中图分类号:TN74

文献标识码:A

DDS 输出频谱杂散的抑制

王晓音,聂裕平,庞伟正

(哈尔滨工程大学电子工程系,哈尔滨 150001)

摘要:本文简要说明了直接数字频率合成器原理,分析了 DDS 输出频谱杂散的误差来源,介绍 了抖动注入法、正弦查找表的幅度压缩方法和 DAC 平衡法等 DDS 频谱杂散抑制方法,详细阐 述有关原理和具体实现方法。

关键词:DDS;抖动注入;幅度压缩;杂散抑制

Spur Reduction Techniques on DDS

WANG Xiao - yin, NIE Yu - ping, PANG Wei - zheng

(Dept. of Electronic Engineering, Harbin Engineering University, Harbin 150001, China)

Abstract :This paper introduces the architecture of DDS and the error sources, details spur reduction techniques such as dither injection, ROM compression and DAC balanced architecture.

Key words :DDS ; dither ; ROM compression ; Spur

0 引言

目前主要的频率合成方式有直接频率合成 (DS)、锁相频率合成(HL)、混合式频率合成和直 接数字式频率合成(DDS)。这几种频率合成技术 相比较,直接数字频率合成的优点主要有:具有高 精度的频率和相位分辨率,它的频率精度可达到 微赫兹级,相位精度可达纳赫兹级;频率变化几乎 没有时间限制,切换速度仅受限于器件工作时钟, 可达纳秒级;另外 DDS 还具有相对较宽的输出频 率范围,器件体积小,功耗低等特点。但是 DDS 输出频谱的杂散相对较多,输出频率也还不是很 高,受器件工作时钟的限制。

DDS 具有传统频率合成技术无法比拟的优 点,得到广泛的应用。但它的输出杂散大和输出 带宽窄这两个缺点严重限制了它的进一步广泛使 用,如何抑制 DDS 输出频谱中的杂散就成为了研 究热点。本文对 DDS 原理和误差来源进行介绍, 并详细介绍了抖动注入、ROM 存储压缩、平衡 DAC 结构等杂散抑制方法。

1 DDS 的结构和主要误差

直接数字频率合成器即 DDS (Direct Digital Frequency Synthesizer),又称数控振荡器 NCO (Numeric Control Oscillator)。DDS 的结构如图 1.1 所 示,其中是频率控制字, $_{P}(n)$ 为相位截断误差, $_{T}(n)$ 是波形存储量化误差, $_{DA}(n)$ 是 D/A 转换 过程中由于其非线性带来的误差。

DDS 从相位的概念出发,对应于相位给出相 应的电压幅度从而组成合成波形。每个时钟周 期,频率控制字送入相位累加器得到当前相位,再

收稿日期:2003 - 01 - 27

作者简介:王晓音(1977-),硕士研究生,从事数字信号处理和软件无线电方面的研究。

以相位作为地址对 ROM 寻址查到波形存储表中 对应的波形幅度值,送入 DAC 转换为模拟阶梯信 号,经LPF平滑滤波去掉多余的成分得到所需信 号。

图 1 DDS 结构框图

DDS 中由于其工作原理,存在着固有的误差, 主要的误差来源有三个,如图 1 所示。

p(n)是相位截断误差。为了使 DDS 具有很高的频率精度,一般相位累加器位数都取L=32 或48,但是这样一来,如这U 位都用于寻址,则所需的 ROM 将极大,实际应用中是不可能的,通常将L 位相位的高 W 位用于寻址,其余舍弃不用, 这样就引入了截断误差,这也是 DDS 的主要误差来源。

DDS 中相位到幅度的转换是通过查找由波形存储表实现的,而波形存储表的字长是有限的,这就存在着幅度量化误差 r(n),这是 DDS 误差的第二个来源。幅度量化噪声又称作背景噪声,它的幅度通常远小于相位截断误差和 DAC 非线性引入的误差。

