PB375A

DATASHEET V1.0

深圳蓝色飞舞科技有限公司

版权所有 不得复制

版本号	修改时间	制定人	更改内容
V1.0	2009.6.23	黄亮	初始发布

手册目录

1.	概述	
2.	· · · · = · · · · · · ·	
	2.1 功能介绍	
	2.2 主要特点	
3. 5	引脚及封装	
	3.1 引脚图	
	3.2 管脚描述	
	3.3 封装图	
4.	2.4	
	4.1 接口概述	
	4.2 硬件接口	
	4.2.1 电源系统	
	4.2.2 复位电路	
	4.2.3 振荡电路	
	4. 2. 4 SPI 接口 ···································	
	4. 2. 5 UART 接口 ···································	
	4. 2. 6 USB 接口	
	4. 2. 7 SD/ MMC下接口	
E		
5.	切能叩ぐ及参数 · · · · · · · · · · · · · · · · · · ·	
	5. 1. 1 SPI 命令格式 ····································	
	5.1.2 UART 命令格式 ····································	
	5.2 操作命令参数	
	5.3 返回的操作状态码	
	5.4 命令操作说明	
6.	常用操作步骤·····	
٠.	6.1 初始化	
	6.2 顺序读文件	
	6.3 读文件的指定位置	
	6.4 顺序改写文件 ······	
	6.5 改写文件的指定位置	•16
	6.6 向已有文件追加数据	•16
	6.7 新建文件	•17
7.	2 · · · = 2 · · · ·	
8.		
	8.1 极限参数	
	8.2 电气参数	
	8.3. 时序参数	
	典型应用电路	
10.	. U 盘支持列表・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
11	. 技术支持	•20

1、概述

当前信息化社会,U盘(含闪盘、USB 闪存盘、USB 移动硬盘等)已经成为很常用的移动存储设备,用来随身携带存储数据。所以在很多产品中需要读取或者保存数据,多数采用方便快捷的存储方式。单片机系统可以直接采用 U 盘作为移动存储器,并且方便与使用WINDOWS 操作系统的计算机交换数据。由深圳蓝色飞舞科技独立开发的 PB375A U 盘读写芯片作为一款高性价比的单芯片 U 盘读写解决方案,广泛应用于便携式仪表设备的数据存储相关领域。

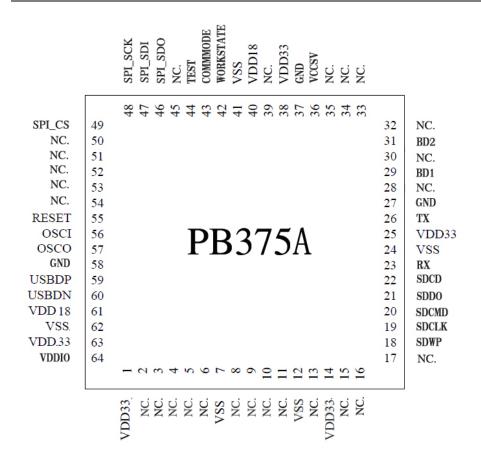
2、功能特点

2.1 功能介绍

PB375A是PB375的功能升级版本,是一款集成USB HOST、文件系统、LDO等功能于一体的单芯片U盘读写解决方案。相对于PB375,其增加了Uart接口,内置5V转3.3V LDO,保留SD卡功能拓展接口,让您的开发更加简单,功能更加强大。

应用于嵌入式系统/单片机读写U 盘、闪盘、闪存盘、USB 移动硬盘、USB 读卡器、等。

2.2 主要特点

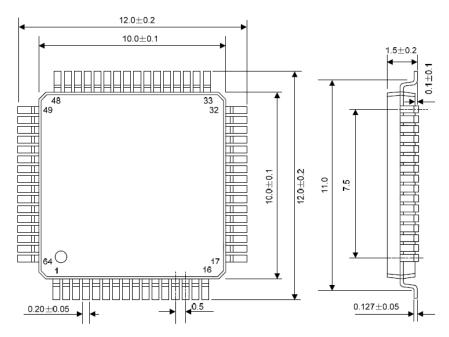

支持文件系统FAT12 和FAT16 及FAT32,如果需要支持FAT32 请看本文后面的说明。 文件操作功能:新建文件、删除文件、打开文件、关闭文件、读数据、写数据等。 读写模式:方便的字节模式。

