2

26

ε22

)
∂2uq

∂y2
, (1)

where uq is the displacement in the lateral direction of the
quartz element, ρq is the density of the quartz, cq

66 and e26 are
the relevant elastic shear modulus and piezoelectric constant
for the quartz crystal, ε22 is the dielectric constant, ω is
the frequency and ηq is the viscosity of the quartz crystal.
Comparing the equation with that for non-piezoelectric
materials, the expression of the equivalent stiffness of the
quartz has an extra term due to the electrical effect. The
piezoelectric stiffness is defined as

ĉq = cq
66 + jωηq +

e2
26

ε22
. (2)

The piezoelectric shear mode stiffness of the quartz ĉq is
complex when the viscous loss is considered. In order to
compare the Q factor of the unperturbed quartz and perturbed
quartz, the tiny viscous loss of the quartz crystal is considered
in this paper.

For a finite thickness slab of the resonator, because of wave
reflection from the boundary, there are two waves in the slab.
One of them propagates in the +y direction and the other in the
−y direction. The solution of the motion equation (1) can be
written as the sum of these two waves [11]:

uq = (A1ejkq y + B1e−jkq y)ejωt , (3)

where A1 and B1 are constants determined by the boundary
conditions and kq is the shear wavevector within the quartz.
From the constitutive relationship of the quartz crystal, the
wavevector kq is a function of the piezoelectric stiffness and
its density, j = √−1. The complex wave-propagating vector
can be expressed as

kq = ω

√
ρq

ĉq
. (4)

When the quartz resonator is working at the fundamental shear
resonance frequency or its odd harmonics, the propagating
vector is related to the thickness of the quartz resonator as

kq = 2n + 1

hq
π n = 1, 2, 3, . . . (5)

where hq is the thickness of the quartz crystal.
In order to determine the constants of the expression,

the boundary conditions are needed, including the stress
and displacement boundary conditions. The one-dimensional
coupling constitutive relationship between the mechanical
variables (stress and strain) and electrical variables (electric
field and electric displacement) for piezoelectric materials for
the relevant shear mode can be written as [10]

Tq = c66γx y + e26E (6a)

Dy = e26γx y − ε22E, (6b)

where the strain γx y = ∂uq/∂y, Tq is the shear stress inside
quartz, the electrical field E can be expressed as the differential
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Figure 2. 2D schematic diagram of the QCM with semi-infinite liquid loading on the surface with boundary conditions.

form of the electric potential E = ∂φ/∂y and Dy is the
electrical displacement in the y direction. Associated with the
one-dimensional electric displacement relation ∂ Dy/∂y = 0
and equation (6b), the relationship between the electrical
potential and displacement can be expressed as

ε22
∂2φ

∂y2
− e26

∂2uq

∂y2
= 0. (7)

The electrical potential φ is given as follows:

φ(y, t) =
(

e26

ε22
A1ejkq y +

e26

ε22
B1e−jkq y + Cy + D

)
ejωt (8)

where C and D are constants to be determined by the boundary
conditions. Substituting the expressions of strain and electrical
field into equation (6a), the shear stress inside the quartz crystal
can be easily expressed as

Tq = jĉqkq(A1ejkq y − B1e−jkq y)ejωt + Ce26 Eejωt . (9)

The equations of motion for the liquid medium are expressed
as a combination of the continuity equations, Hooke’s law and
Newton’s second law [12]:

ρv + (ρvu ′
i)i = 0 (10)

(Tv)i j = −pvδi j + ηl(u
′
i, j + u ′

j,i) + (ξ − 0.67ηv)δi j u
′
k,k (11)

(Tv)i j,i + Fj = ρv(u
′′
j + u ′

i u
′
j,i). (12)

The general solution of the expressions for motion for a
damped plane wave propagating in the liquid environment was
obtained by Ferrante et al [8], assuming incompressible flow,
no external forces, constant viscosity and neglecting the non-
linear term of the displacement. Their expression for the liquid
displacement and shear stress are similarly expressed as

uv = (A2ejkv y + B2e−jkv y)ejωt (13)

Tv = jĉvkv(A2ejkv y − B2e−jkv y)ejωt (14)

where ĉv = cv
66+jωηv, with cv

66 and ηv as the shear modulus and
viscosity of the viscoelastic liquid and kv = ω

√
ρv/ĉv, with

ρv the density of the viscoelastic liquid. A2, B2 are complex
constants to be determined by the boundary conditions. There
are six undetermined constants to be derived from the boundary
conditions. In order to describe the physical behavior of the
quartz and the layer, six independent boundary conditions are
needed. The problem is focused on solving the unknown
constants in the above expressions according to the boundary
conditions.

