
These files document the internal implementation of eCos which may or may not change in later
revisions. The interface presented here has no guarantee of being supported in future releases of eCos.

Copyright (c) 2002 by Navosha Inc.. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, v1.0 or later (the latest version is presently available
at http://www.opencontent.org/openpub/).

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless
prior permission is obtained from the copyright holder. The holder my be contacted at
staff@navosha.com. This document may be reproduced in all or part electronically as well as modified
provided that the Navosha logo is incorporated in the resulting document and all copyright notices are
included.

NOTE: this is an ALPHA document currently. There may be errors as well as

omissions in this document. Your feedback is welcome and appreciated.

Table of Contents
Cyg_Alarm Alarms

Cyg_Binary_Semaphore Binary Semaphores

Cyg_Clock Clocks

Cyg_Condition_Variable Conditional Variables

Cyg_Counter Counters

Cyg_Counting_Semaphore Counting Semaphores

Cyg_Flag Flags

Cyg_Interrupt Interrupts

Cyg_Mbox Mailboxes

Cyg_Mempool_Fixed Fixed Sized Memory Allocation

Cyg_Mempool_Variable Variable Sized Memory Allocation

Cyg_Mutex Mutual Exclusion

http://www.navosha.com/
mailto:staff@navosha.com
http://www.opencontent.org/openpub/
mailto:staff@navosha.com

Cyg_Scheduler Scheduler Operations

Cyg_Thread Threads

Function Index
Cyg_Alarm::Cyg_Alarm create an alarm

Cyg_Alarm::~Cyg_Alarm destroy an alarm

Cyg_Alarm::initialize initialize an alarm

Cyg_Alarm::enable enable an alarm

Cyg_Alarm::disable disable an alarm

Cyg_Alarm::get_times get trigger and interval values

Cyg_Binary_Semaphore::Cyg_Binary_Semaphore create a binary semaphore

Cyg_Binary_Semaphore::~Cyg_Binary_Semaphore destroy a binary semaphore

Cyg_Binary_Semaphore::wait get a binary semaphore

Cyg_Binary_Semaphore::trywait get a binary semaphore, don't block

Cyg_Binary_Semaphore::post release a binary semaphore

Cyg_Binary_Semaphore::posted check availability of a binary semaphore

Cyg_Clock::Cyg_Clock create a clock

Cyg_Clock::~Cyg_Clock destroy a clock

Cyg_Clock::get_resolution get the resolution of the clock

Cyg_Clock::set_resolution set clock resolution

Cyg_Clock::get_other_to_clock_converter setup clock conversion

Cyg_Clock::get_clock_to_other_converter setup clock conversion

Cyg_Clock::convert convert from one clock to another

Cyg_Condition_Variable::Cyg_Condition_Variable create a condition variable

Cyg_Condition_Variable::~Cyg_Condition_Variable destroy condition variable

Cyg_Condition_Variable::signal wake one thread waiting on condition
variable

Cyg_Condition_Variable::broadcast wake all threads waiting on condition
variable

Cyg_Condition_Variable::wait wait on a condition variable

Cyg_Condition_Variable::wait wait until an absolute time on a condition
variable

Cyg_Condition_Variable::wait wait on a condition variable

Cyg_Condition_Variable::wait wait until an absolute time on a condition
variable

Cyg_Counter::Cyg_Counter create a counter

Cyg_Counter::~Cyg_Counter destroys a counter

Cyg_Counter::current_value get the current value of the counter

Cyg_Counter::current_value_lo get lower 32 bits of counter

Cyg_Counter::current_value_hi get upper 32 bits of counter

Cyg_Counter::set_value set counter value directly

Cyg_Counter::tick increment counter by some number of ticks

Cyg_Counter::add_alarm attach an alarm to counter

Cyg_Counter::rem_alarm detach alarm from counter

Cyg_Counting_Semaphore::Cyg_Counting_Semaphore create counting semaphore

Cyg_Counting_Semaphore::~Cyg_Counting_Semaphore destroy a counting semaphore

Cyg_Counting_Semaphore::wait get a counting semaphore

Cyg_Counting_Semaphore::wait wait until an absolute time for a counting
semaphore

Cyg_Counting_Semaphore::trywait get a counting semaphore, don't block

Cyg_Counting_Semaphore::post release a counting semaphore

Cyg_Counting_Semaphore::peek get the count of a counting semaphore

Cyg_Flag::Cyg_Flag create flag

Cyg_Flag::~Cyg_Flag destroy flag

Cyg_Flag::setbits set bits in a flag

Cyg_Flag::maskbits clear bits in flag

Cyg_Flag::wait wait on a a condition or set of conditions

Cyg_Flag::wait wait on a a condition or set of conditions
with a timeout

Cyg_Flag::poll test for a pattern match on the flag

Cyg_Flag::peek get conditions set in a given flag

Cyg_Flag::waiting check to see if any threads are waiting on
flag

Cyg_Interrupt::Cyg_Interrupt create an interrupt handler

Cyg_Interrupt::~Cyg_Interrupt delete an interrupt handler

Cyg_Interrupt::attach attach an interrupt

Cyg_Interrupt::detach detach an interrupt

Cyg_Interrupt::get_vsr get the VSR pointer of an interrupt

Cyg_Interrupt::set_vsr set a new VSR

Cyg_Interrupt::disable_interrupts disable interrupts globally

Cyg_Interrupt::enable_interrupts enable interrupts globally

Cyg_Interrupt::mask_interrupt mask an interrupt

Cyg_Interrupt::mask_interrupt_intunsafe interrupt unsafe mask an interrupt

Cyg_Interrupt::unmask_interrupt unmask an interrupt

Cyg_Interrupt::unmask_interrupt_intunsafe interrupt unsafe unmask an interrupt

Cyg_Interrupt::acknowledge_interrupt acknowledge an interrupt

Cyg_Interrupt::configure_interrupt configure an interrupt

Cyg_Interrupt::set_cpu set cpu

Cyg_Interrupt::get_cpu get cpu

Cyg_Mbox::Cyg_Mbox create a message box

Cyg_Mbox::~Cyg_Mbox destroy a message box

Cyg_Mbox::get get a message from a message box

Cyg_Mbox::get get a message from a message box with
timeout

Cyg_Mbox::tryget get a message from a message box if one is
available

Cyg_Mbox::peek_item get a message from an mbox but don't
remove from queue

Cyg_Mbox::put place a message into a message box

Cyg_Mbox::put place a message into a message box with a
timeout

Cyg_Mbox::tryput place a message into a message box if space
is available

Cyg_Mbox::peek gets the number of messages currently in the
message queue

Cyg_Mbox::waiting_to_get reports if any threads are waiting to get a
message from this mbox

Cyg_Mbox::waiting_to_put reports if any threads are waiting to place a
message into this mbox

Cyg_Mempool_Fixed::Cyg_Mempool_Fixed create fixed block memory heap

Cyg_Mempool_Fixed::~Cyg_Mempool_Fixed destroy fixed size memory pool

Cyg_Mempool_Fixed::try_alloc allocate a fixed block of memory,
nonblocking

Cyg_Mempool_Fixed::alloc allocate a fixed block size, block thread if
necessary

Cyg_Mempool_Fixed::alloc allocate a fixed block size with timeout

Cyg_Mempool_Fixed::free return a block of memory to a fixed sized
heap

Cyg_Mempool_Fixed::get_status get status on a heap

Cyg_Mempool_Variable::Cyg_Mempool_Variable create a variable heap

Cyg_Mempool_Variable::~Cyg_Mempool_Variable destroy variable heap

Cyg_Mempool_Variable::try_alloc allocate a block of memory

Cyg_Mempool_Variable::alloc allocate a block of memory, block until
memory available

Cyg_Mempool_Variable::alloc allocate a block of memory with timeout

Cyg_Mempool_Variable::resize_alloc resize a previously allocated block of
memory

Cyg_Mempool_Variable::free free an allocated block of memory

Cyg_Mempool_Variable::get_status get status on a heap

Cyg_Mutex::Cyg_Mutex create a mutex

Cyg_Mutex::Cyg_Mutex create a mutex with a specified protocol

Cyg_Mutex::~Cyg_Mutex destroy a mutex

Cyg_Mutex::lock lock a mutex or wait until it can be locked

Cyg_Mutex::trylock lock a mutex if it's free

Cyg_Mutex::unlock unlock a mutex

Cyg_Mutex::release release all threads waiting on a mutex

Cyg_Mutex::set_ceiling set the max priority to be inherited

Cyg_Mutex::get_ceiling get the priority ceiling of this mutex

Cyg_Mutex::get_owner get the current owner of a mutex

Cyg_Mutex::set_protocol set the protocol of a mutex

Cyg_Scheduler::get_sched_lock get the lock count of a thread

Cyg_Scheduler::lock lock a thread

Cyg_Scheduler::unlock unlock a thread

Cyg_Thread::Cyg_Thread contructor to create a new thread

Cyg_Thread::exit terminate calling thread

Cyg_Thread::suspend suspend a thread

Cyg_Thread::resume resume a suspended thread

Cyg_Thread::force_resume force a suspended thread to be resumed

Cyg_Thread::kill kill a thread

Cyg_Thread::release force a thread to wake up with the reason of
BREAK

Cyg_Thread::yield yield the cpu to another thread

Cyg_Thread::self get the "this" pointer of the calling thread

Cyg_Thread::set_priority set priority of a thread

Cyg_Thread::get_priority get the set priority of a thread

Cyg_Thread::get_current_priority get the current priority of a thread

Cyg_Thread::delay delay a thread

Cyg_HardwareThread::get_stack_base get base address of a thread's stack

Cyg_HardwareThread::get_stack_size get the size of a thread's stack

Cyg_HardwareThread::measure_stack_usage measure a stack's usage

Cyg_Thread::new_data_index gets a new data index for per thread data

Cyg_Thread::free_data_index free a data index for per thread data

Cyg_Thread::get_data get per thread data

Cyg_Thread::get_data_ptr get per thread data pointer

Cyg_Thread::set_data set per thread data

Cyg_Thread::add_destructor add a thread destructor

Cyg_Thread::rem_destructor remove a thread destructor

Cyg_Thread::register_exception register an exception handler

Cyg_Thread::deregister_exception deregister an exception

Cyg_Alarm::Cyg_Alarm
Name: Cyg_Alarm::Cyg_Alarm () - create an alarm

Synopsis: Cyg_Alarm::Cyg_Alarm
(
 Cyg_Counter *counter, /* Attached to this counter */
 cyg_alarm_fn *alarm, /* Call-back function */
 CYG_ADDRWORD data /* Call-back data */
)

Description: This creates a new alarm and attaches it to the specified counter. When the alarm expires the
call-back function "alarm" will be called. The callback function takes one argument "data".

The callback is of the form: void cyg_alarm_fn(Cyg_Alarm *alarm, CYG_ADDRWORD data).

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Alarm::~Cyg_Alarm

Cyg_Alarm::~Cyg_Alarm
Name: Cyg_Alarm::~Cyg_Alarm () - destroy an alarm

Synopsis: Cyg_Alarm::~Cyg_Alarm
(
 void
)

Description: This disables and destroys an alarm.