从数字转换到模拟须由 DAC 实现,在此过程 中由于 DAC 的有限分辨率、非线性特性、瞬间毛 刺、数字噪声馈通和转换速率等非理想转换特性 产生了杂散分量,使 DDS 输出信号失真,引入误 差 DA(n)。DAC 对 DDS 谱值的恶化起了很大的 作用,是主要的杂散来源之一。

2 DDS 频谱杂散的抑制

为降低 DDS 输出频谱的杂散,有几种有效 的方法可同时采用。抖动注入是基于打破相位截 断误差周期性的原理工作的,采用抖动注入后的 杂散抑制可达到与增加 2bit 相位寻址相同的效 果。幅度压缩是将波形存储表进行压缩,从而在 同样的硬件资源下等效的增加寻址位数,以达到 降低杂散的目的。平衡 DAC 法将差分原理应用 于 DDS,使得 DAC 的非理想特性对 DDS 造成的 影响得到了抑制。Nicholas 修正结构可强制使 $GCD (F_{cw}, 2^L) = 1$,这样一方面使得因相位截 断引起的杂散比最大杂散情况降低了约 4dB,另 一方面也降低了幅度量化引入的杂散幅度。这几 种方法均能有效的抑制 DDS 的杂散,下面介绍 其具体原理和实现。

2.1 抖动注入

相位累加器是基于溢出原理工作的,每累加 至 2^L 便溢出,以模拟正弦信号的 2 周期。每个 工作时钟将频率控制字与前一时钟相位累加得到 当前相位,用以查表得到幅度值。对一定的频率 f₀ 的输出信号,其采样序列是周期性的,因而其 幅度的量化误差也具有周期性。同样,在 f_{cls}与f₀ 相对关系一定时,采样造成信号相位的离散化也 具有周期性,因截断而产生的误差序列也是周期 性的。

当频率控制字为 F_{cw} 时,得到的相位序列可 以看作是对一个幅度为 2^{L} 周期为 $2^{L}/F_{cw}$ 的连续 锯齿波的采样值。相位累加器的输出序列的数字 周期定义为满足 (n) = (n + N)的最小 N 值, 有 $N = 2^{L}/(F_{cw}, 2^{L})$,其中 $(F_{cw}, 2^{L})$ 表示 F_{cw} 和 2^{L} 的最大公约数。由于相位截断的存在,引入了相 位截断误差,误差序列 P(n)为:

$$P(n) = (n \cdot F_{CW}) \operatorname{mod} 2^{B}$$

误差序列 $_{P}(n)$ 是幅度为 2^{B} 周期为 $2^{B}/F_{cw}$ 的连续锯齿波的采样值,周期为 $N = 2^{B}/(F_{cw}, 2^{B})$ 。在[0, $F_{clk}/2$]内 $_{P}(n)$ 的频谱分布为

 $_{P}(n) = \underset{K=1}{\operatorname{kexp}[j(2 \quad K \frac{F_{cw}}{2^{B}}n)] \exp[j \quad (K,)]}$

其中幅度 _K和相位 (K,)定义为 _K = $\frac{2^{B}}{2} \csc \frac{K}{2}$, (K,) = $- \operatorname{ctg}(\frac{K}{2})$,式中 K=1,2,... ; = $\frac{2^{B-1}}{(2^{B}, F_{cw})}$ 。

信号频谱中的杂散分量是正是由周期性误差 分量形成的,只要打乱其周期性,将这种误差随机 化,便可平均杂散信号功率,大大降低杂散幅度, 但是背景噪声增加了。

抖动注入就是采用加入满足一定统计特性的 扰动信号来打破误差信号序列周期性,将具有较 大幅度的单根杂散信号谱线的功率在较宽的频率 范围内进行平均来改善总的信号频谱质量。根据 抖动注入的位置不同,可有频率控制字加扰、ROM 寻址加扰、幅度加扰,根据抖动注入的误差对象不 同,由相位截断误差加扰和幅度量化误差加扰。