The wave displacement generates an accompanying
electrical potential through which the piezoelectric wave can
be electrically detected. The impedance/admittance analysis,
in which the spectrum of the impedance/admittance of the
compound sensor is recorded as a function of the excitation
frequency, is widely used to detect the perturbation of the BAW
sensors. The admittance is defined as the ratio of the input
current to the voltage. The explicit expression of the current
of the piezoelectric materials is Q = ∫

Ā D2 dA [12]. The
current across the quartz crystal, which is the time derivative
of the charge, can be expressed as

I = −jωε22C Ā (15)

where Ā is the effective electrode surface area and C is the
constant from equation (8). The admittance of the quartz
crystal resonator can be determined as

Y = I

V
= jωε22 Ā

2ϕ0
C. (16)

After the constant C is determined from the boundary
conditions, the spectrum of the admittance can be predicted.
The expression of equation (16) is a common expression for
the admittance of a quartz crystal resonator with multi-layer
loading.

2.2. Mechanical description of the interface boundary
conditions

In order to solve the motion equations in section 2.1, six
boundary conditions are needed. At the interface between
the quartz crystal surface and the viscoelastic molecular layer,
the transverse vibratory motion of particles at the top of the
crystal surface causes the transverse motion of the particles
of the attached layer in contact with the sensor surface. The
transverse shear wave is partially transmitted and partially
reflected. The amount of transmission and reflection depends
on the physical and chemical properties of the interface and
the attached viscoelastic layers. The continuous displacement
and stress assumptions mask the detailed mechanical behavior
of the contact interface.

The interfacial slip between the quartz surface and layer
is modeled as a local molecular mass and interaction element
between the masses, as shown in figure 3. The m1 represents
the mass particle on the layer surface and m2 represents the
mass particle on the quartz surface. Both displacements of the
mass particles are restricted to the x direction. The interaction
between the two particles is presented as a spring and
damper with complex parameters G∗, which is the force when
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Figure 3. Mechanical description of the contact interface between
the liquid and the sensor surface.

unit shear displacement occurs between two contact particles.
Besides the interaction force from the sensor surface particles,
there are internal attraction forces from the bulk liquid. This
interaction is proportional to the gradient of the displacement in
the x direction. The interaction force between the two contact
surfaces molecules is modeled as the spring-dashpot force,
which is proportional to the relative displacement/velocity
between the molecules of the two surfaces. The shear force
on the interface is equal to the spring force plus the damping
force.

In this paper, discussions are focused on the AT-cut
thickness shear mode resonator. Therefore, only the shear
deformation and thickness shear stresses are considered. To
extend to other acoustic sensors, such as SAW, PLE, etc, the
corresponding deformation and stress are needed to replace the
shear components here.

The lateral displacement of the quartz contact surface
molecules is noted as uh

q and the displacement of the contact
particles at the bottom of the liquid is denoted as uh

v. The
relative displacement in the x direction can be expressed as
�u = uh

q − uh
v . The interactive force is proportional to the

relative shear displacement. This assumption is valid when the
relative deformation is small, which is within the linear elastic
region. The equivalent shear deformation of the interface can
be expressed as

γ = �u

δ
= uh

q

δ
− uh

v

δ
(17)

where δ is the distance between the molecules on the quartz
surface and those on the viscoelastic layer contact surface,
as illustrated in figure 3. The force keeping the connection
between the two contact surfaces is like the shear stress on the
continuous medium. The interactive force can be expressed as

F = G∗γ = G ′γ + G ′′γ̇ = (G ′ + jωG ′′)
(

uh
q

δ
− uh

v

δ

)
. (18)

