
AN1095
Emulating Data EEPROM for PIC18 and PIC24

Microcontrollers and dsPIC® Digital Signal Controllers
INTRODUCTION
Microchip Technology Inc., has expanded its product
portfolio to include a wide variety of cost-effective PIC®

microcontrollers without an internal data EEPROM.

Many applications store nonvolatile information in the
Flash program memory using table write and read
operations. Applications that need to frequently update
this data may have greater endurance requirements
than the specified Flash endurance for the device.

The alternate solution of using an external, serial
EEPROM device may not be appropriate for
cost-sensitive or pin-constrained applications.

This application note presents a third alternative that
addresses these issues. This algorithm features an
interface similar to an internal data EEPROM, uses
available program memory and can improve
endurance by a factor as high as 500.

Definition of Terms
Page – The minimum amount of program memory
affected by an erase operation.

Row – The maximum amount of program memory
affected by a programming operation.

Erase/Write Cycle – The number of erase and write
operation pairs.

Endurance – A specification indicating the maximum
number of erase/write cycles and associated conditions.

Retention – A specification indicating the minimum
length of time and associated conditions for the
retention of data in Flash memory.

Effective Endurance – The improved endurance of the
emulated data EEPROM as a result of using an
efficient programming algorithm.

Current (Active) Page – A page in program memory
that is being written and read by the data EEPROM
emulation algorithm.

Packed Page – The new current page after the pack
routine is complete.

Page Status – Program memory location(s) at the
beginning of the current page that stores data
EEPROM emulation status. The PIC18 implementation
uses two locations and the PIC24/dsPIC33F uses one.

THEORY OF OPERATION
The algorithm in this application note supports
selectable, multiple emulated data EEPROMs with a
total size of up to multiples of 255 locations with a
single address space, ranging from 0 to the total size of
the emulated data EEPROMs, minus one.

For example, if the implemented size of the data
EEPROM is 5, and two data EEPROMs are used, only
the addresses in the range, 0 to 9, are available.

PIC18 implementation supports 8-bit data and only one
EEPROM bank; PIC24/dsPIC33F implementation
supports 16-bit data and multiple EEPROM banks. Due
to architectural differences of the program memory, the
emulated data EEPROM information is stored differ-
ently for 8-bit and 16-bit implementations. For these
formats, see Table 1 and Table 2.

TABLE 1: PIC18 DATA EEPROM
INFORMATION FORMAT IN
PROGRAM MEMORY

TABLE 2: PIC24/dsPIC33F DATA EEPROM
INFORMATION FORMAT IN
PROGRAM MEMORY

Author: David Otten and
Stephen Cowden
Microchip Technology Inc.

Note: To use this solution, the device must have
word write capability. Refer to the specific
device data sheet to verify this feature is
available.

Note 1: PIC18 implementation supports only one
EEPROM bank.

2: PIC24/dsPIC33F implementation supports
multiple EEPROM banks.

3: Each EEPROM can have a maximum of
255 addresses. Hence, the total
addresses are from 0 to N x 255 – 1,
where N = number of EEPROM banks.

Bits 15-8 Bits 7-0

Data EE Data Data EE Address

Bits 23-16 Bits 15-0

Data EE Address Data EE Data
© 2008 Microchip Technology Inc. DS01095B-page 1

AN1095

The algorithm takes advantage of the PIC micro-
controller’s ability to self-program a single location of
program memory. This location is an 8-bit operation for
PIC18 and either an 8 or 16-bit operation for PIC24 and
dsPIC33F, depending on whether an odd or even
address is being written, respectively.

PIC24/dsPIC33F Scenario
To better understand how the algorithm works, here is
a simple scenario for the PIC24 and dsPIC33F.

After the first page of each EEPROM bank is initialized,
the first location is reserved for the page status
information. This indicates whether a page is active or
expired, and how many erase/write cycles have been
performed. This information is not directly accessible
by the user, but is used by the algorithm to find
available pages and update status flags. This page is
designated as the current or active page.

In this example, a write operation has been performed
to store a data value of 0x0202 to data EEPROM
address, 0x2. As provided in Table 3, this information is
stored in the first available location in the page. As
more writes are performed, the algorithm continues to
write the information in a similar fashion, as provided in
Table 4 through Table 6.