C. E. Wheatly 提出了一种针对相位截断误差 的抖动注入方法,在每次累加器溢出时,产生一个 $0 \sim F_{ow} - 1$ 的随机整数加到累加器上,使相位累 加器的溢出随机性的提前、从而打破周期性。其 原理框图见图 2:

图 2 Wheatly 抖动注入结构

2.2 ROM 幅度表压缩

DDS 是通过查表将相位转换为幅度值,如果 将相位全部用作地址对 ROM 表进行查表 .这所需 的 ROM 表是极其庞大的,实际应用中是不可能。 为了降低 ROM 表的规模,对相位进行了截断。但 这还是不够的,如果能够将幅度表进行压缩就相 当干增加了 ROM 数据寻址位数 .DDS 输出频谱将 进一步得到改善。

各国学者对此进行了研究并提出了各种压缩 算法,利用三角函数的恒等变换,将一个大的 ROM 分成几个小 ROM .通过逻辑控制电路实现对 sin 的近似。Sunderland 提出的粗细表结构及其改 进,最高压缩比为 59:1;Nicholas 结构算法基于数 字优化的方法,根据实际参数优化计算出粗细表 的容量及数据位数,数据压缩比可达128:1,此外 还有多种算法。当然在成功的压缩了 ROM 表的 同时也带来了一些缺点,如逻辑控制电路复杂、实 时性略有下降等。

下面介绍一下具体的压缩方法。

2.2.1 利用正弦波的波形对称性

由于正弦信号的波形具有四分之一对称性, ROM 表中只需存储[0, /2]的波形,在电路中利 用相位的最高位控制输出波形的符号,次高位控 制 ROM 表的寻址,对相位和幅度进行适当的翻转 便可得到整周期波形,硬件电路中易于实现。

ROM 表压缩比 4:1。

2.2.2 正弦值 - 相位差法

在 1/4 周期表基础上,可利用正弦值-相位 差的方法进一步压缩 ROM 表。方法简单易行,即 用 $f(x) = \sin(x) - 2x$ / 代替 $\sin(x)$ 存入 ROM 表 中,在电路中增加一个加法器将查表结果与2x/ 相加。

可以求出 max(sin(x) - 2x/) $0.21\sin(x)$, 则 ROM 表幅度值减小了 2 bit。

2.2.3 Sunderland 结构

Sunderland 提出的粗细表结构将一个 2^{A+B+C} 的 ROM 表分为一个 2^{A+B} 粗值表和一个 2^{A+C} 精 细表之和以达到压缩的目的。粗值表给出了精度 不高的幅度粗值,由精细表再进行插值来得到精 确幅值。Sunderland 结构基于三角近似算法,先将 寻址的相位变量 ϕ 分解为 、和 之和,即 ϕ = + + ,且满足 < (/2) , < (/2) 2^{-} , < (/2)2^{-(A+B)},再利用三角函数公式可得:

 $\sin(++) = \sin(+)\cos(+) +$

 $\cos()\cos()\sin() - \sin()\sin()\sin()$

由于、和 三者之间的幅度关系,上式可 近似为:

 $\sin(++)$ $\sin(+) + \cos() \sin()$

根据此式,粗值表中存入 sin(+),寻址位 数为 A + B bits,精细表中存入 cos()sin(),寻址 位数为 A + C bits。

实际上精细表中的值幅度与粗制表相比已经 很小,若取A = 4,B = 4和C = 4,若粗值表幅度为 11bits,精细表幅度仅为 4bits。则可将一个 2⁴⁺⁴⁺⁴ **×**11bits 的 ROM 表压缩成 2⁴⁺⁴ ×11 + 2⁴⁺⁴ ×4bits 的两个 ROM 表之和,压缩比可达 11.7:1。

2.2.4 Nicholas 优化的相细表

如果在粗细表的基础上对粗值表和精细表的 值进行优化,则杂散性能还可进一步提高。在 Sunderland 结构中,粗值表和精细表中值分别为 sin(+)和 cos()sin()。Nicholas 指出如对精细 表中所存值进行优化选择,当取A = B = C = 4时, 相对于 Sunderland 结构可将杂散改进 12dB^[1]。