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Alarm::Cyg_Alarm

Cyg_Alarm::initialize
Name: Cyg_Alarm::initialize () - initialize an alarm

http://www.navosha.com/

Synopsis: void Cyg_Alarm::initialize
(
 cyg_tick_count trigger, /* Absolute trigger time */
 cyg_tick_count interval=0 /* Relative retrigger interval */
)

Description: This initializes an alarm. The trigger time is an absolute value of the associated counter. If the
interval is set to 0, the alarm will not retrigger. If the interval is non 0, this alarm will reset
automatically to fire again at trigger+interval, then trigger+(2*interval), etc.

The alarm will be enabled automatically after this call

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Alarm::enable, Cyg_Alarm::disable, Cyg_Alarm::get_times

Cyg_Alarm::enable
Name: Cyg_Alarm::enable () - enable an alarm

Synopsis: void Cyg_Alarm::enable
(
 void
)

Description: This enables an alarm. This is most often used when a periodic alarm has been disabled.

A periodic alarm that has been disabled and later re-enabled will fire at the same intervals it did
previously. For example, a periodic alarm that fired every 10 seconds at time T0, T10, T20,
T30... etc that was disabled for 15 seconds at time T31 and then renabled would then start firing
again at T50, T60, T70 etc.

If this behavior is not desired, use Cyg_Alarm::initialize to reset the intervals.

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Alarm::initialize, Cyg_Alarm::disable, Cyg_Alarm::get_times

Cyg_Alarm::disable
Name: Cyg_Alarm::disable () - disable an alarm

Synopsis: void Cyg_Alarm::disable
(
 void
)

Description: Disables an alarm. Most often used to stop a periodic alarm. This can also be used to cancel an
alarm, although using the destructor to do that might be more logical.

Cyg_Alarm::initialize or Cyg_Alarm::enable can be used to re-enable the alarm once it's been
disabled.

Include: #include <cyg/kernel/clock.hxx>
#include <cyg/kernel/clock.inl>

Returns: nothing

See Also: Cyg_Alarm::initialize, Cyg_Alarm::enable

Cyg_Alarm::get_times
Name: Cyg_Alarm::get_times () - get trigger and interval values

Synopsis: void Cyg_Alarm::get_times
(
 cyg_tick_count *trigger, /* pointer to the next trigger time */
 cyg_tick_count *interval /* pointer to the current interval */
)

Description: Get through pointers the next trigger time and the periodic retrigger interval. The function itself
returns nothing.

It is legal to pass NULL as the "trigger" and "interval" pointers if those values are not needed.

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Alarm::initialize

Cyg_Binary_Semaphore::Cyg_Binary_Semaphore
Name: Cyg_Binary_Semaphore::Cyg_Binary_Semaphore () - create a binary semaphore

Synopsis: Cyg_Binary_Semaphore::Cyg_Binary_Semaphore
(
 cyg_bool init_state = false /* initial state */
)

Description: Creates a binary semaphore. Posting a binary semaphore that is already available will remain
available, it will not affect its count.

An initial state of "true" means the binary semaphore was created as not taken (free to be taken
by any thread) and a state of "false" means the binary semaphore was created as being taken.

Include: #include <cyg/kernel/sema.hxx>

Returns: nothing

See Also: Cyg_Binary_Semaphore::~Cyg_Binary_Semaphore

Cyg_Binary_Semaphore::~Cyg_Binary_Semaphore
Name: Cyg_Binary_Semaphore::~Cyg_Binary_Semaphore () - destroy a binary semaphore

Synopsis: Cyg_Binary_Semaphore::~Cyg_Binary_Semaphore
(
 void
)

Description: Destroys a binary semaphore. This will NOT release threads waiting on the binary semaphore,
it will simply call the destructor which essentially does nothing but free the memory. Be
certain that the semaphore is available before destroying it.

Include: #include <cyg/kernel/sema.hxx>

Returns: nothing

See Also: Cyg_Binary_Semaphore::Cyg_Binary_Semaphore

http://www.navosha.com/

Cyg_Binary_Semaphore::wait

Name: Cyg_Binary_Semaphore::wait () - get a binary semaphore

Synopsis: cyg_bool Cyg_Binary_Semaphore::wait
(
 void
)

Description: Takes a binary semaphore. If the binary semaphore is not available this will block until the
binary semaphore is available.

Include: #include <cyg/kernel/sema.hxx>

Returns: "true" is the binary semaphore was taken, "false" if the binary semaphore could not be taken.
The value of "false" will be returned if the thread is awaken. See the thread api.

See Also: Cyg_Binary_Semaphore::trywait, Cyg_Binary_Semaphore::post,
Cyg_Binary_Semaphore::posted

Cyg_Binary_Semaphore::trywait
Name: Cyg_Binary_Semaphore::trywait () - get a binary semaphore, don't block

Synopsis: cyg_bool Cyg_Binary_Semaphore::trywait
(
 void
)

Description: Takes a binary semaphore but only if it is currently available. If the binary semaphore has
already been taken by another thread this will return "false".

Include: #include <cyg/kernel/sema.hxx>

Returns: "true" if the semaphore was taken by the calling thread, "false" if the semaphore was already
taken by a thread.

See Also: Cyg_Binary_Semaphore::wait, Cyg_Binary_Semaphore::post,
Cyg_Binary_Semaphore::posted

Cyg_Binary_Semaphore::post
Name: Cyg_Binary_Semaphore::post () - release a binary semaphore

Synopsis: void Cyg_Binary_Semaphore::post
(
 void
)

Description: This will release a binary semaphore. If the binary semaphore is already released, calling this
will have no affect on the binary semaphore. Unlike a mutex, a binary semaphore can be
released by any thread, not just the thread that allocated it.

Include: #include <cyg/kernel/sema.hxx>

Returns: nothing

See Also: Cyg_Binary_Semaphore::wait, Cyg_Binary_Semaphore::trywait,
Cyg_Binary_Semaphore::posted

Cyg_Binary_Semaphore::posted
Name: Cyg_Binary_Semaphore::posted () - check availability of a binary semaphore

Synopsis: cyg_bool Cyg_Binary_Semaphore::posted
(
 void
)

Description: This reports the status of a binary semaphore.

Include: #include <cyg/kernel/sema.hxx>

Returns: "true" if the binary semaphore is available "false" if a thread has allocated it already.

See Also: Cyg_Binary_Semaphore::wait, Cyg_Binary_Semaphore::trywait,
Cyg_Binary_Semaphore::post

Cyg_Clock::Cyg_Clock
Name: Cyg_Clock::Cyg_Clock () - create a clock

Synopsis: Cyg_Clock::Cyg_Clock
(
 cyg_resolution resolution /* resolution */
)

Description: Creates a clock with an associated resolution.

All a clock is is a counter with an associated resolution. It's a class derived from Cyg_Counter. All you
use it for is to store and save resolutions of the clock.

Since this is a derived class, study the "counter" documentation for more information on counters.

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Clock::~Cyg_Clock

Cyg_Clock::~Cyg_Clock
Name: Cyg_Clock::~Cyg_Clock () - destroy a clock

Synopsis: Cyg_Clock::~Cyg_Clock
(
 void
)

Description: This destroys a clock and the counter it's associated with

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Clock::Cyg_Clock

Cyg_Clock::get_resolution
Name: Cyg_Clock::get_resolution () - get the resolution of the clock

Synopsis: cyg_resolution Cyg_Clock::get_resolution
(
 void
)

http://www.navosha.com/

Description: Gets the resolution of this clock

Include: #include <cyg/kernel/clock.hxx>
#include <cyg/kernel/clock.inl>

Returns: the resolution of this clock.

See Also: Cyg_Clock::set_resolution

Cyg_Clock::set_resolution
Name: Cyg_Clock::set_resolution () - set clock resolution

Synopsis: void Cyg_Clock::set_resolution
(
 cyg_resolution resolution /* new resolution */
)

Description: This sets the resolution of the clock

Include: #include <cyg/kernel/clock.hxx>
#include <cyg/kernel/clock.inl>

Returns: nothing

See Also: Cyg_Clock::get_resolution

Cyg_Clock::get_other_to_clock_converter
Name: Cyg_Clock::get_other_to_clock_converter () - setup clock conversion

Synopsis: void Cyg_Clock::get_other_to_clock_converter
(
 cyg_uint64 ns_per_other_tick, /* ns/tick of the other clock */
 struct converter *pcc /* conversion struct */
)

Description: THIS DESCRIPTION MAY BE WRONG

This, as far as I can tell, sets up a conversion from one clock to another. This must be used in
conjunction with Cyg_Clock::convert to be of any use. This is so you can relate one clock (or counter)
to another.

This converts from the other clock to this clock.

the struct converter is: struct converter {cyg_uint64 mul1, div1, mul2, div2;}. Clock ticks =
(((otherticks*mul1)/div1)*mul2/div2)

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Clock::get_clock_to_other_converter, Cyg_Clock::convert

Cyg_Clock::get_clock_to_other_converter
Name: Cyg_Clock::get_clock_to_other_converter () - setup clock conversion

Synopsis: void Cyg_Clock::get_clock_to_other_converter
(
 cyg_uint64 ns_per_other_tick, /* ns/tick of the other clock */
 struct converter *pcc /* conversion struct */
)

Description: THIS DESCRIPTION MAY BE WRONG

This, as far as I can tell, sets up a conversion from one clock to another. This must be used in
conjunction with Cyg_Clock::convert to be of any use. This is so you can relate one clock (or counter)
to another.

This converts from this clock to the other clock.

the struct converter is: struct converter {cyg_uint64 mul1, div1, mul2, div2;}. Clock ticks =
(((otherticks*mul1)/div1)*mul2/div2)

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Clock::get_other_to_clock_converter, Cyg_Clock::convert

Cyg_Clock::convert
Name: Cyg_Clock::convert () - convert from one clock to another

Synopsis: static cyg_tick_count Cyg_Clock::convert
(
 cyg_tick_count value, /* ns/tick of this clock */
 struct converter *pcc /* conversion struct */
)

Description: THIS DESCRIPTION MAY BE WRONG

I think this does a conversion from this clock value to another. I need help with this. It's not obvious
why these are broken up into 3 seperate function calls. I don't see many people needing this
functionality.

Include: #include <cyg/kernel/clock.hxx>
#include <cyg/kernel/clock.inl>

Returns: The converted clock ticks.

See Also: Cyg_Clock::get_other_to_clock_converter, Cyg_Clock::get_clock_to_other_converter

Cyg_Condition_Variable::Cyg_Condition_Variable
Name: Cyg_Condition_Variable::Cyg_Condition_Variable () - create a condition variable

Synopsis: Cyg_Condition_Variable::Cyg_Condition_Variable
(
 Cyg_Mutex &mutex /* associated mutex */
)

Description: Creates a condition variable.

Include: #include <cyg/kernel/mutex.hxx>

Returns: nothing

See Also: Cyg_Condition_Variable::~Cyg_Condition_Variable

Cyg_Condition_Variable::~Cyg_Condition_Variable
Name: Cyg_Condition_Variable::~Cyg_Condition_Variable () - destroy condition variable

Synopsis: Cyg_Condition_Variable::~Cyg_Condition_Variable
(
 void
)

Description: This destroys a condition variable. Be careful not do destroy a condition variable that is
currently in use. The mutex associated with the condition variable needs to be destroyed
seperately.