In this example, data EEPROM address 0x7 is written
to 0x0707, 0x2 is updated to 0x2222 and address 0xA
is written to 0x0A0A.

In Table 7, the last location in the page is written with a
rewrite to address 0x7 to 0x7777. Since the currently
active page is now full, the data EEPROM information
will move to the next available page. This new page is
referred to as the packed page. The pack routine
performs this task. Since only the most current data for
each data EEPROM address is needed, the amount of
information decreases.

After the data is moved, this page is designated as the
current page. If the current page has incremented
through all allocated pages in program memory, the
erase/write count is incremented as displayed in Table 8.
The page is now ready to store more information via
write operations.

The PIC18 algorithm works in a similar way, but instead
of reserving one location of program memory for page
status information, two locations are used. Also, 8-bit
data is stored instead of 16-bit data.

Note: For more information on program memory
organization, refer to the applicable
product data sheet.
DS01095B-page 2 © 2008 Microchip Technology Inc.

AN1095

Since each location within the page is programmed
once prior to the page erase, only one erase/write cycle
is consumed for the page. As a result, the algorithm
multiplicatively improves the emulated data EEPROM
effective endurance.

The previously filled page is erased only after the latest
information has been programmed into the next
available page and successfully verified. Through this
process, the information is always stored in nonvolatile
memory which minimizes the effects of an unexpected
loss of power.

As the program memory page is filled sequentially from
beginning to end, the algorithm assumes the most
current data EEPROM information is the closest
instance to the end of the page. To simplify the read
operation, the search begins at the end of the current
program memory page and works toward the start of the
page – looking for the specified data EEPROM address.

When a match is found, the associated data is returned
for the first instance of the provided address. If the
address is not found, the return value of all ones, 0xFF
or 0xFFFF, is returned to emulate the result of an
unwritten address in an independent data EEPROM.

TABLE 3: WRITE DATA EEPROM (0x0202,2) TABLE 4: WRITE DATA EEPROM (0x0707,7)
Page Address Data EE Address Data EE Data Page Address Data EE Address Data EE Data

Page + 0 Page Status<23:16> 0x0000 Page + 0 Page Status<23:16> 0x0001
Page + 2 2 0x0202 Page + 2 2 0x0202
Page + 4 0xFF 0xFFFF Page + 4 7 0x0707
Page + 6 0xFF 0xFFFF Page + 6 0xFF 0xFFFF
Page + 8 0xFF 0xFFFF Page + 8 0xFF 0xFFFF

.

.

.

.

.

.
Page + 1022 0xFF 0xFFFF Page + 1022 0xFF 0xFFFF

TABLE 5: WRITE DATA EEPROM (0x2222,2) TABLE 6: WRITE DATA EEPROM (0x0A0A,0xA)
Page Address Data EE Address Data EE Data Page Address Data EE Address Data EE Data

Page + 0 Page Status<23:16> 0x0000 Page + 0 Page Status<23:16> 0x0000
Page + 2 2 0x0202 Page + 2 2 0x0202
Page + 4 7 0x0707 Page + 4 7 0x0707
Page + 6 2 0x2222 Page + 6 2 0x2222
Page + 8 0xFF 0xFFFF Page + 8 0xA 0x0A0A

.

.

.

.

.

.
Page + 1022 0xFF 0xFFFF Page + 1022 0xFF 0xFFFF

TABLE 7: WRITE DATA EEPROM (0x7777,7) TABLE 8: PAGE AFTER PACK OPERATION
Page Address Data EE Address Data EE Data Page Address Data EE Address Data EE Data

Page + 0 Page Status<23:16> 0x0000 Page + 0 Page Status<23:16> 0x0001
Page + 2 2 0x0202 Page + 4 2 0x2222
Page + 4 7 0x0707 Page + 6 7 0x7777
Page + 6 2 0x2222 Page + 2 0xA 0x0A0A
Page + 8 0xA 0x0A0A Page + 8 0xFF 0xFFFF

.

.

.

.

.

.
Page + 1022 7 0x7777 Page + 1022 0xFF 0xFFFF
© 2008 Microchip Technology Inc. DS01095B-page 3

AN1095

Status Flags
Status flags have been provided to indicate whether an
error or warning condition occurs during the emulation
process. These indicators are accessed in the Data
EEPROM Flags register; all flags are active-high.