下面作者给出计算公式,当采用最大误差最 小化优化原则时,最大杂散的值较小。选择采样 值的公式为:

27

$$V_{f}(,) = \frac{1}{2} \max \{ \sin \left[\frac{2^{B+C} + 2^{C} + 2^{C$$

采用均方误差最小化优化原则时,杂散总能 量最小。选择采样值的公式为:

$$V_{f}(,) = \sum_{a=0}^{N-1} \frac{1}{2^{B}} \{ \sin \left[\frac{-2^{B+C} + 2^{C} + 2^{$$

上面两公式中 V_c(,)为粗值表采样值,

 $V_f(,)$ 为精细表值, $N=2^B$ 。

事实上,如果将粗值表的采样值选在插值区 中间,精细表将基本关于 = $(2^{c} - 1)/2$ 对称,在 电路中增加适当的控制逻辑和一个加减器就可使 精细表再压缩为 2^{4+3} ×3bits。但精细表即便压缩 所减少的 ROM 容量也有限,不如再增加 1bit 相位 进行寻址,能更好的降低相位截断引起的杂散。

采用 1/4 波形、正弦相位差法和 Nicholas 优 化粗细表法,可将一个 2^{15} ×12bits 的 ROM 表压缩 成 2^{4+4} ×9 + 2^{4+4} ×3bits 的两个 ROM 表之和,压 缩比可达 128:1。

上述压缩方法的组合结构见图 3。

图 3 正弦波 ROM 表的压缩的结构

2.3 平衡 DAC 结构

28

数模转换器是高速 DDS 的主要杂散来源之 一,DAC 的有限分辨率、非线性特性、瞬间毛刺、 数字噪声馈通等非理想特性使 DDS 输出信号变 差。

理想 DAC 应是线性的,但实际上 DAC 是半 波不对称的,它的正半周期近似于理想 DAC,负 半周期则偏离。时域上的半波不对称性在频域中 引入了偶阶杂散,而平衡结构可消除偶次分量。 此外,由于数据传输延迟的不对称、逻辑翻转的不 对称等原因 DAC 产生了瞬间毛刺,平衡 DAC 结 构有效的消除了毛刺。

与抖动注入技术相比较,抖动注入虽然降低 了最大杂散的幅度,但噪声总能量却增加了,而平 衡 DAC 结构有效的抑制了偶次杂散,降低了整体 杂散能量。L.J. Kushner 采用该结构使得频谱获 得了 10dB 以上的改进^[2]。

图 4 平稳 DAC 结构

-7

2.4 Nicholas 修正结构

当相位累加起位数为 L, 取高 W 位寻址时, DDS 输出波形为

$$\begin{split} s(n) &= \sin\left(\frac{2}{2^{L}}\left[F_{cw} \cdot n - P(n)\right]\right) = \sin\left(2 \frac{F_{cw}}{2^{L}}n\right) \\ \cos\left(2 \frac{P(n)}{2^{L}}\right) - \cos\left(2 \frac{F_{cw}}{2^{L}}n\right)\sin\left(2 \frac{P(n)}{2^{L}}\right) \\ & \boxtimes 0 P(n) < 2^{B}, 2^{B} < 2^{L}, \mathbb{R} \equiv \mathbb{H} \text{if} \mathbb{K} \text{ (cos)} \\ \left(2 \frac{P(n)}{2^{L}}\right) - 1, \sin\left(2 \frac{P(n)}{2^{L}}\right) - 2 \frac{P(n)}{2^{L}}, \mathbb{H} \text{ (cos)} \\ P(n) &= \sum_{K=1}^{K} \exp\left[j\left(2 \frac{F_{cw}}{2^{B}}n\right)\right] \exp\left[j(K, N)\right] \\ & \text{K} \text{ (if)} \\ \text{K} \text{ (if)} \\ \text{H} \text{ (if)} \\ \text{(if)} \\ \text{(if$$

$$s(n) = \sin \left(2 \frac{F_{ow}}{2^{L}}n\right) - \frac{1}{2^{L}} \sum_{K=1}^{K} \exp \left[j2 \left(\frac{F_{ow}}{2^{L}} + \frac{F_{ow}}{2^{B}}n\right)\right] + \exp \left[-j2 \left(\frac{F_{ow}}{2^{L}} - \frac{F_{ow}}{2^{B}}n\right)\right] \exp \left(j - (K, K)\right)$$