Include: #include <cyg/kernel/mutex.hxx>

Returns: nothing

See Also: Cyg_Condition_Variable::Cyg_Condition_Variable

Cyg_Condition_Variable::signal
Name: Cyg_Condition_Variable::signal () - wake one thread waiting on condition variable

http://www.navosha.com/

Synopsis: void Cyg_Condition_Variable::signal
(
 void
)

Description: Wakes a thread waiting on a condition variable. If multiple threads are waiting on the thread,
which one wakes up depends on which scheduler is being used. The mlqueue scheduler is the
most often, this would mean that the thread with the highest priority will wake.

Include: #include <cyg/kernel/mutex.hxx>

Returns: nothing

See Also: Cyg_Condition_Variable::broadcast, Cyg_Condition_Variable::wait

Cyg_Condition_Variable::broadcast
Name: Cyg_Condition_Variable::broadcast () - wake all threads waiting on condition variable

Synopsis: void Cyg_Condition_Variable::broadcast
(
 void
)

Description: This wakes all threads waiting on the condition variable.

Include: #include <cyg/kernel/mutex.hxx>

Returns: nothing

See Also: Cyg_Condition_Variable::signal, Cyg_Condition_Variable::wait

Cyg_Condition_Variable::wait
Name: Cyg_Condition_Variable::wait () - wait on a condition variable

Synopsis: cyg_bool Cyg_Condition_Variable::wait
(
 void
)

Description: This causes the calling thread to wait on a condition variable. It will wait forever.

Include: #include <cyg/kernel/mutex.hxx>

Returns: "true" if the thread was awakened normally, "false" if the thread was awakened by a
Cyg_Thread::BREAK or Cyg_Thread::DESTRUCT signal.

See Also: Cyg_Condition_Variable::signal, Cyg_Condition_Variable::broadcast

Cyg_Condition_Variable::wait
Name: Cyg_Condition_Variable::wait () - wait until an absolute time on a condition variable

Synopsis: cyg_bool Cyg_Condition_Variable::wait
(
 cyg_tick_count absolute_time /* absolute time */
)

Description: This causes the calling thread to wait on a condition variable for until the system reaches the
absolute time specified or until the condition variable is available, whichever comes first.

Include: #include <cyg/kernel/mutex.hxx>

Returns: "true" if the thread was awakened normally, "false" if the thread timed out waiting on the
condition variable or if the thread was awakened by a Cyg_Thread::BREAK or
Cyg_Thread::DESTRUCT signal.

See Also: Cyg_Condition_Variable::signal, Cyg_Condition_Variable::broadcast

Cyg_Condition_Variable::wait
Name: Cyg_Condition_Variable::wait () - wait on a condition variable

Synopsis: cyg_bool Cyg_Condition_Variable::wait
(
 Cyg_Mutex &mx /* other mutex to use */
)

Description: This causes the calling thread to wait on a condition variable but uses another mutex instead of
the mutex that was associated with this condition variable on creation.

It is probably not a good idea to use this

Include: #include <cyg/kernel/mutex.hxx>

Returns: "true" if the thread was awakened normally, "false" if the thread was awakened by a
Cyg_Thread::BREAK or Cyg_Thread::DESTRUCT signal.

See Also: Cyg_Condition_Variable::signal, Cyg_Condition_Variable::broadcast

Cyg_Condition_Variable::wait
Name: Cyg_Condition_Variable::wait () - wait until an absolute time on a condition variable

Synopsis: cyg_bool Cyg_Condition_Variable::wait
(
 Cyg_Mutex &mx, /* other mutex to use */
 cyg_tick_count absolute_time /* absolute time */
)

Description: This causes the calling thread to wait on a condition variable for until the system reaches the
absolute time specified or until the condition variable is available, whichever comes first. This
uses another mutex instead of the mutex that was associated with this condition variable on
creation.

It is probably not a good idea to use this

Include: #include <cyg/kernel/mutex.hxx>

Returns: "true" if the thread was awakened normally, "false" if the thread timed out waiting on the
condition variable or if the thread was awakened by a Cyg_Thread::BREAK or
Cyg_Thread::DESTRUCT signal.

See Also: Cyg_Condition_Variable::signal, Cyg_Condition_Variable::broadcast

Cyg_Counter::Cyg_Counter
Name: Cyg_Counter::Cyg_Counter () - create a counter

Synopsis: Cyg_Counter::Cyg_Counter
(
 cyg_uint32 increment=1 /* number of ticks to increment counter by */
)

Description: This creates a new counter. Counters can increment any arbitrary amount but usually only by 1. The
value of the counter is always initialized to 0. Counters are 64 bit.

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Counter::~Cyg_Counter

Cyg_Counter::~Cyg_Counter
Name: Cyg_Counter::~Cyg_Counter () - destroys a counter

Synopsis: Cyg_Counter::~Cyg_Counter
(
 void
)

Description: This destroys a counter.

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Counter::Cyg_Counter

Cyg_Counter::current_value
Name: Cyg_Counter::current_value () - get the current value of the counter

Synopsis: cyg_tick_count Cyg_Counter::current_value
(
 void
)

Description: Gets the current value of the counter.

http://www.navosha.com/

Include: #include <cyg/kernel/clock.hxx>
#include <cyg/kernel/clock.inl>

Returns: the current value of the counter.

See Also: Cyg_Counter::current_value_lo, Cyg_Counter::current_value_hi, Cyg_Counter::set_value,
Cyg_Counter::tick

Cyg_Counter::current_value_lo
Name: Cyg_Counter::current_value_lo () - get lower 32 bits of counter

Synopsis: cyg_uint32 Cyg_Counter::current_value_lo
(
 void
)

Description: Gets the lower 32 bits of the current value of the counter.

Include: #include <cyg/kernel/clock.hxx>
#include <cyg/kernel/clock.inl>

Returns: the lower 32 bits of the current value of the counter.

See Also: Cyg_Counter::current_value, Cyg_Counter::current_value_hi, Cyg_Counter::set_value,
Cyg_Counter::tick

Cyg_Counter::current_value_hi
Name: Cyg_Counter::current_value_hi () - get upper 32 bits of counter

Synopsis: cyg_uint32 Cyg_Counter::current_value_hi
(
 void
)

Description: Gets the upper 32 bits of the current value of the counter.

Include: #include <cyg/kernel/clock.hxx>
#include <cyg/kernel/clock.inl>

Returns: the upper 32 bits of the current value of the counter.

See Also: Cyg_Counter::current_value, Cyg_Counter::current_value_lo, Cyg_Counter::set_value,
Cyg_Counter::tick

Cyg_Counter::set_value
Name: Cyg_Counter::set_value () - set counter value directly

Synopsis: void Cyg_Counter::set_value
(
 cyg_tick_count new_value /* new value of counter */
)

Description: Sets the value of the counter. Note that the value is a 64 bit value not a 32 bit value.

Include: #include <cyg/kernel/clock.hxx>
#include <cyg/kernel/clock.inl>

Returns: nothing

See Also: Cyg_Counter::current_value, Cyg_Counter::current_value_lo, Cyg_Counter::current_value_hi,
Cyg_Counter::tick

Cyg_Counter::tick
Name: Cyg_Counter::tick () - increment counter by some number of ticks

Synopsis: void Cyg_Counter::tick
(
 cyg_uint32 ticks=1 /* number of ticks to increment counter */
)

Description: Increments the counter by some number of ticks. Doing this can trigger alarms that are attached to this
counter if the alarms have expired.

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Counter::current_value, Cyg_Counter::current_value_lo, Cyg_Counter::current_value_hi,
Cyg_Counter::set_value

Cyg_Counter::add_alarm
Name: Cyg_Counter::add_alarm () - attach an alarm to counter

Synopsis: void Cyg_Counter::add_alarm
(
 Cyg_Alarm *alarm /* alarm to attach to counter */
)

Description: This attaches an alarm to the counter.

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Counter::tick, Cyg_Counter::rem_alarm

Cyg_Counter::rem_alarm

Name: Cyg_Counter::rem_alarm () - detach alarm from counter

Synopsis: void Cyg_Counter::rem_alarm
(
 Cyg_Alarm *alarm /* alarm to remove from counter */
)

Description: This detaches an alarm from a counter

Include: #include <cyg/kernel/clock.hxx>

Returns: nothing

See Also: Cyg_Counter::tick, Cyg_Counter::add_alarm

Cyg_Counting_Semaphore::Cyg_Counting_Semaphore
Name: Cyg_Counting_Semaphore::Cyg_Counting_Semaphore () - create counting semaphore

Synopsis: Cyg_Counting_Semaphore::Cyg_Counting_Semaphore
(
 cyg_count32 init_count = 0 /* inital count */
)

Description: This creates a counting semaphore.

Include: #include <cyg/kernel/sema.hxx>

Returns: nothing

See Also: Cyg_Counting_Semaphore::~Cyg_Counting_Semaphore

Cyg_Counting_Semaphore::~Cyg_Counting_Semaphore
Name: Cyg_Counting_Semaphore::~Cyg_Counting_Semaphore () - destroy a counting semaphore

Synopsis: Cyg_Counting_Semaphore::~Cyg_Counting_Semaphore
(
 void
)

Description: This destroys a counting semaphore. This will NOT release threads waiting on the counting semaphore,
it will simply call the destructor which essentially does nothing but free the memory. Be certain that not
threads are waiting on this semaphore before destroying.

Include: #include <cyg/kernel/sema.hxx>

Returns: nothing

See Also: Cyg_Counting_Semaphore::Cyg_Counting_Semaphore

Cyg_Counting_Semaphore::wait
Name: Cyg_Counting_Semaphore::wait () - get a counting semaphore

Synopsis: cyg_bool Cyg_Counting_Semaphore::wait
(
 void
)

http://www.navosha.com/

Description: Takes a counting semaphore. If the counting semaphore is not available this will block until the
counting semaphore is available.

Include: #include <cyg/kernel/sema.hxx>

Returns: "true" is the counting semaphore was taken, "false" if the counting semaphore could not be taken. The
value of "false" will be returned if the thread is awaken. See the thread api.

See Also: Cyg_Counting_Semaphore::trywait, Cyg_Counting_Semaphore::post,
Cyg_Counting_Semaphore::peek

Cyg_Counting_Semaphore::wait
Name: Cyg_Counting_Semaphore::wait () - wait until an absolute time for a counting semaphore

Synopsis: cyg_bool Cyg_Counting_Semaphore::wait
(
 cyg_tick_count timeout /* absolute timeout */
)

Description: This grabs a counting semaphore. If the semaphore is not available it will block the allocating thread
until "timeout". Timeout is an absolute value, not a relative value. It's a 64 value. You can get the value
of the real time clock with Cyg_Clock::real_time_clock->current_value().

Include: #include <cyg/kernel/sema.hxx>

Returns: "true" if the semaphore was allocated, "false" is the thread was awaken for another reason. The value of
"false" will be returned if the thread is awaken. See the thread api.

See Also: Cyg_Counting_Semaphore::trywait, Cyg_Counting_Semaphore::post,
Cyg_Counting_Semaphore::peek

Cyg_Counting_Semaphore::trywait
Name: Cyg_Counting_Semaphore::trywait () - get a counting semaphore, don't block

Synopsis: cyg_bool Cyg_Counting_Semaphore::trywait
(
 void
)

Description: Takes a counting semaphore but only if it is currently available. If the counting semaphore has already
been taken by another thread this will return "false".