The status bits and return values are defined as
follows:

• addrNotFound(0xFF/0xFFFF) – A read operation
occurred on a previously unwritten data EEPROM
address.

• expiredPage(0x1) – The program memory
erase/write cycle count has exceeded the
user-defined limit. The algorithm will attempt to
execute the write operation.

• packBeforePageFull(0x2) – The pack routine was
called before the currently active page was full.
The routine will attempt to move the latest data
EEPROM information to the packed page even
though the active page is not full.

• packBeforeInit(0x3) – The pack routine was
executed before the initialization routine. The
pack operation was aborted.

• packSkipped(0x4) – A page was written beyond
the page boundary. This may be a result of the
pack routine not being executed properly. The
pack operation was aborted.

• illegalAddress(0x5) – There was an attempt to
write or read with a data EEPROM address equal
to or greater than the size of data EEPROM. The
read or write operation was aborted.

• pageCorrupt(0x6) – The page status information
was corrupted. The current operation was
aborted.

• writeError(0x7) – The information written into
program memory failed verification. The current
operation was aborted.

Status flags differ in severity and how they are serviced.
Informational status flags are expected to occur during
normal processing and are serviced by simply clearing
the flag with the associated macro. These include:
addrNotFound, packBeforePageFull and illegalAddress
flags.

Warning status flags indicate a condition has been
exceeded but processing will continue. This includes
the expiredPage status flag. With this flag set, the
algorithm will attempt to process read and write
requests, but the flag will be set after each operation.

The most severe flags are the system error status flags.
These imply either the integrity of the data EEPROM
information has been compromised and/or the algorithm
cannot continue until the offending condition has been
resolved. These include packBeforeInit, pageCorrupt
and writeError flags.

To avoid a packBeforeInit event, ensure the
initialization routine, DataEEInit, is called prior to
performing any other emulation routine. Since this
routine accesses the current state of the emulation
process, it will take action only if it is required.
Therefore, it can be called at any time during data
EEPROM emulation.

The pageCorrupt and writeError flags indicate that a
write operation failed to verify and the current operation
was aborted. If this occurs, the integrity of the data
EEPROM information has been compromised. No
further emulation operations should be attempted. The
only recourse is to erase all of the pages of program
memory reserved for data EEPROM emulation and
attempt to reinitialize them.

Macros are available to retrieve and clear the status
flag values. Status flags are cleared only by the user.
No operation is affected by the value of any flag, but the
flag’s value will indicate whether an operation
completed successfully.

Macros use this naming convention:

All of the flags can be read or cleared in a single
operation using the 8-bit character, dataEEFlags.val.

Note: All EEPROM banks affect the same status
flags.

Example macros: “Getx” “Setx y”
x = Flag name
y = Value assigned to flag
DS01095B-page 4 © 2008 Microchip Technology Inc.

AN1095

Page Status
Each program memory page reserves space for the
page status – using the first two-word locations for the
PIC18 implementation or the first location for
PIC24/dsPIC33F. Status contains information about the
page, whether it is expired or active, and the number of
erase/write cycles performed.

These values are used by the algorithm to monitor and
control page information and are not directly accessible
by the user. Refer to Register 1, Register 2 and
Register 3 for formats of PIC24/dsPIC33F and PIC18
page status information.

Note: Applications with bootloaders should be
careful to not change the page status
information. This can be done by
programming ‘1’s into these locations.

REGISTER 1: PAGE STATUS FOR PIC24 AND dsPIC33F ALGORITHM

U-1 U-1 U-1 R-1 R-1 R-1 U-1 U-1
— — — Page Expired Page Current Page Available — —

bit 23 bit 16

R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1
Page Erase/Write Count

bit 15 bit 8

R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1
Page Erase/Write Count

bit 7 bit 0

Legend:
R = Reserved bit U = Unused bit, read as ‘1’ U = Unused bit, read as ‘1’
-n = Value prior to initialization 1 = Bit is in erased state 0 = Bit is in programmed state

bit 23-21 Unimplemented: Read as ‘1’
bit 20 Page Expired

1 = Page not expired
0 = Page expired

bit 19 Page Current
1 = Page not current
0 = Page current

bit 18 Page Available
1 = Page available
0 = Page not available

bit 17-16 Unimplemented: Read as ‘1’
bit 15-0 Page Erase/Write Count: Number of Page Erase/Write cycles
© 2008 Microchip Technology Inc. DS01095B-page 5