采用了方便、高速、简单的SPI接口和UART接口

- 全速USB 设备接口,兼容USB V2.0,外围元器件只需要晶体和少量的元器件。
- 集成USB1.1 Full Speed Host 收发器
- 支持5V 电源电压。
- 低成本,采用SPI Slave、UART接口。
- 芯片固化FAT12/FAT16/FAT32文件系统。
- LQFP-64-10x10-0.5无铅封装,兼容RoHS。

3、引脚及封装

3.1 引脚图


3.2 管脚描述

J. 4 ⊟ //A					
管脚号	管脚名	管脚类型	描述		
1	VDD33	PWR	电源管脚, 3.3V数字电源正端		
7	VSS	PWR	数字地		
12	VSS	PWR	数字地		
14	VDD33	PWR	电源管脚, 3.3V数字电源正端		
18	SDWP	I/0	SD卡WP脚		
19	SDCLK	I/0	SD卡CLK脚		
20	SDCMD	I/0	SD卡CMD脚		
21	SDD0	I/0	SD卡DATAO脚		
22	SDCD	I/0	SD卡CD脚 检测SD卡是否插入		
23	RX	I/0	RX 串口Uart接收脚		
24	VSS	PWR	芯片内部1.8V电源		
25	VDD33	PWR	3.3V电源正		
26	TX	I/0	RX 串口Uart接收脚		
27	GND	PWR	数字地		
29	BD1	I/0	串口波特率选择线1		
31	BD2	I/0	串口波特率选择线2		
36	VCCSV	PWR	输入5V电源正		
37	GND	PWR	输入5V电源地		
38	VDD33	PWR	3. 3V电源正		
40	VDD18	PWR	内部1.8V电源正		

41	VSS	PWR	数字地
42	WORKSTATE	0	工作状态脚,为低表示正常工作
43	COMMMODE	I	通信模式选择,悬空或高则SPI通信,置
			低则采用Uart通信
44	TEST	I	功能测试脚,为低则会在U盘中生成
			BLUEFIVE. TXT文件
46	SPI_SD0	I/0	SPI数据输出线
47	SPI_SDI	I/0	SPI数据输入线
48	SPI_SCK	I/0	SPI时钟线
49	SPI_CS	I/0	SPI片选线
55	RESET	I	芯片复位输入,低有效
56	OSCI		晶振输入(24M)
57	0SC0		晶振输出(24M)
58	GND		数字地
59	USBDP		USB端口数据线D+,直接连接到USB总线
60	USBDN		USB端口数据线D-,直接连接到USB总线
61	VDD18	PWR	内部1.8V电源正
62	VSS	PWR	数字地
63	VDD33	PWR	3.3V电源正
64	VDDIO	PWR	电压输出,通过4.7欧姆电阻与VDD18相连

注: 其他引脚NC. 为预留引脚。 PWR—电源部分, I/0—输入输出, I—输入, 0—输出

3.3 封装图

芯片封装为: LQFP-64-10x10-0.5

4、接口操作

4.1 接口概述

基本操作步骤是,单片机系统将命令码、后续参数长度(因为各命令码所需要的参数不等长)和参数发送给PB375A,并通知其启动操作,PB375A执行完成后以中断方式通知单片机,并返回操作状态和操作结果。注意,数据流模式的命令执行完成后不返回状态。因为接口操作看起来比较复杂,所以实际过程可以参考提供的几个示例程序来理解。