Include: #include <cyg/kernel/sema.hxx>

Returns: "true" if the semaphore was taken "false" if it wasn't.

See Also: Cyg_Counting_Semaphore::wait, Cyg_Counting_Semaphore::post, Cyg_Counting_Semaphore::peek

Cyg_Counting_Semaphore::post

Name: Cyg_Counting_Semaphore::post () - release a counting semaphore

Synopsis: void Cyg_Counting_Semaphore::post
(
 void
)

Description: This will increment the count of a counting semaphore so it may be allocated by other threads.

Include: #include <cyg/kernel/sema.hxx>

Returns: nothing

See Also: Cyg_Counting_Semaphore::wait, Cyg_Counting_Semaphore::trywait,
Cyg_Counting_Semaphore::peek

Cyg_Counting_Semaphore::peek
Name: Cyg_Counting_Semaphore::peek () - get the count of a counting semaphore

Synopsis: cyg_count32 Cyg_Counting_Semaphore::peek
(
 void
)

Description: This just gets the count of a counting semaphore. If any threads are waiting on the counting semaphore,
this will of course return 0.

Include: #include <cyg/kernel/sema.hxx>

Returns: the count of the counting semaphore.

See Also: Cyg_Counting_Semaphore::wait, Cyg_Counting_Semaphore::trywait, Cyg_Counting_Semaphore::post

Cyg_Flag::Cyg_Flag
Name: Cyg_Flag::Cyg_Flag () - create flag

Synopsis: Cyg_Flag::Cyg_Flag
(
 Cyg_FlagValue init=0 /* intial conditions */
)

Description: This creates a flag. Flags allow a thread to wait on a condition or a set of conditions.
Each condition is represented by a bit. You can control which conditions are set on
creation with "init".

Include: #include <cyg/kernel/flag.hxx>

Returns: nothing

See Also: Cyg_Flag::~Cyg_Flag

Cyg_Flag::~Cyg_Flag
Name: Cyg_Flag::~Cyg_Flag () - destroy flag

Synopsis: Cyg_Flag::~Cyg_Flag
(
 void
)

Description: Destroy a flag. Be careful not to destroy a flag still in use. If you destroy a flag with
threads waiting on it, they will be awaken with a signal of Cyg_Thread::DESTRUCT,
but this is bad programming practice. Avoid doing this.

Include: #include <cyg/kernel/flag.hxx>

Returns: nothing

See Also: Cyg_Flag::Cyg_Flag

http://www.navosha.com/

Cyg_Flag::setbits
Name: Cyg_Flag::setbits () - set bits in a flag

Synopsis: void Cyg_Flag::setbits
(
 Cyg_FlagValue arg=~0 /* bits (conditions) to set */
);

Description: Sets bits (conditions) in the flag. Each bit represents a single condition.

Include: #include <cyg/kernel/flag.hxx>

Returns: nothing

See Also: Cyg_Flag::maskbits, Cyg_Flag::wait, Cyg_Flag::poll, Cyg_Flag::peek,
Cyg_Flag::waiting

Cyg_Flag::maskbits
Name: Cyg_Flag::maskbits () - clear bits in flag

Synopsis: void Cyg_Flag::maskbits
(
 Cyg_FlagValue arg=0 /* bits (conditions) to clear */
)

Description: This clears bit (conditions) of the flag. Any bit that is set to 1 will not be cleared.

Include: #include <cyg/kernel/flag.hxx>

Returns: nothing

See Also: Cyg_Flag::setbits, Cyg_Flag::wait, Cyg_Flag::poll, Cyg_Flag::peek,
Cyg_Flag::waiting

Cyg_Flag::wait
Name: Cyg_Flag::wait () - wait on a a condition or set of conditions

Synopsis: Cyg_FlagValue Cyg_Flag::wait
(
 Cyg_FlagValue pattern, /* bit pattern */
 WaitMode mode /* mode */
)

Description: This waits on a set of conditions to be set. Once the conditions are met, it will wake
the waiting thread. There are several modes that will affect which conditions must be
set in order for the thread to wake up. They are:

Cyg_Flag::AND - wait for all conditions to be set in the pattern before waking the
thread.

Cyg_Flag::OR - wait for any conditions in the pattern to be set before waking the
thread.

Cyg_Flag::CLR - automatically clear the conditions that caused the calling thread to
wake.

Cyg_Flag::MASK - clears all conditions set in the pattern

Include: #include <cyg/kernel/flag.hxx>

Returns: the flag value that succedded in waking the thread or 0 if there was an error such as a
bad pattern or mode.

See Also: Cyg_Flag::setbits, Cyg_Flag::maskbits, Cyg_Flag::poll, Cyg_Flag::peek,
Cyg_Flag::waiting

Cyg_Flag::wait
Name: Cyg_Flag::wait () - wait on a a condition or set of conditions with a timeout

Synopsis: Cyg_FlagValue Cyg_Flag::wait
(
 Cyg_FlagValue pattern, /* bit pattern */
 WaitMode mode, /* mode */
 cyg_tick_count abs_timeout /* absolute timeout */
)

Description: This waits on a set of conditions to be set or times out. Note that the timeout is in
absolute, not relative time. Once the conditions are met or the wait expires, it will
wake the waiting thread. There are several modes that will affect which conditions
must be set in order for the thread to wake up. They are:

Cyg_Flag::AND - wait for all conditions to be set in the pattern before waking the
thread.

Cyg_Flag::OR - wait for any conditions in the pattern to be set before waking the
thread.

Cyg_Flag::CLR - automatically clear the conditions that caused the calling thread to
wake.

Cyg_Flag::MASK - clears all conditions set in the pattern

Include: #include <cyg/kernel/flag.hxx>

Returns: the flag value that succedded in waking the thread or 0 if there was an error such as a
bad pattern, bad mode, or timeout.

See Also: Cyg_Flag::setbits, Cyg_Flag::maskbits, Cyg_Flag::poll, Cyg_Flag::peek,
Cyg_Flag::waiting

Cyg_Flag::poll
Name: Cyg_Flag::poll () - test for a pattern match on the flag

Synopsis: Cyg_FlagValue Cyg_Flag::poll
(
 Cyg_FlagValue pattern, /* bit pattern */
 WaitMode mode /* mode */
)

Description: This checks a flag for the set of conditions but does not block. The possible modes
are:

Cyg_Flag::AND - return match if all conditions in the pattern are set in the flag

Cyg_Flag::OR - return match if any of the conditions in the pattern are set in the
flag.

Cyg_Flag::CLR - automatically clear the conditions that caused the calling thread to
return a match, IF there was a match.

Cyg_Flag::MASK - clears all conditions set in the pattern if there was a match.

Include: #include <cyg/kernel/flag.hxx>

Returns: The pattern that caused the match or 0 if there was no match.

See Also: Cyg_Flag::setbits, Cyg_Flag::maskbits, Cyg_Flag::wait, Cyg_Flag::peek,
Cyg_Flag::waiting

Cyg_Flag::peek
Name: Cyg_Flag::peek () - get conditions set in a given flag

Synopsis: Cyg_FlagValue Cyg_Flag::peek
(
 void
)

Description: This returns the conditions that are currently set in a flag.

Include: #include <cyg/kernel/flag.hxx>

Returns: the conditions that are set in a flag as a bitmask.

See Also: Cyg_Flag::setbits, Cyg_Flag::maskbits, Cyg_Flag::wait, Cyg_Flag::poll,
Cyg_Flag::waiting

Cyg_Flag::waiting
Name: Cyg_Flag::waiting () - check to see if any threads are waiting on flag

Synopsis: cyg_bool Cyg_Flag::waiting
(
 void
)

Description: This is used to check to see if any threads are currently waiting on the flag.

Include: #include <cyg/kernel/flag.hxx>

Returns: "true" if thread are waiting on the flag, "false" is there are not threads waiting on the
flag.

See Also: Cyg_Flag::setbits, Cyg_Flag::maskbits, Cyg_Flag::wait, Cyg_Flag::poll,
Cyg_Flag::peek

Cyg_Interrupt::Cyg_Interrupt
Name: Cyg_Interrupt::Cyg_Interrupt () - create an interrupt handler

Synopsis: Cyg_Interrupt::Cyg_Interrupt
(
 cyg_vector vector, /* Interrupt vector */
 cyg_priority priority, /* queue priority */
 CYG_ADDRWORD data, /* data pointer */
 cyg_ISR *isr, /* interrupt service routine */
 cyg_DSR *dsr /* deferred service routine */
)

Description: Constructor for an interrupt handler. The queue priority is used only in the case that interrupts
are chained.

The isr has the prototype of cyg_uint32 cyg_ISR(cyg_vector vector, CYG_ADDRWORD data).
The ISR is called from the VSR. The VSR is usually implemented by eCos itself. If the ISR
returns Cyg_Interrupt::HANDLED the VSR will NOT be called, if the ISR returns
Cyg_Interrupt::CALL_DSR the VSR is called.

The vsr has the prototype of void cyg_DSR(cyg_vector vector, cyg_ucount32 count,
CYG_ADDRWORD data). The DSR returns nothing.

ISR's cannot access the vast majority of kernel routines. The VSR can access more routines.
What can and cannot be called safely from these routines I have not found in the documentation
yet.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::~Cyg_Interrupt

Cyg_Interrupt::~Cyg_Interrupt
Name: Cyg_Interrupt::~Cyg_Interrupt () - delete an interrupt handler

Synopsis: Cyg_Interrupt::~Cyg_Interrupt
(
 void
)

Description: This is a destructor for an interrupt handler.

http://www.navosha.com/

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::Cyg_Interrupt

Cyg_Interrupt::attach
Name: Cyg_Interrupt::attach () - attach an interrupt

Synopsis: void Cyg_Interrupt::attach
(
 void
)

Description: This attaches the ISR and DSR of an interrupt to the physical interrupt. An interrupt must be
attached before the ISR or DSR will be used.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::detach

Cyg_Interrupt::detach
Name: Cyg_Interrupt::detach () - detach an interrupt

Synopsis: void Cyg_Interrupt::detach
(
 void
)

Description: This detaches the ISR and DSR of an interrupt to the physical interrupt.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::attach

Cyg_Interrupt::get_vsr
Name: Cyg_Interrupt::get_vsr () - get the VSR pointer of an interrupt

Synopsis: void Cyg_Interrupt::get_vsr
(
 cyg_vector vector, /* interrupt vector */
 cyg_VSR **vsr /* address of pointer to retrieve VSR */
)

Description: This function gets the address of the interrupt's VSR writing into to address pointed to by *vsr.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::set_vsr

Cyg_Interrupt::set_vsr
Name: Cyg_Interrupt::set_vsr () - set a new VSR

Synopsis: void Cyg_Interrupt::set_vsr
(
 cyg_vector vector, /* interrupt vector */
 cyg_VSR *vsr, /* address of the new VSR */
 cyg_VSR **old /* address of pointer to retrieve old VSR */
)

Description: This function sets a new vsr for the interrupt and writes the address of the old vsr to the address
pointed to by *old.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::get_vsr

Cyg_Interrupt::disable_interrupts
Name: Cyg_Interrupt::disable_interrupts () - disable interrupts globally

Synopsis: void Cyg_Interrupt::disable_interrupts
(
 void
)