AN1095

REGISTER 2: PAGE STATUS FOR PIC18 ALGORITHM (START OF PAGE)

REGISTER 3: PAGE STATUS FOR PIC18 ALGORITHM (START OF PAGE + 2)

U-1 U-1 U-1 U-1 U-1 U-1 U-1 U-1
— — — — — — — —

bit 15 bit 8

U-1 U-1 U-1 U-1 U-1 R-1 R-1 R-1
— — — — — Page Expired Page Current Page Available

bit 7 bit 0

Legend:
R = Reserved bit U = Unused bit, read as ‘1’ U = Unused bit, read as ‘1’
-n = Value prior to initialization 1 = Bit is in erased state 0 = Bit is in programmed state

bit 15-3 Unimplemented: Read as ‘1’
bit 2 Page Expired

1 = Page not expired
0 = Page expired

bit 1 Page Current
1 = Page not current
0 = Page current

bit 0 Page Available
1 = Page available
0 = Page not available

R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1
Page Erase/Write Count

bit 15 bit 8

R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1
Page Erase/Write Count

bit 7 bit 0

Legend:
R = Reserved bit U = Unused bit, read as ‘1’ U = Unused bit, read as ‘1’
-n = Value prior to initialization 1 = Bit is in erased state 0 = Bit is in programmed state

bit 15-0 Page Erase/Write Count: Number of Page Erase/Write cycles
DS01095B-page 6 © 2008 Microchip Technology Inc.

AN1095

INITIALIZATION OPERATION
The initialization routine, DataEEInit, must be called
before any other data EEPROM operation can occur; this
initializes all the EEPROM banks. If the routine deter-
mines that program memory has not been initialized for
emulation, it will find the first allocated page of program
memory and initialize its status information. Thereafter,
the read and write functions may be called as needed.

The routine may also determine whether data
EEPROM emulation is already underway. If so, one of
three scenarios may occur:

• If only one active page is found, the routine
assumes a Reset occurred. No action is taken
and the routine exits normally. Any read or write
operation that may have been active during the
Reset should be repeated.

• If two active pages are found, the routine
assumes that an unexpected Reset occurred
during a pack operation. The routine will erase the
second active page and call the pack routine to
permit the refresh to complete.

• If more than two active pages are found, the
routine assumes program memory has been
corrupted by the application code and sets the
pageCorrupt flag.

It is important to monitor the page status bits as well as
the RCON and NVMCON (PIC24/dsPIC33F) or
EECON1 (PIC18) registers. By doing so, the
application can respond appropriately to Resets and
supply voltage changes.

For a flowchart of the initialization routine, see Figure 1.

FIGURE 1: EMULATION DATA EEPROM INITIALIZATION

Find an Available Page

Are all pages
expired?

N

Y Set expiredPage
Status Flag Return

Count Number of
Active Pages

Are no active
pages found?

Mark First Page as
Active and Assign E/W

Count to 0

Erase First
Allocated Page of
Program Memory

Is 1 active page
found?

Y

Y

N

N

Are 2 active
pages found?

Erase
Second

Active Page

Pack First
Active Page

Set pageCorrupt
Status Flag

Return

N

Y

Are all the EEPROM
Banks initialized?

Return

Select Next
EEPROM Bank

N

Y

Select First EEPROM
Bank
© 2008 Microchip Technology Inc. DS01095B-page 7

AN1095
READ OPERATION
The DataEERead function is used to retrieve data
EEPROM information. It returns the data associated
with the data EEPROM address. If the provided
address is equal to or greater than the amount of
defined data EEPROM, the illegalAddress flag is set
and a value of all ‘1’s is returned. This return value
mimics the response of dedicated data EEPROM,
where an unwritten address returns an erased value.

The routine then searches for the active page. Once
located, the active page is searched for an address
match, starting from the last location in the page. For
details on how data EEPROM information is stored in
program memory, see Table 1 and Table 2.