4.2 硬件接口

通过下面的系统框图 1 可以清楚的看出芯片组成部分。

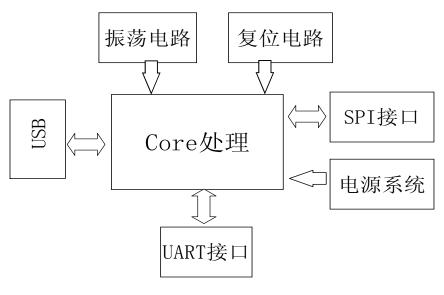
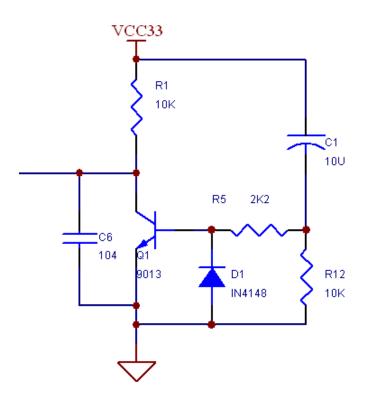
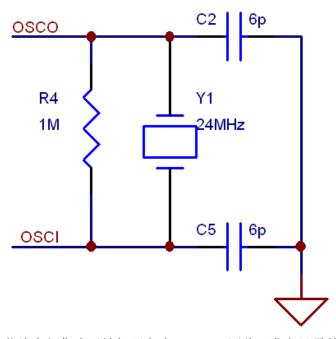



图 1 系统框图

4.2.1 电源系统


- 1 芯片内部集成了5V->3.3V、3.3V->1.8V的电源转换模块,芯片只需要5V供电即可,只需很少的外围器件,即可实现高效的电源管理
- 2 VDD18需要连接在一起
- 3 VCC5V(36 脚)为外部+5V 电压输入
- 4 VDD330(38 脚)为5V转3.3V的数字电源正端
- 5 VDD33 需要连接在 3.3 数字电源正端
- 6 VSS 数字地需要连接在 3.3V 数字电源地
- 7 VDDIO(64 脚)为电压输出脚,通过 4.7 欧姆电阻与 VDD18 相连

4.2.2 复位电路

低电平有效,采用经典复位电路,具体参考原理电路图。 建议复位时间在50ms以上,芯片将复位比较充分。

4.2.3 振荡电路

芯片內部集成了锁相环电路(PLL),因此开发者只需外接一个 24M 的系统晶振。OSCI 和 OSCO 之间接一个 1M 的电阻,OSCI 和 OSCO 分别与地之间连接一个 6p 的小电容。建议晶振的外壳接地,晶振下面铺地及无其他信号走线。

4.2.4 SPI 接口

SPI Slave 模式,CS, SCK, SDI, SDO 形成 SPI Slave 模块。采用通用的 SPI 操作即可实现 USB Host U 盘数据读写功能。可以参考例程。

采用 4 线制 SPI 方式, SPI 速度能达到 120KB/S.

4.2.5 UART 接口

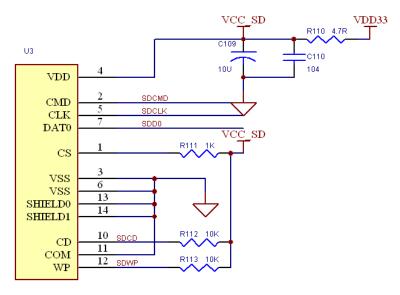
UART 模式, TX, RX, GND 构成最简单的串口通信。通过 UART 操作同样可以实现 USB Host U 盘数据读写功能。可以参考例程。

RX-----uart串口数据输入

TX-----uart串口数据输出

BD1、BD2---uart串口波特率选择

对于波特率的选择共分三种不同的模式:


Bd1	Bd2	波特率 (BPS)
1	1	9600 (程序默认)
1	0	9600
0	1	4800
0	0	2400

4.2.6 USB 接口

符合 USB1. 1 全速模式,内部集成了 FIFO 存储器收发器及 PLL 时钟产生模块。

将 USBDP, USBDN 直接连接到 USB 总线,即可实现 USB Host 的操作,具体可参考典型电路应用。

4.2.7 SD/MMC卡接口

SDCMD, SDCLK, SDD0为SD卡读写操作信号线. SDCD为SD卡插卡检测信号。

4.2.8 其他功能接口

a. 测试功能脚 TEST (44脚)

测试状态选择,检测芯片是否工作

TEST	有无文件生成	芯片工作情况
	有文件(BLUEFIVE. TXT)生	正常工作
0	成	
	无文件生成	工作不正常
1	不进入测试状态	

注: 文件内容为: Hello, welcome to use PB375 to develop USB Host project!