可分析得出^[3]在 $[0, F_{clk}/2]$ 内,s(n)的频谱 由 = $2^{L-1}(2^L, F_{cw})$ 根离散谱线组成,最多只有 2 +1 根谱线的幅度不为 0。第 F_n 根谱线的幅 度为: (下转第 46 页) 100 公里以上;美陆军 IEWCS 系统中的地面 TAC-JAM - A 战术通信干扰系统的有效辐射功率高达 3~4 千瓦,干扰作用距离达 30~40 公里,而且 由于采用装甲战斗车辆运载,能够随着机械化部 队在战场上高速运动。

® 反辐射导弹是所有无线电射频和红外等辐射源的致命武器,也是电子战的"硬杀伤"武器。 美军现役的 AGM"哈姆"系列高速反辐射导弹采 用微波、电视、激光、红外成像/毫米波或者其混合 制导方式,大大提高了命中精度和命中概率,一 般情况下,命中概率可达 90%以上,圆概率误差 仅为1米左右。

®信息战新武器的成功运用使防御方陷入了

(上接第28页)

 $\kappa = \frac{2^{k-L}}{2} \csc(\frac{K}{2}), K=1,2, ...$ 当 K = 1时可得到最大杂散为 $= \frac{2^{k-L}}{2}$. $\csc(\frac{2}{2}) = 2^{k-L} \frac{(2^{B}, F_{cw})/2^{B}}{\sin((2^{B}, F_{cw})/2^{B})}, \& k = (2^{B}, F_{cw}), \&$

图 5 Nicholas 校正结构

"防不胜防'的危机境地,关键的指挥控制节点、 通信节点、网络节点等面临了空前未有的威胁。 信息战新武器包括计算机网络上的信息攻击武 器、电磁炸弹和石墨炸弹等。在科索沃战争中, 美军多次运用这些新武器成功地攻击了南联盟的 无线通信和有线通信节点以及电力系统,致使通 信中断、电网瘫痪。

面对上述这些电子战威胁,我们非但要采用 各种手段和措施(包括电子战和非电子战手段和 措施)来保护己方的电子/信息设备和系统的安全 运行,而且还必须采取相应的措施保护己方的电 子战设备的正常工作,其中尤应注重那些大功率 发射设备的安全性和战场生存能力。

点,如频率精度高、切换速度快,但由于它的工作 原理使得输出杂散较大,限制了其应用。本文介 绍了抖动注入、幅度表压缩等有效降低杂散的方 法,在设计 DDS 电路中综合使用这些方法可大大 改进 DDS 性能,节省硬件资源。

参考文献:

- H. T. Nicholas III, H. Samueli, B. Kim. The Optimization of Direct Digital Frequency Synthesizer Performance in the Presence of Finite Word Length Effects [A]. Proc. 42nd Annual Frequency Control Symp[C]. 1988. 357 - 363.
- [2] L. J. Kushner, M. T. Ainsworth. . A Spurious Reduction Technique For High - Speed Direct Digital Synthesizers
 [A]. IEEE. Int. Frequency Control Symp[C]. 1996. 920 - 927.
- [3] H. T. Nicholas III, H. Samueli. An Analysis of the Output Spectrum of Direct Digital Frequency Synthesizers in the Presence of Phase - Accumulator Truncation [A]. Proc. 41st Annual Frequency Control Symp [C]. 1987. 495 -502.
- [4] C. E. Wheatly. Spurious Suppression in Direct Digital Syrr thesizers[A]. Proc. 35th Annual Frequency Control Symp
 [C]. 1981.428 - 435.

3 结束语

7

DDS 与其它频率合成方法相比具有众多优