Description: This disables the interrupts on the calling CPU. Every call to this function must have a matching
call to Cyg_Interrupt::enable_interrupts to re-enable interrupts again.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::enable_interrupts, Cyg_Interrupt::mask_interrupt

Cyg_Interrupt::enable_interrupts
Name: Cyg_Interrupt::enable_interrupts () - enable interrupts globally

Synopsis: void Cyg_Interrupt::enable_interrupts
(
 void
)

Description: This enables the interrupts on the calling CPU. If Cyg_Interrupt::disable_interrupts has been
called multiple times, this function will have to be called multiple times to actually enable
interrupts again.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::disable_interrupts, Cyg_Interrupt::unmask_interrupt

Cyg_Interrupt::mask_interrupt
Name: Cyg_Interrupt::mask_interrupt () - mask an interrupt

Synopsis: void Cyg_Interrupt::mask_interrupt
(
 cyg_vector vector /* interrupt vector */
)

Description: This function masks an interrupt.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::mask_interrupt_intunsafe, Cyg_Interrupt::unmask_interrupt,
Cyg_Interrupt::unmask_interrupt_intunsafe

Cyg_Interrupt::mask_interrupt_intunsafe
Name: Cyg_Interrupt::mask_interrupt_intunsafe () - interrupt unsafe mask an interrupt

Synopsis: void Cyg_Interrupt::mask_interrupt_intunsafe
(
 cyg_vector vector /* interrupt vector */
)

Description: This function masks an interrupt but it's not interrupt safe.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::mask_interrupt, Cyg_Interrupt::unmask_interrupt,
Cyg_Interrupt::unmask_interrupt_intunsafe

Cyg_Interrupt::unmask_interrupt
Name: Cyg_Interrupt::unmask_interrupt () - unmask an interrupt

Synopsis: void Cyg_Interrupt::unmask_interrupt
(
 cyg_vector vector /* interrupt vector */
)

Description: This function unmasks an interrupt.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::mask_interrupt, Cyg_Interrupt::mask_interrupt_intunsafe,
Cyg_Interrupt::unmask_interrupt_intunsafe

Cyg_Interrupt::unmask_interrupt_intunsafe
Name: Cyg_Interrupt::unmask_interrupt_intunsafe () - interrupt unsafe unmask an interrupt

Synopsis: void Cyg_Interrupt::unmask_interrupt
(
 cyg_vector vector /* interrupt vector */
)

Description: This function unmasks an interrupt but it's not interrupt safe.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::mask_interrupt, Cyg_Interrupt::mask_interrupt_intunsafe,
Cyg_Interrupt::unmask_interrupt

Cyg_Interrupt::acknowledge_interrupt
Name: Cyg_Interrupt::acknowledge_interrupt () - acknowledge an interrupt

Synopsis: void Cyg_Interrupt::acknowledge_interrupt
(
 cyg_vector vector /* interrupt vector */
)

Description: This function acknowledges an interrupt.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also:

Cyg_Interrupt::configure_interrupt
Name: Cyg_Interrupt::configure_interrupt () - configure an interrupt

Synopsis: void Cyg_Interrupt::configure_interrupt
(
 cyg_vector vector, /* interrupt vector */
 cyg_bool level, /* level or edge triggered */
 cyg_bool up /* hi/lo level, rising/falling edge */
)

Description: This configures an interrupt for level triggering or edge, as well as hi/low and rising/fallig edge.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also:

Cyg_Interrupt::set_cpu
Name: Cyg_Interrupt::set_cpu () - set cpu

Synopsis: void Cyg_Interrupt::set_cpu
(
 cyg_vector vector, /* interrupt vector */
 HAL_SMP_CPU_TYPE cpu /* CPU to set */
)

Description: This sets a CPU. Honestly, I have no idea what this does in an SMP system but when I find out
I'll properly document it.

Include: #include <cyg/kernel/intr.hxx>

Returns: nothing

See Also: Cyg_Interrupt::get_cpu

Cyg_Interrupt::get_cpu
Name: Cyg_Interrupt::get_cpu () - get cpu

Synopsis: HAL_SMP_CPU_TYPE Cyg_Interrupt::get_cpu
(
 cyg_vector vector /* interrupt vector */
)

Description: This gets a CPU. Honestly, I have no idea what this does in an SMP system but when I find out
I'll properly document it.

Include: #include <cyg/kernel/intr.hxx>

Returns: presumably the CPU attached to this interrupt.

See Also: Cyg_Interrupt::set_cpu

Cyg_Mbox::Cyg_Mbox
Name: Cyg_Mbox::Cyg_Mbox () - create a message box

Synopsis: Cyg_Mbox::Cyg_Mbox
(
 void
)

Description: This creates a message box. Message boxes are of fixed depth. The depth of the message box is
controlled by the compilation of the kernel. Most often the depth is 10.

Include: #include <cyg/kernel/mbox.hxx>

Returns: nothing

See Also: Cyg_Mbox::~Cyg_Mbox

Cyg_Mbox::~Cyg_Mbox
Name: Cyg_Mbox::~Cyg_Mbox () - destroy a message box

Synopsis: Cyg_Mbox::~Cyg_Mbox
(
 void
)

Description: This destroys a message box. Be sure that no threads are using a message box before destroying it.

Include: #include <cyg/kernel/mbox.hxx>

Returns: nothing

See Also: Cyg_Mbox::Cyg_Mbox

Cyg_Mbox::get
Name: Cyg_Mbox::get () - get a message from a message box

Synopsis: void * Cyg_Mbox::get
(
 void
)

http://www.navosha.com/

Description: Retrieves a message from a message box. If the message box is empty this will block until a
message is added.

Include: #include <cyg/kernel/mbox.hxx>

Returns: a pointer to the oldest message placed in the message box.

See Also: Cyg_Mbox::tryget, Cyg_Mbox::peek_item, Cyg_Mbox::put, Cyg_Mbox::tryput, Cyg_Mbox::peek

Cyg_Mbox::get
Name: Cyg_Mbox::get () - get a message from a message box with timeout

Synopsis: void * Cyg_Mbox::get
(
 cyg_tick_count absolute_time /* max tick count before timeout */
)

Description: Retrieves a message from a message box. If the message box is empty this will block until a
message is added or the system tick reaches "absolute_time".

Include: #include <cyg/kernel/mbox.hxx>

Returns: a pointer to the oldest message placed in the message box or a NULL pointer if the wait timed out.

See Also: Cyg_Mbox::tryget, Cyg_Mbox::peek_item, Cyg_Mbox::put, Cyg_Mbox::tryput, Cyg_Mbox::peek

Cyg_Mbox::tryget
Name: Cyg_Mbox::tryget () - get a message from a message box if one is available

Synopsis: void * Cyg_Mbox::tryget
(
 void
)

Description: Retrieves a message from a message box is a message is available. If the message box is empty, this
will return immediately with an error.

Include: #include <cyg/kernel/mbox.hxx>

Returns: a pointer to the oldest message placed in the message box or a NULL pointer if the message box is
empty.

See Also: Cyg_Mbox::get, Cyg_Mbox::peek_item, Cyg_Mbox::put, Cyg_Mbox::tryput, Cyg_Mbox::peek

Cyg_Mbox::peek_item
Name: Cyg_Mbox::peek_item () - get a message from an mbox but don't remove from queue

Synopsis: void * Cyg_Mbox::peek_item
(
 void
)

Description: Retrieves the address of the oldest message in a message box but does not remove the message from
the message box. This will not block, if the message box is emtpy NULL is returned.

Include: #include <cyg/kernel/mbox.hxx>

Returns: a pointer to the oldest message placed in the message box or a NULL pointer if the message box is
empty.

See Also: Cyg_Mbox::get, Cyg_Mbox::tryget, Cyg_Mbox::put, Cyg_Mbox::tryput, Cyg_Mbox::peek

Cyg_Mbox::put
Name: Cyg_Mbox::put () - place a message into a message box

Synopsis: cyg_bool Cyg_Mbox::put
(
 void *item /* item to place into message box */
)

Description: Places a new message in a message box. If the message box is full the thread will be blocked until
the the message can be placed into the message box.

Include: #include <cyg/kernel/mbox.hxx>

Returns: "true" if the message was placed into the message box, "false" otherwise.

See Also: Cyg_Mbox::get, Cyg_Mbox::tryget, Cyg_Mbox::peek_item, Cyg_Mbox::tryput, Cyg_Mbox::peek

Cyg_Mbox::put
Name: Cyg_Mbox::put () - place a message into a message box with a timeout

Synopsis: cyg_bool Cyg_Mbox::put
(
 void *item, /* item to place into message box */
 cyg_tick_count absolute_time /* max tick count before timeout */
)

Description: Places a new message in a message box. If the message box is full the thread will be blocked until
the the message can be placed into the message box or the system time reaches "absolute_time".

Include: #include <cyg/kernel/mbox.hxx>

Returns: "true" if the message was placed into the message box, "false" otherwise.

See Also: Cyg_Mbox::get, Cyg_Mbox::tryget, Cyg_Mbox::peek_item, Cyg_Mbox::tryput, Cyg_Mbox::peek

Cyg_Mbox::tryput
Name: Cyg_Mbox::tryput () - place a message into a message box if space is available

Synopsis: cyg_bool Cyg_Mbox::tryput
(
 void *item /* item to place into message box */
)

Description: Places a new message in a message box. If the message box is full the message will not be placed in
the message box and the function will return with an error status.

Include: #include <cyg/kernel/mbox.hxx>

Returns: "true" if the message was placed into the message box, "false" otherwise.

See Also: Cyg_Mbox::get, Cyg_Mbox::tryget, Cyg_Mbox::peek_item, Cyg_Mbox::put, Cyg_Mbox::peek

Cyg_Mbox::peek
Name: Cyg_Mbox::peek () - gets the number of messages currently in the message queue

Synopsis: cyg_count32 Cyg_Mbox::peek
(
 void
)

Description: This reports the number of messages currently in the message queue waiting to be processed.

Include: #include <cyg/kernel/mbox.hxx>

Returns: the number of messages currently in the message queue.

See Also: Cyg_Mbox::get, Cyg_Mbox::tryget, Cyg_Mbox::peek_item, Cyg_Mbox::put, Cyg_Mbox::tryput

Cyg_Mbox::waiting_to_get
Name: Cyg_Mbox::waiting_to_get () - reports if any threads are waiting to get a message from this mbox

Synopsis: cyg_bool Cyg_Mbox::waiting_to_get
(
 void
)

Description: This reports whether any threads are being blocked waiting to get a message from this message box.

Include: #include <cyg/kernel/mbox.hxx>

Returns: "true" if any threads are waiting for a message, "false" is no threads are waiting for a message from
the queue.

See Also: Cyg_Mbox::waiting_to_put

Cyg_Mbox::waiting_to_put
Name: Cyg_Mbox::waiting_to_put () - reports if any threads are waiting to place a message into this

mbox

Synopsis: cyg_bool Cyg_Mbox::waiting_to_put
(
 void
)

Description: This reports whether any threads are being blocked waiting to place a message into this message
box.

Include: #include <cyg/kernel/mbox.hxx>

Returns: "true" if any threads are waiting to place a message into this message box, "false" is no threads are
waiting to place a message into this message box.