The single shear vibration mode is considered in the QCM
compound resonator, where the particles on the surface have
the same vibration phase. The model is reduced to a one-
dimensional problem. Based on Newton’s law, the motion
equation of the particles on the viscoelastic layer surface can
be expressed as

ρv�vüh
v + T h

v +
G∗

δ
(uh

q − uh
v) = 0 (19)

where (•)h means the corresponding value on the interfacial
layer. ρv is the density of the molecular layer, G∗ = G ′ +jωG ′′
is the equivalent shear stiffness of the interfacial connection
between the quartz surface and the viscoelastic layer, with
G ′ as the storage stiffness and G ′′ as the dissipated stiffness,
�v represents the height of the molecular layer attached to
the sensor surface, uh

v and uh
q are lateral displacements of the

attached molecules and quartz surface, respectively. and T h
v is

the shear stress on the bottom of the liquid in contact with the
sensor surface having y = h1:

T h
v = jĉvkv(A2ejkvh1 − B2e−jkvh1)ejωt . (20)

Substituting the expression for the displacements of the quartz
crystal and the liquid medium (equations (3), (13) and (20))
into equation (19) we get

G∗

δ
ejkq h1 A1 +

G∗

δ
e−jkqh1 B1

+
[
−ρv�vω

2 + jcvkv − G∗

δ

]
ejkvh2 A2

+
[
−ρv�vω

2 − jcvkv − G∗

δ

]
e−jkvh1 B2 = 0. (21)

With the same consideration given to quartz crystal particles
at the top of the quartz resonator, another boundary condition
on the interface between the quartz crystal surface and the
attached layer can be expressed as[
−ρq�qω

2 + jcqkq +
G∗

δ

]
ejkvh1 A1

+

[
−ρq�qω

2 − jcqkq +
G∗

δ

]
e−jkvh1 B1

= G∗

δ
ejkvh1 A2 +

G∗

δ
e−jkvh1 B2 + e26C. (22)

Combining equations (21) and (22), and canceling the
interactive force between the two surfaces, the boundary
condition expression (22) can be replaced by

[−ρq�qω
2 + jcqkq]ejkvh1 A1

+ [−ρq�qω
2 − jcqkq]e−jkvh1 B1 + e26C

= [−ρv�vω
2 + jcvkv]ejkvh1 A2

+ [−ρv�vω
2 − jcvkv]B2. (23)

The continuous displacement assumption and continuous
stress assumption on the interface are replaced by the more
detailed description of the contact interfacial properties.

When the inertia of the contact particles’ mass is small
enough, and the effect of inertia is neglected, equation (23) is
reduced to the equation for continuous stress assumption [9]:

jcqkqejkvh1 A1 − jcqkqe−jkvh1 B1 + e26C

= jcvkvejkvh1 A2 − jcvkve−jkvh1 B2. (24)

Furthermore, when the contact interactive force is much larger,
that is, the shear stiffness between the two contact interfaces
is much higher than that of the contact viscoelastic layer,
equation (21) can be reduced to the continuous displacement
assumption [7]:

G∗

δ
ejkq h1 A1 +

G∗

δ
e−jkqh1 B1 − G∗

δ
ejkvh2 A2 − G∗

δ
e−jkvh1 B2 = 0.

(25)
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Table 1. Parameters of a quartz crystal microbalance for analysis.

Quartz
parameters Value Description

ρq 2649 kg m−3 Density
cq 2.91 × 1010 N m−2 Shear modulus
e26 7.98 × 10−2 C m−2 Piezoelectric constant
ε22 3.982 × 10−11 C V−1 m−1 Permittivity
ηq 8.376 × 10−3 N s m−1 Effective viscosity

of quartz crystal
Ā 0.2984 cm2 Effective electrode

surface area

Now, combining equations (21) and (23) the boundary
conditions illustrated in figure 2 are

y = +∞, uv = 0 ⇒ A2 = 0 (26)

y = h1,

ϕ(h1) = ϕ0 ⇒ e26

ε22
(A1ejkq h1 + B1e−jkqh1) + h1C + D = ϕ0

(27)

y = 0, Tq(h1) = 0 ⇒ jĉqkq(A1 − B1) + e26C = 0 (28)

y = 0, ϕ(h1) = −ϕ0 ⇒ e26

ε22
(A1 + B1) + D = −ϕ0

(29)

where ϕ0 is the electrical potential applied at the upper
electrode. Constants A1, B1, A2, B2, C and D can be solved
based on six equations. The expressions of these constants are
given in the appendix.