Company: Shenzhen BlueFive Tech. Inc.

Web:http://www.lanwind.com Tel:075529739852

Email:xiaowuyeah@163.com

b. 通信模式选择脚 COMMMODE (43脚)

通信方式选择: SPI、UART通信方式不能同时选择

COMMMODE	通信方式	
0	UART	
1	SPI (程序默认)	

c. 工作状态显示脚 WORKSTATE(42脚)

程序运行状态输出

WORKSTATE	程序状态
1	程序没有运行
0	程序正在运行

d. U盘/SD卡模式选择脚(28脚)

该脚悬空或者接高电平则表示选择U盘读写操作,若该脚接低电平则表示选择SD/MMC 卡读写操作。

5、功能命令及参数

5.1 命令格式

芯片处理命令和参数时主要是以数据流的形式进行。在本设计中数据的传输方式主要有两种: SPI 和 UART。下面就两种方式对数据输出和返回格式进行说明。

5.1.1 SPI 命令格式

数据流结构

CMD (1BYTE)	CMD_Len(1BYTE)	CMD_DATA(N BYTE)
1 - 11 - 14 - 14 - 14 - 14		

CMD: 操作码 长度为 1 BYTE

CMD_Len: 数据长度 长度为 1 BYTE

CMD_DATA: 数据包 长度为 CMD_Len BYTE

返回数据包

STATUS (1BYTE) Back_Len (1BYTE) Back_Data (N BYTE)

STATUS: 状态码 长度为 1BYTE

Back Len: 返回数据长度,长度为 1BYTE

Back_Data: 返回数据包,长度为Back_Data BYTE

5.1.2 UART 命令格式

UART数据包格式与SPI大体相同,只是在操作码前加上起始码(0X3A)

数据流结构

STX (0x3A) CMD(1BYTE) CMD_Len(1BYTE) CMD_DATA(N BYTE)

STX: 起始码 固定为(0x3A) 长度为 1 BYTE

CMD: 操作码 长度为 1 BYTE CMD_Len: 数据长度 长度为 1 BYTE

CMD_DATA: 数据包 长度为 CMD_Len BYTE

返回数据包

STATUS (1BYTE) Back_Len (1BYTE) Back_Data (N BYTE)

STATUS: 状态码 长度为 1BYTE

Back Len: 返回数据长度,长度为 1BYTE

Back Data: 返回数据包,长度为Back Data BYTE

5.2 操作命令参数

5.2.1 文件操作命令总表

操作名	操作码	参数	功能	返回
CMD_GetVer	0x0A	无	获取当前芯片固件的版本号	固件版本号
CMD_DiskReady	0x71	无	查询 U 盘/SD 卡是否准备就绪,	返回成功则表
			通常在就绪后才能读写	示就绪
CMD_FileOpen	0x64	文件路径	打开指定名称的文件	操作成功否
CMD_FileCreate	0x65	文件名称	新建文件并打开,如果文件已存	操作成功否
			在则先删除再新建	
CMD_FileErase	0x66	文件路径	删除文件并关闭	操作成功否
CMD_FileClose	0x67	无	关闭当前文件	操作成功否
CMD_ByteLocate	0x7A	字节偏移位置	以字节为单位移动当前文件指	成功+移动字节
			针	数
CMD_ByteRead	0x7B	字节长度	以字节为单位从当前文件读取	成功+读取字节
			数据块	包
CMD_ByteWrite	0x7C	字节长度+字	以字节为单位向当前文件写入	成功+写入字节
		节缓冲区	数据块	包
CMD_RESET	0x7D	无	防止程序跑飞,陷入死循环,而	无
			进行的复位命令	