See Also: Cyg_Mbox::waiting_to_get

Cyg_Mempool_Fixed::Cyg_Mempool_Fixed
Name: Cyg_Mempool_Fixed::Cyg_Mempool_Fixed () - create fixed block memory heap

Synopsis: Cyg_Mempool_Fixed::Cyg_Mempool_Fixed
(
 cyg_uint8 *base, /* base address of heap */
 cyg_int32 size, /* size of heap */
 CYG_ADDRWORD alloc_unit /* fixed allocation block size */
)

Description: This creates a heap used to allocate fixed blocks. Unlike the traditional malloc() and
free() functions this provides access to fixed blocks of memory. The advantage to this is
that there is no fragmentation with fixed blocks of memory, and allocation is faster
since linked lists don't have to be searched.

Include: #include <cyg/memalloc/memfixed.hxx>

Returns: nothing

See Also: Cyg_Mempool_Fixed::~Cyg_Mempool_Fixed

Cyg_Mempool_Fixed::~Cyg_Mempool_Fixed
Name: Cyg_Mempool_Fixed::~Cyg_Mempool_Fixed () - destroy fixed size memory pool

Synopsis: Cyg_Mempool_Fixed::~Cyg_Mempool_Fixed
(
 void
)

Description: This destroys a fixed block memory pool. Be certain that there are no allocated blocks
before destroying a heap.

Include: #include <cyg/memalloc/memfixed.hxx>

Returns: nothing

See Also: Cyg_Mempool_Fixed::Cyg_Mempool_Fixed, Cyg_Mempool_Fixed::get_status

http://www.navosha.com/

Cyg_Mempool_Fixed::try_alloc
Name: Cyg_Mempool_Fixed::try_alloc () - allocate a fixed block of memory, nonblocking

Synopsis: cyg_uint8 * Cyg_Mempool_Fixed::try_alloc
(
 void
)

Description: This allocates a block of memory from a fixed sized heap. If there is no memory
available in the heap, this will return immediately with a failure.

Include: #include <cyg/memalloc/memfixed.hxx>

Returns: a newly allocated fixed size block of memory or NULL if there was no memory
available.

See Also: Cyg_Mempool_Fixed::Cyg_Mempool_Fixed, Cyg_Mempool_Fixed::alloc,
Cyg_Mempool_Fixed::free, Cyg_Mempool_Fixed::get_status

Cyg_Mempool_Fixed::alloc
Name: Cyg_Mempool_Fixed::alloc () - allocate a fixed block size, block thread if necessary

Synopsis: cyg_uint8 * Cyg_Mempool_Fixed::alloc
(
 void
)

Description: This allocates a fixed size block of memory. The size of the memory block allocated is
defined by the heap. If there isn't a block of memory available this will block the thread
until there is one made available.

Include: #include <cyg/memalloc/memfixed.hxx>

Returns: a pointer to the newly allocated block.

See Also: Cyg_Mempool_Fixed::Cyg_Mempool_Fixed, Cyg_Mempool_Fixed::try_alloc,
Cyg_Mempool_Fixed::free, Cyg_Mempool_Fixed::get_status

Cyg_Mempool_Fixed::alloc
Name: Cyg_Mempool_Fixed::alloc () - allocate a fixed block size with timeout

Synopsis: cyg_uint8 * Cyg_Mempool_Fixed::alloc
(
 cyg_tick_count absolute_time /* absolute delay timeout */
)

Description: This allocates a fixed block of memory from a fixed size heap. If there is not a block
available the thread will be blocked until "absolute_time" or until there is a block of
memory available.

Include: #include <cyg/memalloc/memfixed.hxx>

Returns: a newly allocated fixed size block of memory or NULL if there were no memory made
available within the timeout period.

See Also: Cyg_Mempool_Fixed::Cyg_Mempool_Fixed, Cyg_Mempool_Fixed::try_alloc,
Cyg_Mempool_Fixed::free, Cyg_Mempool_Fixed::get_status

Cyg_Mempool_Fixed::free
Name: Cyg_Mempool_Fixed::free () - return a block of memory to a fixed sized heap

Synopsis: cyg_bool Cyg_Mempool_Fixed::free
(
 cyg_uint8 *pointer /* pointer to a fixed sized block */
)

Description: Returns a block of memory to a fixed size heap that was previously allocated from that
fixed sized heap.

Include: #include <cyg/memalloc/memfixed.hxx>

Returns: nothing

See Also: Cyg_Mempool_Fixed::Cyg_Mempool_Fixed, Cyg_Mempool_Fixed::alloc,
Cyg_Mempool_Fixed::try_alloc, Cyg_Mempool_Fixed::get_status

Cyg_Mempool_Fixed::get_status
Name: Cyg_Mempool_Fixed::get_status () - get status on a heap

Synopsis: void Cyg_Mempool_Fixed::get_status
(
 cyg_mempool_status_flag_t flags, /* flags */
 Cyg_Mempool_Status &status, /* status */
)

Description: This returns information about a memory pool. Which elements that are returned are
dependant on what flags are set. The flags are shown below. See the implementation of
Cyg_Mempool_Status to see what this is all about.

CYG_MEMPOOL_STAT_ARENABASE - base address of entire pool

CYG_MEMPOOL_STAT_ARENASIZE - total size of entire pool

CYG_MEMPOOL_STAT_FREEBLOCKS - number of blocks free to use

CYG_MEMPOOL_STAT_TOTALALLOCATED - total allocated space in bytes

CYG_MEMPOOL_STAT_TOTALFREE - total number of bytes unusued

CYG_MEMPOOL_STAT_BLOCKSIZE - block size of fixed block

CYG_MEMPOOL_STAT_MAXFREE - size of largest unused block

CYG_MEMPOOL_STAT_WAITING - any threads waiting?

CYG_MEMPOOL_STAT_ORIGBASE - original base of pool

CYG_MEMPOOL_STAT_ORIGSIZE - original size of pool

CYG_MEMPOOL_STAT_MAXOVERHEAD - maximum overhead used by the
allocator

Include: #include <cyg/memalloc/memfixed.hxx>
#include <cyg/memalloc/common.hxx>

Returns: nothing

See Also: Cyg_Mempool_Fixed::Cyg_Mempool_Fixed

Cyg_Mempool_Variable::Cyg_Mempool_Variable
Name: Cyg_Mempool_Variable::Cyg_Mempool_Variable () - create a variable heap

Synopsis: Cyg_Mempool_Variable::Cyg_Mempool_Variable
(
 cyg_uint8 *base, /* base adress of heap */
 cyg_int32 size, /* size of heap */
 cyg_int32 alignment /* alignment */
)

Description: This creates a heap of memory for dynamic memory allocation. This provides equivalents to
malloc() and free().

Include: #include <cyg/memalloc/memvar.hxx>

Returns: nothing

See Also: Cyg_Mempool_Variable::~Cyg_Mempool_Variable, Cyg_Mempool_Variable::get_status

Cyg_Mempool_Variable::~Cyg_Mempool_Variable
Name: Cyg_Mempool_Variable::~Cyg_Mempool_Variable () - destroy variable heap

Synopsis: Cyg_Mempool_Variable::~Cyg_Mempool_Variable
(
 void
)

Description: This destroys a heap of memory. Before destroying a mempool, be sure no memory is
currently allocated from that heap.

Include: #include <cyg/memalloc/memvar.hxx>

Returns: nothing

See Also: Cyg_Mempool_Variable::Cyg_Mempool_Variable

Cyg_Mempool_Variable::try_alloc
Name: Cyg_Mempool_Variable::try_alloc () - allocate a block of memory

http://www.navosha.com/

Synopsis: cyg_uint8 * Cyg_Mempool_Variable::try_alloc
(
 cyg_int32 size /* number of bytes to allocate */
)

Description: This allocates an arbitrary block of memory from a heap. This will not block the calling thread
under any circumstances.

Include: #include <cyg/memalloc/memvar.hxx>

Returns: a pointer to the allocated memory or NULL if the memory could not be allocated.

See Also: Cyg_Mempool_Variable::alloc, Cyg_Mempool_Variable::resize_alloc,
Cyg_Mempool_Variable::free

Cyg_Mempool_Variable::alloc
Name: Cyg_Mempool_Variable::alloc () - allocate a block of memory, block until memory available

Synopsis: cyg_uint8 * Cyg_Mempool_Variable::alloc
(
 cyg_int32 size /* bytes to allocate */
)

Description: This allocates an arbitrary block of memory from a heap. If the request cannot be satisified,
this will block the thread until enough memory can be allocated to satisfy the request.

Include: #include <cyg/memalloc/memvar.hxx>

Returns: a pointer to the allocated memory or NULL if the memory could not be allocated.

See Also: Cyg_Mempool_Variable::try_alloc, Cyg_Mempool_Variable::resize_alloc,
Cyg_Mempool_Variable::free

Cyg_Mempool_Variable::alloc
Name: Cyg_Mempool_Variable::alloc () - allocate a block of memory with timeout

Synopsis: cyg_uint8 * Cyg_Mempool_Variable::alloc
(
 cyg_int32 size, /* bytes to allocate */
 cyg_tick_count absolute_time /* absolute delay timeout */
)

Description: This allocates an arbitrary block of memory from the heap. If there is not enough memory
available to satisfy the request, the thread will be blocked until "absolute_time" or until there
is sufficient memory available to satisfy the request.

Include: #include <cyg/memalloc/memvar.hxx>

Returns: a pointer to the allocated memory or NULL if the memory could not be allocated.

See Also: Cyg_Mempool_Variable::try_alloc, Cyg_Mempool_Variable::resize_alloc,
Cyg_Mempool_Variable::free

Cyg_Mempool_Variable::resize_alloc
Name: Cyg_Mempool_Variable::resize_alloc () - resize a previously allocated block of memory

Synopsis: cyg_uint8 * Cyg_Mempool_Variable::resize_alloc
(
 cyg_uint8 *alloc_ptr, /* previously allocated ptr */
 cyg_int32 newsize, /* new desired size */
 cyg_int32 *oldsize=NULL /* receives old size */
)

Description: Note that this is not the same as the standard C realloc() function. The behaviour of this
function is undefined if "alloc_ptr" is set to NULL "newsize" is set to 0.

Attempts to resize a previous allocation. It the previous allocation cannot be resized, this will
fail. It will not attempt to allocate new memory if the previous allocation fails.

Include: #include <cyg/memalloc/memvar.hxx>

Returns: the original alloc_ptr if successful, NULL on failure.

See Also: Cyg_Mempool_Variable::try_alloc, Cyg_Mempool_Variable::alloc,
Cyg_Mempool_Variable::free

Cyg_Mempool_Variable::free
Name: Cyg_Mempool_Variable::free () - free an allocated block of memory

Synopsis: cyg_bool Cyg_Mempool_Variable::free
(
 cyg_uint8 *ptr, /* ptr to free */
 cyg_int32 size=0 /* size */
)

Description: This frees a previously allocated block of memory. The "size" parameter doesn't appear to be
actually used.

Include: #include <cyg/memalloc/memvar.hxx>

Returns:

See Also: Cyg_Mempool_Variable::try_alloc, Cyg_Mempool_Variable::alloc,
Cyg_Mempool_Variable::resize_alloc

Cyg_Mempool_Variable::get_status
Name: Cyg_Mempool_Variable::get_status () - get status on a heap

Synopsis: void Cyg_Mempool_Variable::get_status
(
 cyg_mempool_status_flag_t flags, /* flags */
 Cyg_Mempool_Status &status, /* status */
)

Description: This returns information about a memory pool. Which elements that are returned are
dependant on what flags are set. The flags are shown below. See the implementation of
Cyg_Mempool_Status to see what this is all about.