The ratio between the complex displacement of liquid
bottom particles and the sensor surface displacement is defined
as the slip parameter by Ferrante [12]:

α = uh
v

uh
q

. (30)

Based on the mechanical modeling, the slip parameter can be
expressed as

α = A2ejkvh1 + B2e−jkvh1

A1ejkq h1 + B1e−jkqh1
= A2

A1ej(kq−kv)h1 + B1e−(kq+kv)h1
.

(31)

3. Results and discussions

3.1. QCM model for numerical analysis

The same parameters for the QCM presented in [8] are used in
this study. The parameters of the quartz crystal are summarized
in table 1.

The admittance and impedance spectrum of the QCM
under air without external loading evaluated from the equations
are illustrated in figures 4 and 5. The resonance frequency
and anti-resonance frequency of the first shear mode vibration
are 9.0039 and 9.023 28 MHz, respectively. Because of its
lower viscoelastic coefficient, unperturbed QCM under the air
condition is considerably sharper for the admittance phase and
magnitude curves. With the viscoelastic layer attached to the
sensor surface, the sharpness of the spectrum is more rounded
due to the decreasing Q factor, besides the frequency shift.

In this paper, the mass attached to the sensor surface is
assumed to be uniform on the surface. The roughness of the
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Figure 4. Amplitude of the admittance spectrum of QCM in air
(without loading).
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Figure 5. Phase of the admittance spectrum of QCM in air (without
loading).

quartz surface is neglected as well. The sensitivity of the
frequency as the mass changes can be described as the ratio
between the frequency shift � f and the layer height �hv:

Sf = � f

�m
= � f

ρv Ā�hv
(32)

where ρv is the density of the attached mass. The Sauerbrey
equation presented a linear relationship between the frequency
shift and the attached mass [1], i.e. the mass sensitivity Sf is
constant. The linear relationship of the Sauerbrey equation
is only applicable for thin absorption layers. Under the non-
slip assumption with an elastic mass layer, figure 6 gives the
frequency shift versus the thickness of the attached layer, in
which the density of the layer is ρv = 1000 kg m−3. The
x coordinate is the ratio between the thickness of the attached
layer and that of the quartz resonator. The linear ratio between
the frequency shift and the thickness of the attached layer is
valid for the small region. When the thickness of the attached
layer is beyond 6% of the quartz thickness, the mass sensitivity
of the elastic layer is obviously different from that derived from
the Sauerbrey equation. As the elastic shear modulus of the
attached layer decreases, this nonlinearity is more serious as
illustrated in figure 6.

When the QCM is immersed in the viscoelastic liquid
environment, its admittance spectrum sharpness is changed as
well as the resonance frequency shift. Bold curves in figures 7
and 8 give the amplitude and phase plot of the QCM in a typical
liquid environment, in which the viscosity of the liquid is set
as ηv = 0.05 N s m−2 and the shear storage stiffness is set
as cv = 10 N m−2. The tiny shear storage stiffness of the
liquid prevents the wave from propagating into the liquid and
then the wave is attenuated rapidly in the liquid. The liquid
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is assumed to be semi-infinite and there is no reflecting shear
wave from the surface of the liquid. The distance between the
two contact layers of the liquid and the quartz surface is set as
δ = 1.5 × 10−10 m. The resonance frequency of the QCM is
reduced due to the liquid loading and its admittance spectrum
sharpness is more rounded. The displacement spectra of
the sensor surface and that of the bottom of the liquid are
presented as bold curves in figure 9. The slip parameter as
a function of frequency around the QCM shear resonance is
presented in figure 10. The amplitude of the slip parameter
at the QCM resonance frequency of 8.993 MHz is 1.11 and
the corresponding phase is −6.78◦. The displacement of the
sensor surface is partially transmitted into the liquid particles.