5.3 返回的操作状态码

#define ERR_USB_CONNECT	0x15	// 检测到 USB 设备已经连接
#define ERR_DISK_DISCON	0x82	// 检测到 USB 设备已断开,或尚未连接
#define ERR_SUCCESS	0x00	// 操作成功
#define ERR_STATUS_ERR	0x83	// 磁盘状态错误,可能正连接或断开磁盘
#define ERR_FAT_ERROR	0xA3	// 磁盘的文件系统不支持
#define ERR_DISK_FULL	0xB1	// 磁盘文件太满, 剩余空间太少
#define ERR_MISS_DIR	0xB3	// 指定路径的某个子目录没找到
#define ERR_FILE_CLOSE	0xB4	// 文件已关闭,如需要使用,重新打开文件
#define ERR_OPEN_DIR	0x41	// 指定路径的目录被打开
#define ERR_MISS_FILE	0x42	// 指定路径文件没找到,可能是文件名错误
#define ERR_USB_DISK_ERR	0x1F	// USB 存储器操作失败

5.4 命令操作说明

下面结合 UART 通信来说明数据结构

5.4.1 获取芯片固件版本

声明:

CMD_GetVer()

; 用来获取固件版本号

主机=>PB375A:

起始码: 0X3A 操作码: 0X0A

数据包长度: 0

;操作命令

PB375A=>主机:

状态码: 若为0则表示操作成功,

若为其他则表示出现对应的错误

数据包长度: 2 数据包: 1 30

解说: 先后发送: 3A 0A 00(起始码+操作码+长度)

运行正常时返回: 00 02 01 1E(状态码+长度+数据包两位)

5.4.2 查询U盘

声明:

CMD DiskReady()

;用来检测U盘是否连接

主机=>PB375A:

起始码: 0X3A 操作码: 0X71

: 操作命令

数据包长度: 0

PB375A=>主机:返回状态码

状态码: 若为0则表示操作成功,

若为其他则表示出现对应的错误

数据包长度: 0

数据包:无数据包返回

解说: 先后发送: 3A 71 00(起始码+操作码+长度) 正常运行时返回: 00 00(状态码+长度)

5.4.3 打开文件

声明:

CMD FileOpen()

;用来打开U盘中的文件

主机=>PB375A:

起始码: 0X3A 操作码: 0X64

; 操作命令

数据包长度: 指后面数据包总长度 ; 如后面数据包为文件路径\123. TXT 则长 度为0X08

数据包: 文件格式

;文件格式可以是\名+后缀,在特殊功能状 态下也可以是\文件夹/名+后缀:例如: \123. TXT表示根目录下的123. TXT文件: \BIN/123. TXT则表示根目录下BIN文件夹 内的123. TXT文件: 文件名长度不大于8

PB375A=>主机: 返回状态码

状态码: 若为0则表示操作成功,

若为其他则表示出现对应的错误

数据包长度: 0

数据包: 该操作无任何数据包返回

解说: 先后发送: 3A 64 06 5C 31 2E 54 58 54 (起始码+操作码+长度+数据包)

\ 1 . T X T

正常运行时返回: 00 00(状态码+长度)

5.4.4 创建文件

声明:

CMD FileCreate()

: 在U盘中创建文件

主机=>PB375A:

起始码: 0X3A 操作码: 0X65

数据包长度: 指后面数据包总长度

数据包: 文件格式

- ;操作命令
- ;如后面数据包为文件路径\123.TXT则长度为0X08
 - ;文件格式可以是\名+后缀,在特殊功能 状态下也可以是\文件夹/名+后缀;例如:\123.TXT表示根目录下的123.TXT文件; \BIN/123.TXT则表示根目录下BIN文件夹 内的123.TXT文件;文件名长度不大于8

PB375A=>主机:返回状态码

状态码: 若为0则表示操作成功,

若为其他则表示出现对应的错误

数据包长度: 0

数据包:该操作无任何数据包返回

解说: 创建的文件名前一定要加"\"

先后发送: 3A 65 06 5C 31 2E 54 58 54 (起始码+操作码+长度+数据包6位)

\ 1 . T X T

运行正常时返回: 00 00(状态码+长度)

5.4.5 关闭文件

声明:

CMD FileClose()

;用来关闭U盘中的当前文件

主机=>PB375A:

起始码: 0X3A 操作码: 0X67

数据包长度: 指后面数据包总长度

数据包:文件格式

- ; 操作命令
- ; 如后面数据包为文件路径\123. TXT 则长度为0X08
 - ;文件格式可以是\名+后缀,在特殊功能状态下也可以是\文件夹/名+后缀;例如:\123.TXT表示根目录下的123.TXT文件;\BIN/123.TXT则表示根目录下BIN文件夹内的123.TXT文件;文件名长度不大于8

PB375A=>主机:返回状态码

状态码: 若为0则表示操作成功,

若为其他则表示出现对应的错误

数据包长度: 0

数据包: 该操作无任何数据包返回

解说: 先后发送: 3A 67 00 (起始码+操作码+长度+数据包)

正常运行时返回: 00 00(状态码+长度)

5.4.6 字节定位

声明:

CMD ByteLocate()

; 用来选定文件操作的起点

主机=>PB375A:

起始码: 0X3A

操作码: 0X7A

数据包长度: 0~4个字节 数据包: 字节偏移位置 ; 操作命令

;如要读文件中从第5个数后的内容就之直

接定义其值为5

PB375A=>主机: 返回状态码

状态码: 若为0则表示操作成功,

若为其他则表示出现对应的错误

数据包长度: 0

数据包: 该操作无任何数据包返回

解说: 先后发送: 3A 7A 04 00 00 02 (起始码+操作码+长度+数据包)

正常运行时返回: 00 00(状态码+长度)

5.4.7 读取字节

声明:

CMD ByteRead()

;用来读取U盘中的文件内容

主机=>PB375A:

起始码: 0X3A

操作码: 0X7B

数据包长度: 0~1个字节

数据包: 字节长度

;操作命令

; 定义的值即要读取数的个数, 如需读

5个字节定义此值为5

PB375A=>主机:

状态码: 若为0则表示操作成功,

若为其他则表示出现对应的错误

数据包长度: 所读字节的长度+1

数据包: 所读字节的长度+所读字节内容

解说: 先后发送: 3A 7B 01 05(起始码+操作码+长度+数据包)

第 14 页/共 20 页

正常运行时返回: 00 00(状态码+长度)

5.4.8 写入字节

声明:

CMD_ByteWrite()

; 用来读取U盘中的文件内容

主机=>PB375A:

起始码: 0X3A

操作码: 0X7C

: 操作命令

数据包长度: 0~1个字节

数据包: 要写入U盘/SD卡的具体数据

PB375A=>主机:返回状态码

状态码: 若为0则表示操作成功,

若为其他则表示出现对应的错误

数据包长度: 0

数据包:无数据包返回

解说: 先后发送: 3A 7C 04 5C 31 32 33(起始码+操作码+长度+数据包4位)

\ 1 2 3

正常运行时返回: 00 00(状态码+长度)

5.4.9 复位

声明:

CMD RESET()

; 此命令主要处理当程序跑飞, 或需 要复位时的操作

主机=>PB375A:

起始码: 0X3A 操作码: 0X7D 数据包长度: 0

数据包: 此命令无数据包的发送

PB375A=>主机:返回状态码

状态码: 若为7D 0 则表示操作成功,

若为其他则表示出现对应的错误

数据包长度: 0

数据包:无数据包返回

解说: 先后发送: 3A 7D 00(起始码+操作码+长度+数据包)

正常运行时返回: 00 00(状态码+长度)

注意: 当需打开或创建文件进行相应的操作后, 最后一定要有关闭文件的操作

6、常用操作步骤

以下是常用步骤简述,可以根据实际情况进行调整,可参照例程。

6.1 初始化

- (1) 初始化单片机与PB375A之间的接口,设置必要的参数等,为了正常通信,初始化后给PB375A复位脚一个低电平,一般只要大于10ms就可以了。
- (2) 等待U 盘连接
- (3) CMD DiskReady, 可选步骤, 强烈建议执行此步骤

6.2 顺序读文件

- (1) CMD FileOpen, 打开文件
- (2) 多次CMD_ByteRead, 读取数据
- (3) CMD_FileClose, 关闭文件

6.3 读文件的指定位置

- (1) CMD_FileOpen, 打开文件
- (2) CMD ByteLocate, 移动文件指针到指定位置
- (3) CMD ByteRead, 读取数据,期间还可以移动文件指针
- (4) CMD FileClose, 关闭文件