CYG_MEMPOOL_STAT_ARENABASE - base address of entire pool

CYG_MEMPOOL_STAT_ARENASIZE - total size of entire pool

CYG_MEMPOOL_STAT_FREEBLOCKS - number of blocks free to use

CYG_MEMPOOL_STAT_TOTALALLOCATED - total allocated space in bytes

CYG_MEMPOOL_STAT_TOTALFREE - total number of bytes unusued

CYG_MEMPOOL_STAT_BLOCKSIZE - block size of fixed block

CYG_MEMPOOL_STAT_MAXFREE - size of largest unused block

CYG_MEMPOOL_STAT_WAITING - any threads waiting?

CYG_MEMPOOL_STAT_ORIGBASE - original base of pool

CYG_MEMPOOL_STAT_ORIGSIZE - original size of pool

CYG_MEMPOOL_STAT_MAXOVERHEAD - maximum overhead used by the allocator

Include: #include <cyg/memalloc/memvar.hxx>
#include <cyg/memalloc/common.hxx>

Returns: nothing

See Also: Cyg_Mempool_Variable::Cyg_Mempool_Variable

Cyg_Mutex::Cyg_Mutex
Name: Cyg_Mutex::Cyg_Mutex () - create a mutex

Synopsis: Cyg_Mutex::Cyg_Mutex
(
 void
)

Description: Creates a mutex. The mutex is created in an unlocked state. If the kernel was compiled
without priority inversion the effective protocol is Cyg_Mutex::NONE.

If the kernel was compiled with priority inversion enabled, the protocol of the mutex
depends on how the kernel was compiled. More data will be forthcoming on this in
later revisions of the documentation. It is probably best to use the other Cyg_Mutex
constructor explicitly if priority inversion is enabled.

Include: #include <cyg/kernel/mutex.hxx>

Returns: nothing

See Also: Cyg_Mutex::~Cyg_Mutex

Cyg_Mutex::Cyg_Mutex
Name: Cyg_Mutex::Cyg_Mutex () - create a mutex with a specified protocol

Synopsis: Cyg_Mutex::Cyg_Mutex
(
 cyg_protcol protocol /* priority inheritence protocol */
)

Description: Creates a mutex with a protocol. Cyg_Mutex::NONE, Cyg_Mutex::INHERIT, or
Cyg_Mutex::CEILING are the possible values. This is only valid if the kernel is
compiled to support priority inversion.

Include: #include <cyg/kernel/mutex.hxx>

Returns: nothing

http://www.navosha.com/

See Also: Cyg_Mutex::~Cyg_Mutex, Cyg_Mutex::set_protocol

Cyg_Mutex::~Cyg_Mutex
Name: Cyg_Mutex::~Cyg_Mutex () - destroy a mutex

Synopsis: Cyg_Mutex::~Cyg_Mutex
(
 void
)

Description: Destroys a mutex. If other threads are waiting for this mutex they will not be released,
so be sure that no threads are waiting on this mutex before destroying it.

Include: #include <cyg/kernel/mutex.hxx>

Returns: nothing

See Also: Cyg_Mutex::Cyg_Mutex

Cyg_Mutex::lock
Name: Cyg_Mutex::lock () - lock a mutex or wait until it can be locked

Synopsis: cyg_bool Cyg_Mutex::lock
(
 void
)

Description: Locks a mutex. If the mutex is not available this will wait until the mutex is free. Note
that only the owner of a locked mutex can release it.

Include: #include <cyg/kernel/mutex.hxx>

Returns: "true" if the mutex was locked by the calling thread "false" if the mutex could not be
locked.

See Also: Cyg_Mutex::trylock, Cyg_Mutex::unlock, Cyg_Mutex::release,
Cyg_Mutex::get_owner

Cyg_Mutex::trylock
Name: Cyg_Mutex::trylock () - lock a mutex if it's free

Synopsis: cyg_bool Cyg_Mutex::trylock
(
 void
)

Description: Locks a mutex only if it's free. If the mutex is not available this call will return
immediately.

Include: #include <cyg/kernel/mutex.hxx>

Returns: "true" if the mutex was locked by the calling thread "false" if the mutex could not be
locked or has been allocated by another thread.

See Also: Cyg_Mutex::lock, Cyg_Mutex::unlock, Cyg_Mutex::release, Cyg_Mutex::get_owner

Cyg_Mutex::unlock
Name: Cyg_Mutex::unlock () - unlock a mutex

Synopsis: void Cyg_Mutex::unlock
(
 void
)

Description: Unlocks a mutex that was previously allocated by the calling thread. If the calling
thread is not the owner, the behavior is undefined.

Include: #include <cyg/kernel/mutex.hxx>

Returns: nothing

See Also: Cyg_Mutex::trylock, Cyg_Mutex::lock, Cyg_Mutex::release

Cyg_Mutex::release
Name: Cyg_Mutex::release () - release all threads waiting on a mutex

Synopsis: void Cyg_Mutex::release
(
 void
)

Description: Releases all threads waiting on a mutex. Any thread that is waiting on the mutex will
not receive ownership of the mutex but will return an error if they are waiting on the
mutex.

Include: #include <cyg/kernel/mutex.hxx>

Returns: nothing

See Also: Cyg_Mutex::trylock, Cyg_Mutex::lock, Cyg_Mutex::unlock

Cyg_Mutex::set_ceiling
Name: Cyg_Mutex::set_ceiling () - set the max priority to be inherited

Synopsis: void Cyg_Mutex::set_ceiling
(
 cyg_priority priority /* ceiling priority */
)

Description: Set the priority ceiling of the mutex. If this mutex has the protocol of
Cyg_Mutex::CEILING any thread that owns this mutex will have it's priority
temporarily set to the value specified here.

It's a good idea to use this function if you use priority inheritence. The kernel will
support default values, and it's typically 0, but it's good programming practice to
explicity set it in your application software.

Include: #include <cyg/kernel/mutex.hxx>

Returns: nothing

See Also: Cyg_Mutex::get_ceiling

Cyg_Mutex::get_ceiling
Name: Cyg_Mutex::get_ceiling () - get the priority ceiling of this mutex

Synopsis: cyg_priority Cyg_Mutex::get_ceiling
(
 void
)

Description: This gets the priority ceiling of the mutex. This is only meaningful if the protocol of
the mutex is of type Cyg_Mutex::CEILING.

Include: #include <cyg/kernel/mutex.hxx>

Returns: the priority ceiling of the mutex.

See Also: Cyg_Mutex::set_ceiling

Cyg_Mutex::get_owner
Name: Cyg_Mutex::get_owner () - get the current owner of a mutex

Synopsis: Cyg_Thread *Cyg_Mutex::get_owner
(
 void
)

Description: Gets the current owner of the mutex.

Include: #include <cyg/kernel/mutex.hxx>

Returns: a Cyg_Thread pointer to the current owner of the mutex or NULL if the mutex is not
owned by anybody.

See Also: Cyg_Mutex::lock, Cyg_Mutex::trylock

Cyg_Mutex::set_protocol
Name: Cyg_Mutex::set_protocol () - set the protocol of a mutex

Synopsis: void Cyg_Mutex::set_protocol
(
 cyg_protcol new_protocol
)

Description: This sets the protocol of a mutex. Valid values are Cyg_Mutex::NONE,
Cyg_Mutex::INHERIT or Cyg_Mutex::CEILING.

Cyg_Mutex::NONE, no priority inheritance

Cyg_Mutex::INHERIT, inherit priority of thread currently holding mutex

Cyg_Mutex::CEILING, inherit ceiling priority of mutex

Include: #include <cyg/kernel/mutex.hxx>

Returns: nothing

See Also: Cyg_Mutex::Cyg_Mutex, Cyg_Mutex::set_ceiling, Cyg_Mutex::get_ceiling

Cyg_Scheduler::get_sched_lock
Name: Cyg_Scheduler::get_sched_lock () - get the lock count of a thread

Synopsis: static cyg_ucount32 Cyg_Scheduler::get_sched_lock
(
 void
)

Description: Gets the lock count on the current thread. Will return 0 if this thead is not locked.
Note that this class function is static.

Include: #include <cyg/kernel/sched.hxx>
#include <cyg/kernel/sched.inl>

Returns: The number of times the calling thread has been locked.

See Also: Cyg_Scheduler::lock, Cyg_Scheduler::unlock

Cyg_Scheduler::lock
Name: Cyg_Scheduler::lock () - lock a thread

Synopsis: static void Cyg_Scheduler::lock
(
 void
)

Description: Prevents the calling thread from being preempted by another thread. Note that this
class function is static. A thread can be locked multiple times. Each call to
Cyg_Scheduler::lock() must be paired with a call to Cyg_Scheduler::unlock() to
unlock the scheduler.

Include: #include <cyg/kernel/sched.hxx>
#include <cyg/kernel/sched.inl>

Returns: nothing

See Also: Cyg_Scheduler::get_sched_lock, Cyg_Scheduler::unlock

http://www.navosha.com/

Cyg_Scheduler::unlock
Name: Cyg_Scheduler::unlock () - unlock a thread

Synopsis: static void Cyg_Scheduler::unlock
(
 void
)

Description: This unlocks a thread so that it can be preempted by another thread. Note that for each
call to Cyg_Scheduler::lock there has to be a call to this class function to actually
unlock the thread.

Include: #include <cyg/kernel/sched.hxx>
#include <cyg/kernel/sched.inl>

Returns: nothing

See Also: Cyg_Scheduler::get_sched_lock, Cyg_Scheduler::lock

Cyg_Thread::Cyg_Thread
Name: Cyg_Thread::Cyg_Thread () - contructor to create a new thread

Synopsis: Cyg_Thread::Cyg_Thread
(
 CYG_ADDRWORD sched_info, /* Scheduling parameter(s) */
 cyg_thread_entry *entry, /* entry point function */
 CYG_ADDRWORD entry_data, /* entry data */
 char *name, /* thread name */
 CYG_ADDRESS stack_base = 0, /* stack base, NULL = allocate */
 cyg_ucount32 stack_size = 0 /* stack size, 0 = use default */
)

Description: This is the constructor to create a new thread. The "sched_info" parameter is usually just the priority,
although this may change depending on the scheduler that is being used. The "name" parameter is
optional but it's strongly recommended that it be used. If you do use the "name" parameter it MUST be a
constant string since the string will not be copied, only the pointer to it will be.

NOTE: stack_base and stack_size CANNOT be 0 in this current implementation although this may
change in future versions.

The entry function is of type: void cyg_thread_entry(CYG_ADDRWORD data).

Include: #include <cyg/kernel/thread.hxx>

Returns: nothing

See Also: Cyg_Thread::exit

Cyg_Thread::exit
Name: Cyg_Thread::exit () - terminate calling thread

Synopsis: static void Cyg_Thread::exit
(
 void
)

Description: This terminates the calling thread. Before exiting a thread, be sure to free any resources you may have
allocated such as mutexes, semaphores, memory, etc. This will also call the destructors if there are any
before exiting.