Since the page is filled sequentially, the latest data
EEPROM information will be the first location found
with the reverse search. Once found, the routine
returns the data EEPROM data value associated with
the data EEPROM address.

If an active page is not found, the pageCorrupt flag is set.

For a flowchart of the read operation, see Figure 2.

FIGURE 2: READ OPERATION

Is active page
found?

Set pageCorrupt
Status Flag

Return 0xFF or
0xFFFF

Set Table Pointer to
End of Current Page

Does

address

Has entire page
been read?

Decrement Table
Pointer

Return Data

Return 0xFF or
0xFFFF

N

Y

N

Y

Y

N

Set addrNotFound
Status Flag

Is data EEPROM Set illegalAddress
Status Flag

Return
N

address valid?

data EEPROM

match?
 EEPROM Data

Select the EEPROM Bank
Corresponding to the Address

Y

DS01095B-page 8 © 2008 Microchip Technology Inc.

AN1095

WRITE OPERATION
To write emulated data EEPROM, the application uses
the DataEEWrite function. Like the read function, it
verifies that the data EEPROM address is between 0
and one less than the size of the emulated data
EEPROM. If an unimplemented address is supplied,
the illegalAddress flag is set and write operation is
aborted.

The routine then searches for the active page of the
EEPROM bank corresponding to the address. After the
active page is located, a read operation is performed.
To minimize the number of erase/write cycles, the value
is programmed only if it has changed.

If an active page is not found, the pageCorrupt flag is
set and a nonzero value is returned.

A forward search of the active page returns the offset
for the next available address. If the next available
address is equal or greater than the last address in the
page, the packSkipped flag is set and the write
operation is aborted. Otherwise, the data EEPROM
information is written to the next available address in
the page.

If the information does not verify, the writeError flag is
set and a nonzero value is returned. The user can
attempt to rewrite the data or respond as needed.

The algorithm is designed to maintain at least one
available location in the active page for the next write
operation. After a successful verification of the write
operation, the pack routine is called if no available
locations remain.

After the routine completes successfully, a zero value is
returned.

For a flowchart of the write operation, see Figure 3.

FIGURE 3: WRITE OPERATION

Is

Is active page
found?

Set packBeforeInit
Status Flag

Set Table Pointer to Start
of Current Page

N

Y

Set illegalAddress
Status Flag

Read Current Data EEPROM Value

N
Return

Find Next Available
Address in Page

Is page full? Set packSkipped
Status Flag

Y

Write and Verify Data
EEPROM Address and Data

N

Y

N

Does data
verify?

N Set writeError
Status Flag

Find Next Available
Address in Page

Is page full? Pack Active Page

Return

Y

N

Y

Y

address valid?
data EEPROM

Return

Return

Return

Return

Did

value change?
data EEPROM

Select the EEPROM Bank
Corresponding to the Address
© 2008 Microchip Technology Inc. DS01095B-page 9

AN1095
PACK OPERATION
The pack routine, PackEE, is called from either a
DataEEWrite, after the current page is filled, or by
DataEEInit, to initialize program memory for data
EEPROM emulation. It can also be called by the user,
which may benefit timing-sensitive applications.
Because the routine performs multiple Flash
operations which stall the CPU, it can be executed at a
time more convenient for the application. The
disadvantage in doing so is that effective endurance is
reduced since unwritten program memory locations are
spent.

The function begins by reading the Page Current status
bit, for each page of program memory allocated, for
emulation to find the filled page. If it is not found, the
routine assumes that the pack function was
called prior to initializing program memory. The
packBeforeInit flag is then set and the operation is
aborted.

A new page is needed to program the latest data
EEPROM information. This page is referred to as the
packed page. It always tries to assign the next page in
program memory as the packed page. If all of the avail-
able pages have reached the user-specified
erase/write limit, the expiredPage flag is set and the
routine will continue the pack operation.

The erase/write counter is only incremented when the
packed page rolls around to be the first page allocated
for data EEPROM memory. At this point, every page
has the same number of erase/write cycles. If the
erase/write counter exceeds the specified limit, the
page status is marked as expired by programming the
Page Expired bit in the Page Status register.