The results evaluated from the non-slip models are
presented in figures 7 and 8, which are plotted as normal
curves. Comparing with the results of the slip model, the
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Figure 9. Displacements of the contact interface layers for the
proposed modeling and non-slip modeling (bold curve—current
modeling, normal curve—non-slip modeling).
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Figure 10. Amplitude and phase of the slip parameter.

Q factor of the QCM which is evaluated from the non-slip
model is larger than that evaluated from the slip model. The
displacement of the sensor surface and the displacement of the
liquid bottom surface are also presented in figure 9. The ratio
between these displacements is defined as the slip parameter.
The difference between these two modes is that the inertia
effect and the phase changes between the two contact interfaces
are included. It is intuitive that, with increasing strength of
the interactive force and reducing the molecular size, results
evaluated from the mechanical mode in this paper is close to
that of the non-slip model.

The slip parameter on the interface reflects the vibration
transmission between the sensor surface particles and liquid
particles. It is dependent on the contact properties of the
interface. The interactive force between the liquid molecules
and the sensor surface, the liquid molecular size attached to
the surface and the viscosity of the host liquid environment
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affect the QCM performance. The relationship between the
slip parameter and the mechanical properties can be used to
measure the behavior of the solid–liquid interface.

3.2. Study of the contact condition parameters for the QCM
in liquid

The resonance frequency and the Q factor of the QCM
electrical admittance respond to changes in the contact
conditions as well as to the properties of the bulk liquid.
The model derived from the continuous stress and continuous
displacement assumptions masks the detailed mechanical
properties of the contact interface. As illustrated in
equation (26), the interfacial slip phenomena are described by
the transfer function between the displacements of particles at
the top of the sensor surface and that of particles at the bottom of
the attached layer in contact with the sensor. The local spring–
damper-mass model proposed in this paper is an attempt for a
detailed evaluation of the phenomena at the interfacial layer.
By coating different biological layers on the QCM surface,
the interactive force between the sensor’s surface and the
attached molecular particles can be changed, for example
by using hydrophilic- or hydrophobic-coated sensors. In
addition, the contact condition is also affected by the size of
the attached molecules and the properties of the host liquid.
The corresponding parameters for these contact conditions are
included in the modeling equations (21) and (23).

The amplitude of the slip parameter |α| and its phase
as functions of the interactive force strength modulus G ′ are
plotted in figures 11 and 12. The amplitude of the slip
parameter approaches one and the phase approaches zero as
the strength of the interactive force increases. There is a
peak value for the slip parameter amplitude at certain values
of the strength of the interactive force. This is due to the
fact that coupling resonance happens between the contact
particle pairs. The value of the interactive strength, which
gives the maximum amplitude of the slip parameter, depends
on the viscosity of the bulk liquid. Higher liquid viscosity
shifts the peak of the slip parameter to the left, as shown
in figure 11. When the interactive strength is smaller than
the value which gives the local resonance, higher viscosity
results in a smaller amplitude for the slip parameter. This
trend is in agreement with the experimental results reported
by Ferrante [8] that slip parameter decreases and approaches
unity as the liquid viscosity increases. The reverse trend exists
for the slip parameter as a function of the liquid viscosity when
the attraction strength is larger than the value, which results in
local resonance.

Keeping the interactive strength constant at G ′ = 300 Pa,
which is smaller than the value corresponding to the maximum
slip parameter, and changing the liquid viscosity, the slip
parameter as a function of the liquid viscosity is plotted in
figure 13. The slip parameter decreases as the viscosity of
the bulk liquid increases. However, with the higher value
of the interface interactive strength, the relationship between
the slip parameter and the liquid viscosity are different. As
shown in figure 14, the interactive strength value is set as
G ′ = 5000 Pa, which is larger than the value corresponding
to the maximum slip parameter. The amplitude of the slip
parameter increases as the viscosity of the bulk liquid increases.
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Figure 11. Amplitude of the slip parameter |α(ω)| as a function of
the viscosity of the bulk liquid: (a) liquid viscosity = 0.05 N s m−3,
(b) liquid viscosity = 0.5 N s m−3 and (c) liquid
viscosity = 5 N s m−3.
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Figure 12. Phase of the slip parameter as a function of viscosity of
the bulk liquid: (a) liquid viscosity = 0.05 N s m−3, (b) liquid
viscosity = 0.5 N s m−3 and (c) liquid viscosity = 5 N s m−3.
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Figure 13. Amplitude of the slip parameter versus viscosity of the
liquid with attraction strength = 300 Pa.