6.4 顺序改写文件(覆盖原数据,超过原文件长度后转变为追加数据)

- (1) CMD_FileOpen, 打开文件
- (2) CMD ByteWrite, 写入数据
- (3) CMD_FileClose, 关闭文件

6.5 改写文件的指定位置(覆盖原数据,超过原文件长度后转变为追加数据)

- (1) CMD FileOpen, 打开文件
- (2) CMD_ByteLocate, 移动文件指针到指定位置
- (3) CMD_ByteWrite, 写入数据,期间还可以移动文件指针
- (4) CMD FileClose, 关闭文件

6.6 向已有文件追加数据

(1) CMD_FileOpen, 打开文件

第 16 页/共 20 页

- (2) CMD ByteLocate, 移动文件指针到末尾, 0xFFFFFFFF
- (3) CMD ByteWrite, 写入数据
- (4) CMD_FileClose, 关闭文件

6.7 新建文件

- (1) CMD FileCreate,新建文件,文件名称为8+3的格式
- (2) CMD ByteWrite, 写入数据
- (3) CMD_FileClose,关闭文件,将自动更新文件长度,特别注意只有关闭了文件,才默认生成文件,否则没有文件生成,也就无法进行下面的操作。例如新建文件后没用关闭文件就开始读数据,这样的操作没有效

7、其它说明

- (1) 为了提高处理效率和速度,建议对USB 闪存盘使用FAT12 或者FAT16 文件系统。对于容量较大的U 盘,为了节约U 盘空间,减少浪费,可以使用FAT32 文件系统。
- (2) 如何格式化U盘: 在WINDOWS系统下,点击U盘磁盘的右键菜单的格式化,可以将U 盘格式 化成指定的FAT12、FAT16或者FAT32 文件系统,当总容量除以分配单元大小后的结果小于 4085时是FAT12,大于65525 时是FAT32,否则是FAT16。分配单元较大时,通常读写效率稍高,分配单元较小时,通常会节约磁盘容量。
- (3) 如果操作USB 外置硬盘或者耗电较大的USB 闪存盘,需要考虑其电源供应,确保提供足够的工作电流,否则在其插入过程以及读写过程中会导致电源电压波动,甚至导致PB375A 以及单片机复位,建议在电源与地之间并联较大的电解电容,或者为U 盘或者USB 外置硬盘单独提供足够的电源。
- (4)以字节为单位的文件读写命令,对单片机的RAM 没有要求,最少十几个字节即可。

8、电气参数

8.1 极限参数

参 数	符 号	参数范围
工作电压5V	VDD50	4. 7 [~] 5. 3
工作电压3.3V	VDD33	2. 9 [~] 3. 6
输入电压	VI	-0.3~VDD33 +0.3
输出电压	Vo	-0.3~VDD33 +0.3
工作温度	Tamb	$-20^{\sim}75$
存储温度	Tstg	$-65^{\sim}150$

8.2 电气参数(Tamb=25°C, VDD33=3.3V, VDD18=1.8V, OSC=24MHz)

参 数	符号	测试条件	最小值	典型值	最大值	单位
电源电压	VDD50	工作正常	4. 7	5. 0	5. 3	V
电源电压	VDD33	工作正常	2. 9	3. 3	3. 6	V
静态电流	ICCS	系统处于待机 状态	25	35	70	uA
	IDDS	系统处于待机 状态	50	110	350	uA
工作电流	ICC 正常工作,	MCU C1k=24MHz	9	16	40	mA
高电平输 入电压	VIH		0.7* VDD33		VDD33+0.6	V
低电平输 入电压	VIL		-0.3		0.4* VDD33	V
高电平输 出电压	VOH	IOH=2mA	2. 4			V
低电平输 出电压	VOL	IOL=2mA			0.4	V
输入漏电 流	ILI	VDD33=3. 6V	-10		10	uA
输出漏电 流	ILO	VDD33=3. 6V	-5		5	uA