Since the number of pages of program memory and the
erase/write limits are defined at compile time, all pages
will expire sequentially. A search of every defined data
EEPROM address is made into the active page using
the read function. This information is written into the
program memory write latches. After a row of write
latches is filled, the data is programmed until all
information is stored into the packed array. If the last
row is not full, the remaining write latches are written to
all ‘1’s prior to programming.

If the active page is not full, it is assumed the routine
was called by the user. At this point, the
packBeforePageFull status flag is set and the routine
continues into the programming portion.

After all of the data has been programmed into the
packed page, the current page data is read and com-
pared to the packed page data. If a mismatch occurs,
the writeError flag is set and the function exits with an
error code. The page status information is also
programmed and verified. If the verify routine is
successful, the active page is erased and the packed
page is designated as the new active page.

A zero return value from the pack function indicates the
routine completed normally.

For a flowchart of the pack operation, see Figure 4.

Note: The maximum data EEPROM size must
be no greater than N x 255, where
N = number of EEPROM banks.
DS01095B-page 10 © 2008 Microchip Technology Inc.

AN1095
FIGURE 4: PACK OPERATION

Find the Active Page

Is active page
found?

Set packBeforeInit
Status Flag

Set Table Pointer to Start
of Packed Page

N

Y

Find an Available Page
for Pack Operation

Set expiredPage
Status Flag

N

Write ‘1’s over Page Status

Is packed page
full?

packBeforePageFull
Status Flag

Y

Y

N

All

read?

Y

Program Data EEPROM Information
into Packed Page

N Increment
Data EEPROM

Load Most Current Data
EEPROM Information into Write

Latches, Skipping Unwritten

Does
programmed
data verify?

Set Page
writeError

Status Flag

Erase Active Page and

Update Status

Active Page

Return

Y

N

Program Page Status
into Packed Page

Does programmed
data verify?

Set Page
writeError

Status Flag

Y

N

of Packed Page to

and Not Expired
Mark Page as Not Active

Return

Return

Addresses

data EEPROM
addresses Address

Register(s)

Return

Return

Return

Is a packed
page available?

Set

of the Specified EEPROM
Bank
© 2008 Microchip Technology Inc. DS01095B-page 11

AN1095
PERFORMANCE

Effective Endurance
Determining effective endurance is not a trivial
calculation since it is dependent on many factors.
Traditionally, endurance is defined as how many times
a single address can be safely written. This definition
doesn’t apply to emulated data EEPROM for a
few different reasons.

First, writing a data EEPROM address five times does
not mean five erase/write cycles of endurance were
consumed. From the perspective of the program
memory, five writes were made to five different program
memory addresses. These five writes will not cost any
additional endurance cycles until the page is filled and
the pack routine is called.

Second, calculating effective endurance is more than
simply multiplying program memory page size and the
size of the emulated data EEPROM. The entire page is
not available for emulation. Page status information is
stored in the beginning of the page, which is either one
location of program memory for the 16-bit algorithm or
two for 8-bit. In addition, more locations will be
consumed after the pack routine depending on how
many data EEPROM addresses were written. As a
result, writing an address once has a significant impact
to endurance since one less location is available after
the array is packed.

Based on the discussion to this point, a simplified
equation (see Equation 1) can be made for total
effective endurance. Refer to the “Definition of
Terms” section for more information on the terms.

Working through an example for the
PIC24FJ128GA010, this device has a 512-word page.
The 16-bit algorithm reserves one location for page
status.

Equation 2 provides calculation for two pages of
program memory, 10 locations of emulated data
EEPROM and the typical endurance limit.

An average effective endurance can be calculated by
dividing the total effective endurance by the size of the
emulated data EEPROM bank, but this does not tell the
whole story. It assumes that every data EEPROM
address is updated at the same rate. In most
applications, this is not true. Some data, such as
calibration data or user information, may be rarely
updated while sensor information can be written more
frequently. Addresses written more often will consume
a greater amount of program memory endurance.
Therefore, how writes are distributed across the data
EEPROM addresses significantly affects effective
endurance. Ratios could be assigned to each address
to create a more accurate calculation but this is still
only an approximation. It is difficult to predict how often
each address will be written during an application’s
lifetime.

EQUATION 1:

EQUATION 2:

Note: The EEPROM banks are considered as
different EEPROMS each having its own
effective endurance.