From the simulation results, it is shown that the slip parameter
is not linearly proportional to the liquid viscosity, and the
changing trend of the amplitude of the slip parameter as
a function of liquid viscosity varies with different interface
interactive forces.

4. Conclusions

The continuous stress and continuous displacement assump-
tions were employed for application of the QCM in air con-
dition. However, the assumptions at the interface mask the
mechanical properties of the contact conditions. The error due
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Figure 14. Amplitude of the slip parameter versus viscosity of the
liquid with attraction strength = 5000 Pa.

to the non-slip assumptions cannot be ignored when the QCM
operates in the low viscosity liquid environment. In this pa-
per, a detailed mechanical modeling of the interface layer is
proposed, which involves the properties of the contact inter-
face, such as the interactive strength, contact molecular size
and the viscosity of the liquid. The motion equations of the
contact particles are employed to replace the continuous stress
and displacement assumptions at the interface. The numerical
results are compared with the results evaluated from the non-
slip model. The amplitude evaluated from the model in this
paper is smaller than that evaluated from the non-slip model.
By numerical analysis, the slip parameter is studied. There is
an interactive strength value that gives the maximum ampli-
tude of the slip parameter. The slip parameter of the contact
interface evaluated from the model is a function of the interac-
tive strength and viscosity of the bulk liquid. By measuring the
slip parameter of the contact interface, the changes in the at-
traction strength and liquid properties can be determined. The
detailed mechanical description of the solid–liquid interface
of the QCM in a liquid provides an approach to understanding
the performance of the QCM description of the interface in a
liquid and it is useful for exploring fresh ideas for the use of
AT-cut quartz crystals.

Appendix. Expressions of the constants A1, B1, A2,
B2, C, D by solving the six boundary conditions.

A1 = {2P2ϕ0}
{(

e26

ε22
ejkqh1 − e26

ε22
− j

h1

e26
ĉqkq

)
P2

+

(
e26

ε22
e−jkqh1 − e26

ε22
+ j

h1

e26
ĉqkq

)
P1

}−1

B1 = {2P1ϕ0}
{(

e26

ε22
ejkqh1 − e26

ε22
− j

h1

e26
ĉqkq

)
P2

+
(

e26

ε22
e−jkqh1 − e26

ε22
+ j

h1

e26
ĉqkq

)
P1

}−1

A2 = 0

B2 =
G∗
δ

ejk2h1

jĉvkv + G∗
δ

+ ρv�vω2
{2(ejkq h1 P2 + e−jkq h1 P1)ϕ0}

×
{(

e26

ε22
ejkqh1 − e26

ε22
− j

h1

e26
ĉqkq

)
P2

+

(
e26

ε22
e−jkqh1 − e26

ε22
+ j

h1

e26
ĉqkq

)
P1

}−1

C = 2jĉqkqϕ0

e26

×
[
{P1 − P2}

{(
e26

ε22
ejkqh1 − e26

ε22
− j

h1

e26
ĉqkq

)
P2

+

(
e26

ε22
e−jkqh1 − e26

ε22
+ j

h1

e26
ĉqkq

)
P1
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D = −ϕ0 − 2e26ϕ0

ε22[
{P1 + P2}

{(
e26

ε22
ejkq h1 − e26

ε22
− j

h1

e26
ĉqkq

)
P2

+

(
e26

ε22
e−jkqh1 − e26

ε22
+ j

h1

e26
ĉqkq

)
P1

}−1]

where

P1 = [(jĉqkq + ρq�qω
2)e2jkqh1 − jĉqkqejkqh1 ]

×
(

jĉvkv +
G∗

δ
+ ρv�vω

2

)

+ e2jkq h1
G∗

δ
(jĉvkv + ρv�vω

2)

P2 = (jĉqkq + ρq�qω
2 − jĉqkqejkqh1)

×
(

jĉvkv +
G∗

δ
+ ρv�vω

2

)
− G∗

δ
(jĉvkv + ρv�vω

2).
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