注意:不插U盘时芯片工作电流为 26 mA 插 U盘时芯片工作电流为 46 mA

8.3. 时序参数 (测试条件: TA=25℃, VCC=5V)

名称	参数说明	最小值	典型值	最大值	单位
TPR	电源上电的复位时间	20	150		mS
	SPI高电平时间	2.5	4		uS
	SPI低电平时间	2. 5	4		uS

9、典型应用电路

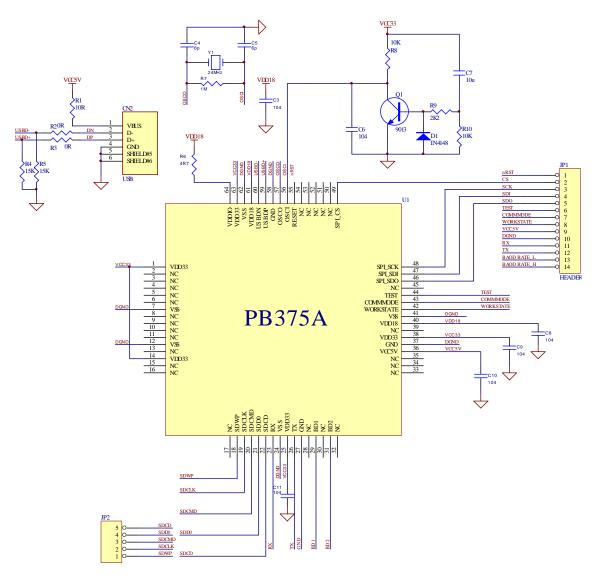


图2 原理图

10、U盘支持列表

U盘品牌	U盘容量	测试结果	测试日期
Kingston(DataTraveler)	1G	OK	2008-10-12
Kingston(DataTraveler)	512M	OK	2008-10-12
Kingston(DataTraveler)	128M	OK	2008-10-12
Thunis (清华紫光)	256M	OK	2008-10-12
Thunis (清华紫光)	1G	OK	2008-10-12
爱国者 aigo	1G	OK	2008-10-12

第 19 页/共 20 页

爱国者 aigo	512M	OK	2008-10-12
PEAK	1G	OK	2009-2-16
Transcend	1G	OK	2009-2-16
Transcend	512M	OK	2009-2-16
Transcend	128M	OK	2009-2-16
白牌(无品牌)	512M	OK	2009-2-16
白牌(无品牌)	64M	OK	2009-6-26
飚王读卡器+SD卡	1G	OK	2009-2-16
其他读卡器+SD卡		OK	2009-6-26
Mydigi.cn(DIY 产品)	1G	ERROR	2009-2-16

说明: Mydigi.cn(DIY产品)是个人DIY产品,非正常厂家出品。

11、技术支持

芯片软硬件调试常见问题:

- 1. 晶振及复位电路测试
 - a. 测试晶振是否起振
 - b. 测试复位电路 NOTEXTRESET 脚(56 脚)电平是否为高,高为正常工作
- 2. IC 芯片电源电压

测试 VDD33 电压应该为 3.3V(容许一定的偏差) 测试 VDD18 电压应该为 1.8V(容许一定的偏差最低可以是 1.35V) 测试 USB 座的电压是否为 5V

3. 工作状态测试

测试 workstate (42 脚): 若为低则表示进入工作状态,为高则有错误

4. 功能测试

将 TEST(44 脚)接地,插入 U 盘,重新上电。若正常工作则会在 U 盘中生成一个 BLUEFIVE.TXT 的文件。

若有问题则有可能是硬件或者芯片,注意引脚的虚焊。

PB375A 为单芯片 U 盘读写方案,成本低,透明的操作命令,在开发过程中无需去考虑 FAT 文件系统及 USB 底层协议。采用简单 SPI、UART 通信接口就能完成开发,在数据存储领域有广泛应用,是一个成熟的应用解决方案。

联系方式:

深圳蓝色飞舞科技有限责任公司

电话: 0755-86017852 13242922466

传真: 0755-29739852

邮箱: xiaowuyeah@163.com 网址: http://www.lanwind.com