Total Effective Endurance = (Page Size – Page Status Size – Size of One Data EEPROM Bank) x Number of Pages x Endurance

Total Effective Endurance = (512 – 1 – 10) x 2 x 1000 = 1,002,000 Cycles
DS01095B-page 12 © 2008 Microchip Technology Inc.

AN1095

CPU Stall
During program memory operations, the CPU stalls
until the write operation is complete. The algorithm
performs a program memory write operation in the
DataEEWrite routine. When that routine is called, the
CPU stall time will depend on whether the page is filled.

If the write operation does not fill the page, the stall time
will be shorter – approximately the amount of time to
program one word. If the write operation fills the current
page, the delay will be longer. This is because the pack
routine may perform multiple row program operations
on the packed page and an erase operation on the
active page.

The GetNextAvailCount function can be used to
determine how full the current page is and how many
writes can be made before the pack routine is invoked.
This function returns the offset of the next available
address in the current page. The range of values is
between 2 and Page Size times two. The pack routine
can be called before the current page is full, if desired.
It can be helpful to perform a pack operation
prematurely to minimize the impact of a CPU stall time

APPLICATION
To implement the data EEPROM emulation for an
application, use the appropriate checklist given in
the sections, “PIC18 Emulation Checklist” or
“PIC24/dsPIC33F Emulation Checklist”.

Both the 8 and 16-bit algorithms require approximately
2.7 Kbytes of program memory for software. This total
does not include the amount of program memory
reserved for data EEPROM information. They also
require approximately 82 bytes of data memory. The
MPLAB® C30 C compiler used optimization level “s” to
minimize code size, although other settings can be
used.

Program memory for storing data EEPROM
information is allocated using a two-dimensional array.
The array size is dependent on the page erase size of
the device and the number of pages reserved for
emulation. For the 16-bit implementation, the compiler
automatically aligns the array to the beginning of the
next available page of program memory at compile
time. For the 8-bit version, the user must specify the
starting address for an available page. A compile-time
error will generate if this address does not align with a
page boundary. The array is used to determine
program memory addresses for table operations. A
compile-time error will be generated if the required
amount of program memory is not available.

Code size and data memory requirements are not
significantly affected by the size of the emulated data
EEPROM.

These algorithms are designed to be configurable, not
only for different devices, but also for specific
endurance needs (see Equation 1 and Equation 2).
If greater endurance is needed, more pages can be
allocated to program memory. Alternatively, the
erase/write limit can be set to the typical endurance
rating instead of the minimum. These options are
selected by simply changing constants in the
associated include file.

PIC18 Emulation Checklist
Make the following changes to the NoFilDee.inc
file. Refer to the product data sheet for information on
program memory.

1. Specify emulation page start address in
EMULATION_PAGES_START_ADDRESS.

2. Specify the number of program memory pages
in NUM_DATA_EE_PAGES.
The minimum is two pages. A compile-time error
will generate if fewer than two pages are
defined.

3. Specify the amount of data EEPROM needed in
DATA_EE_SIZE.
The maximum is 255 (0xFE). A compile-time
error will generate if the data EEPROM size
exceeds 255.

4. Verify the ERASE, PROGRAM_ROW and
PROGRAM_WORD opcode values.

5. Specify the minimum page erase size (in instruc-
tions) in NUMBER_OF_INSTRUCTIONS_IN_PAGE
(512 typical).

6. Specify the maximum programming size (in instruc-
tions) in NUMBER_OF_INSTRUCTIONS_IN_ROW
(64 typical).

7. Select the maximum erase/write cycle count per
location in ERASE_WRITE_CYCLE_MAX. The
maximum is 65,535. A compile-time error will
generate if the limit is exceeded.

8. Add a function call to DataEEInit prior to any
other operation to emulated data EEPROM.

9. Add the following files to your project:
• DEE Emulation 8-bit.c

• GenericTypeDefs.h
• DEE Emulation 8-bit.h
• NoFilDee.asm

• NoFilDee.inc

Note: For more information on program memory
operation timings, refer to the applicable
product data sheet.

Note: For PIC18FXXJ and PIC24F devices, the
last page of program memory stores the
Configuration Word information. It can not
be allocated for data EEPROM emulation.
© 2008 Microchip Technology Inc. DS01095B-page 13

AN1095

PIC24/dsPIC33F Emulation Checklist
Make the following changes to DEE Emulation
16-bit.h. Refer to the product data sheet for infor-
mation on program memory.