Include: #include <cyg/kernel/thread.hxx>

Returns: nothing - this function will not return

See Also:

http://www.navosha.com/

Cyg_Thread::suspend
Name: Cyg_Thread::suspend () - suspend a thread

Synopsis: void Cyg_Thread::suspend
(
 void
)

Description: This suspends a thread. For every call to suspend a thread, there must be a matching call to resume it with
Cyg_Thread::resume(). Suspending a thread may prevent resources that the thread has from being
released, so care must be taking in using this function.

Include: #include <cyg/kernel/thread.hxx>

Returns: nothing

See Also: Cyg_Thread::resume, Cyg_Thread::force_resume

Cyg_Thread::resume
Name: Cyg_Thread::resume () - resume a suspended thread

Synopsis: void Cyg_Thread::resume
(
 void
)

Description: This resumes a thread that has been suspended. If the thread has been suspended multiple times, the
thread will have to be resumed the same number of times before it can run again.

Include: #include <cyg/kernel/thread.hxx>

Returns: nothing

See Also: Cyg_Thread::suspend, Cyg_Thread::force_resume

Cyg_Thread::force_resume
Name: Cyg_Thread::force_resume () - force a suspended thread to be resumed

Synopsis: void Cyg_Thread::force_resume
(
 void
)

Description: This resumes a thread that has been suspended regardless of how many times it's been suspended.

Include: #include <cyg/kernel/thread.hxx>

Returns: nothing

See Also: Cyg_Thread::suspend, Cyg_Thread::resume

Cyg_Thread::kill
Name: Cyg_Thread::kill () - kill a thread

Synopsis: void Cyg_Thread::kill
(
 void
)

Description: This kills the calling thread. Before killing a thread, be sure to free any resources you may have allocated
such as mutexes, semaphores, memory, etc.

Note that this is probably a bad way of shutting down a thread. If possible, send a signal to the thread to
have it shut itself down so it can free any resources it's allocated.

Include: #include <cyg/kernel/thread.hxx>

Returns: nothing

See Also:

Cyg_Thread::release
Name: Cyg_Thread::release () - force a thread to wake up with the reason of BREAK

Synopsis: void Cyg_Thread::release
(
 void
)

Description: This wakes a thread up from a DELAY. It may also wake the thread up on a blocking wait for a
semaphore, mutex, etc. It is the responsibility of the thread being woken to detect that it's been awoken

Include: #include <cyg/kernel/thread.hxx>

Returns: nothing

See Also:

Cyg_Thread::yield
Name: Cyg_Thread::yield () - yield the cpu to another thread

Synopsis: static void Cyg_Thread::yield
(
 void
)

Description: This yields the current thread to another, usually of the same priority - although this depends on the
scheduler implementation.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: nothing

See Also:

Cyg_Thread::self
Name: Cyg_Thread::self () - get the "this" pointer of the calling thread

Synopsis: static Cyg_Thread *self
(
 void
)

Description: This function returns the thread's "this" pointer. This is most useful when in a C context and doesn't serve
much purpose when working with C++ other than defensive programming.

You can use this function to find out which thread was interrupted in an interrupt context.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: Pointer to the thread's "this" pointer.

See Also:

Cyg_Thread::set_priority
Name: Cyg_Thread::set_priority () - set priority of a thread

Synopsis: void Cyg_Thread::set_priority
(
 cyg_priority new_priority /* new priority */
)

Description: Changes the priority of a given thread. Note there is no error checking, so be careful to check ranges when
using this to change the priority of a thread.

Include: #include <cyg/kernel/thread.hxx>

Returns: nothing

See Also: Cyg_Thread::get_priority, Cyg_Thread::get_current_priority

Cyg_Thread::get_priority
Name: Cyg_Thread::get_priority () - get the set priority of a thread

Synopsis: cyg_priority get_priority
(
 void
)

Description: This returns the set priority of a given thread.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: The set priority of a given thread.

See Also: Cyg_Thread::set_priority, Cyg_Thread::get_current_priority

Cyg_Thread::get_current_priority
Name: Cyg_Thread::get_current_priority () - get the current priority of a thread

Synopsis: cyg_priority Cyg_Thread::get_current_priority
(
 void
)

Description: This returns the current priority of a given thread. This is normally what Cyg_Thread::get_priority returns
but if the thread has inherited another priority, the inherited priority will be returned instead.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: the current priority of a given thread.

See Also: Cyg_Thread::set_priority, Cyg_Thread::get_priority

Cyg_Thread::delay
Name: Cyg_Thread::delay () - delay a thread

Synopsis: void Cyg_Thread::delay
(
 cyg_tick_count delay /* number of ticks to delay */
)

Description: This delays a thread for a specified number of ticks.

Include: #include <cyg/kernel/thread.hxx>

Returns: nothing

See Also:

Cyg_HardwareThread::get_stack_base
Name: Cyg_HardwareThread::get_stack_base () - get base address of a thread's stack

Synopsis: CYG_ADDRESS Cyg_HardwareThread::get_stack_base
(
 void
)

Description: This returns the base address of a stack of the given thread.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: the base address of the given thread's stack

See Also: Cyg_HardwareThread::get_stack_size

Cyg_HardwareThread::get_stack_size
Name: Cyg_HardwareThread::get_stack_size () - get the size of a thread's stack

Synopsis: cyg_uint32 Cyg_HardwareThread::get_stack_size
(
 void
)

Description: This returns the size of a given thread's stack in bytes.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: the size in bytes of the given thread's stack

See Also: Cyg_HardwareThread::get_stack_base

Cyg_HardwareThread::measure_stack_usage
Name: Cyg_HardwareThread::measure_stack_usage () - measure a stack's usage

Synopsis: cyg_uint32 Cyg_HardwareThread::measure_stack_usage
(
 void
)

Description: This function measures the number of bytes that have been used for a given thread. This can help you
tune your stack sizes so there is less memory usage although you should never tune your stacks so that
this function returns 0.

Note that this function only returns how much stack has been consumed for a given thread at the current
time the function was invoked. There is no guarentee that more stack will not be consumed later.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: the number of bytes that have been used by the stack of a given thread.

See Also: Cyg_HardwareThread::get_stack_base, Cyg_HardwareThread::get_stack_size

Cyg_Thread::new_data_index
Name: Cyg_Thread::new_data_index () - gets a new data index for per thread data

Synopsis: static cyg_data_index Cyg_Thread::new_data_index
(
 void
)

Description: Gets a new index for per thread data. The index is globally allocated for each thread.

Include: #include <cyg/kernel/thread.hxx>

Returns: a new (free) index that can be used to store a word of data

See Also: Cyg_Thread::free_data_index, Cyg_Thread::get_data, Cyg_Thread::get_data_ptr, Cyg_Thread::set_data

Cyg_Thread::free_data_index
Name: Cyg_Thread::free_data_index () - free a data index for per thread data

Synopsis: static void Cyg_Thread::free_data_index
(
 cyg_data_index index /* index to free */
)

Description: This globally frees an index that was used for per thread data.

Include: #include <cyg/kernel/thread.hxx>

Returns: nothing

See Also: Cyg_Thread::new_data_index, Cyg_Thread::get_data, Cyg_Thread::get_data_ptr, Cyg_Thread::set_data

Cyg_Thread::get_data
Name: Cyg_Thread::get_data () - get per thread data

Synopsis: static CYG_ADDRWORD Cyg_Thread::get_data
(
 cyg_data_index index /* data index */
)

Description: This function reads per thread data.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: per thread data stored at the given index.

See Also: Cyg_Thread::get_data_ptr, Cyg_Thread::set_data

Cyg_Thread::get_data_ptr
Name: Cyg_Thread::get_data_ptr () - get per thread data pointer

Synopsis: static CYG_ADDRWORD *Cyg_Thread::get_data_ptr
(
 Cyg_Thread::cyg_data_index index /* data index */
)

Description: Gets the pointer to per thread data of the calling thread. This can be used to read or write the per thread
data.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: a pointer to the per thread data.

See Also: Cyg_Thread::get_data, Cyg_Thread::set_data

Cyg_Thread::set_data
Name: Cyg_Thread::set_data () - set per thread data

Synopsis: void Cyg_Thread::set_data
(
 cyg_data_index index, /* index of the per thread data */
 CYG_ADDRWORD data /* data to write */
);

Description: This function writes per thread data.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: nothing

See Also: Cyg_Thread::get_data, Cyg_Thread::get_data_ptr

Cyg_Thread::add_destructor
Name: Cyg_Thread::add_destructor () - add a thread destructor

Synopsis: cyg_bool Cyg_Thread::add_destructor
(
 destructor_fn fn, /* call back destructor function */
 CYG_ADDRWORD data /* data to pass to destructor */
)

Description: This adds a destructor to the thread. All the destructors will be called by Cyg_Thread::exit (). The
destructor callback has the following prototype void destructor_fn (CYG_ADDRWORD).

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: "true" if the destructor was added, "false" if the destructor could not be added.

See Also: Cyg_Thread::rem_destructor, Cyg_Thread::exit

Cyg_Thread::rem_destructor
Name: Cyg_Thread::rem_destructor () - remove a thread destructor

Synopsis: cyg_bool Cyg_Thread::rem_destructor
(
 destructor_fn fn, /* destructor to remove */
 CYG_ADDRWORD data /* data that was to be passed to the destructor */
)

Description: Removes a destructor from a thread. The destructor callback and the data must be match those of the
constructor otherwise the destructor will not be deleted.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: "true" if the destructor was removed, "false" if the destructor could not be removed.

See Also: Cyg_Thread::add_destructor

Cyg_Thread::register_exception
Name: Cyg_Thread::register_exception () - register an exception handler

Synopsis: static void Cyg_Thread::register_exception
(
 cyg_code exception_number, /* exception number */
 cyg_exception_handler handler, /* handler function */
 CYG_ADDRWORD data, /* data argument */
 cyg_exception_handler **old_handler, /* handler function */
 CYG_ADDRWORD *old_data /* data argument */
)

Description: This registers an exception handler for the calling thread.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: nothing

See Also: Cyg_Thread::deregister_exception

Cyg_Thread::deregister_exception
Name: Cyg_Thread::deregister_exception () - deregister an exception

Synopsis: static void deregister_exception
(
 cyg_code exception_number /* exception number */
)

Description: This deregisters an exception handler for the calling thread.

Include: #include <cyg/kernel/thread.hxx>
#include <cyg/kernel/thread.inl>

Returns: nothing

See Also: Cyg_Thread::register_exception

	dynu.com
	eCos Internals Documentation
	Cyg_Alarm - Alarms
	Cyg_Binary_Semaphore - Binary Semaphores
	Cyg_Clock - Clocks
	Cyg_Condition_Variable - Conditional Variables
	Cyg_Counter - Counters
	Cyg_Counting_Semaphore - Counting Semaphores
	Cyg_Flag - Flags
	Cyg_Interrupt - Interrupts
	Cyg_Mbox - Mailboxes
	Cyg_Mempool_Fixed - Fixed Sized Memory Allocation
	Cyg_Mempool_Variable - Variable Sized Memory Allocation
	Cyg_Mutex - Mutual Exclusion
	Cyg_Scheduler - Scheduler Operations
	Cyg_Thread - Threads

		2002-08-17T07:28:24-0800
	SillyCon Valley
	Richard Wicks
	I am the author of this document