1. Specify the number of program memory pages
in NUM_DATA_EE_PAGES.
The minimum is two pages. A compile-time error
will generate if fewer than two pages are defined.

2. Specify the number of EEPROM banks required
in DATA_EE_BANKS. The maximum number is
limited by the memory the device has.

3. Specify the amount of data EEPROM needed for
each bank in DATA_EE_SIZE.
The maximum is 255 (0xFE). A compile-time
error will generate if the data EEPROM size
exceeds 255.

4. Verify the ERASE, PROGRAM_ROW and
PROGRAM_WORD opcode values.

5. Specify the minimum page erase size (in instruc-
tions) in NUMBER_OF_INSTRUCTIONS_IN_PAGE
(512 typical).

6. Specify the maximum programming size (in instruc-
tions) in NUMBER_OF_INSTRUCTIONS_IN_ROW
(64 typical).

7. Select the maximum erase/write cycle count in
ERASE_WRITE_CYCLE_MAX. The maximum is
65,535. A compile-time error will generate if the
limit is exceeded.

8. Add a function call to DataEEInit prior to any
other operation to emulated data EEPROM.

9. Add the following files to your project:
• DEE Emulation 16-bit.c

SOFTWARE
The tools and versions used to create both the
PIC24/dsPIC33F and PIC18 solutions are listed in
Table 9. Later versions of the tools will also work, but
should be tested for compatibility with any application.

TABLE 9: TOOLS USED FOR SOLUTIONS

The latest source code and development tools are
available on Microchip Technology’s web site
(www.microchip.com). For the latest information on this
application note, read the associated Readme file
included with the software.

CONCLUSION
Emulated data EEPROM is an effective solution for
cost-sensitive applications that require high-endurance,
nonvolatile data memory. Applications suited for
Microchip Technology’s cost-effective 0.25 μm PIC
devices can employ unused program memory and
increase nonvolatile data endurance by a factor in
excess of 500. This “effective endurance” can be
customized by selecting the number of program memory
pages, size of emulated data EEPROM and the
erase/write limit. This flexible algorithm will enable you to
add high-endurance data EEPROM to
your applications.

Note: Total addresses are DATA_EE_BANKS x
DATA_EE_SIZE, ranging from 0 to
(DATA_EE_BANKS x DATA_EE_SIZE) – 1.

Tool Version

MPLAB® IDE 8.10
MPLAB C30 C Compiler 2.01
MPLAB C18 C Compiler 3.02
DS01095B-page 14 © 2008 Microchip Technology Inc.

http://www.microchip.com

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2008 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01095B-page 15

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01095B-page 16 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	Introduction
	Definition of Terms

	Theory of Operation
	TABLE 1: PIC18 Data EEPROM Information Format in Program Memory
	TABLE 2: PIC24/dsPIC33F Data EEPROM Information Format in Program Memory
	PIC24/dsPIC33F Scenario
	TABLE 3: Write Data EEPROM (0x0202,2)
	TABLE 4: Write Data EEPROM (0x0707,7)
	TABLE 5: Write Data EEPROM (0x2222,2)
	TABLE 6: Write Data EEPROM (0x0A0A,0xA)
	TABLE 7: Write Data EEPROM (0x7777,7)
	TABLE 8: Page After Pack Operation

	Status Flags
	Page Status
	Register 1: Page Status for PIC24 and dsPIC33F Algorithm
	Register 2: Page Status for PIC18 Algorithm (Start of Page)
	Register 3: Page Status for PIC18 Algorithm (Start of Page + 2)

	Initialization Operation
	FIGURE 1: Emulation Data EEPROM Initialization

	Read Operation
	FIGURE 2: Read Operation

	Write Operation
	FIGURE 3: Write Operation

	Pack Operation
	FIGURE 4: Pack Operation

	Performance
	Effective Endurance
	EQUATION 1:
	EQUATION 2:

	CPU Stall

	Application
	PIC18 Emulation Checklist
	PIC24/dsPIC33F Emulation Checklist

	Software
	TABLE 9: Tools Used for Solutions

	Conclusion
	Worldwide Sales and Service

