November 2007

i.MX Technology Overview The Coolest Thing since the Ice Age

NC303

Rajesh Gopi i MX Applications F

i.MX Applications Engineering

i.MX: Everywhere in Digital Consumer Market

Cellular phone, Smartphone

IP Phone

Portable Audio Player

Portable Video Player

Portable Navigation Device

Web Tablet/Handheld PC

Intelligent Remote Control

Security & Surveillance

Mobile Gaming

MP3 Player

Digital Still Camera

Projectors

POS Terminal

Bar Code Scanner

Biometrics

•Smart Speed™ Technology:

High Performance with Low Power Consumption

i.MX Vision

Mobile & Home Consumer

- ► High Performance Silicon
- ▶ Flexible Multimedia
- Customization for market leaders followed by broad market roll-out
- ► Product Development Kits

- ▶ i.MX
- ▶ ColdFire®
- Symphony™ DSP & Digital Amplifier

Distribution/General Purpose

- · Low cost development tools
- Board support packages
- Proven reference design solutions

Automotive Infotainment

- "Auto Harden" and design for zero defect
- High performance processing for software upgradeability
- Advanced multimedia for audio, video,
 & navigation
- · Automotive channel leadership

▶i.MX Applications Processor

Addressing multimedia intensive applications with low power solutions

*Performance:

- 35-61% better performance per MHz
- 2x faster MPEG4 Decode

Scale:

- Shipped more than 64 million processors
- Over two million i.MX31 in first 244 days

Breadth:

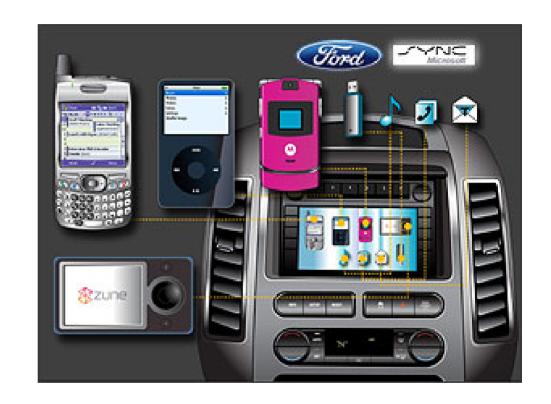
- Broad cross-industry appeal
- Design wins in cellular, PMP, IP telephony, remote controls, industrial, automotive, GPS...

Cellular

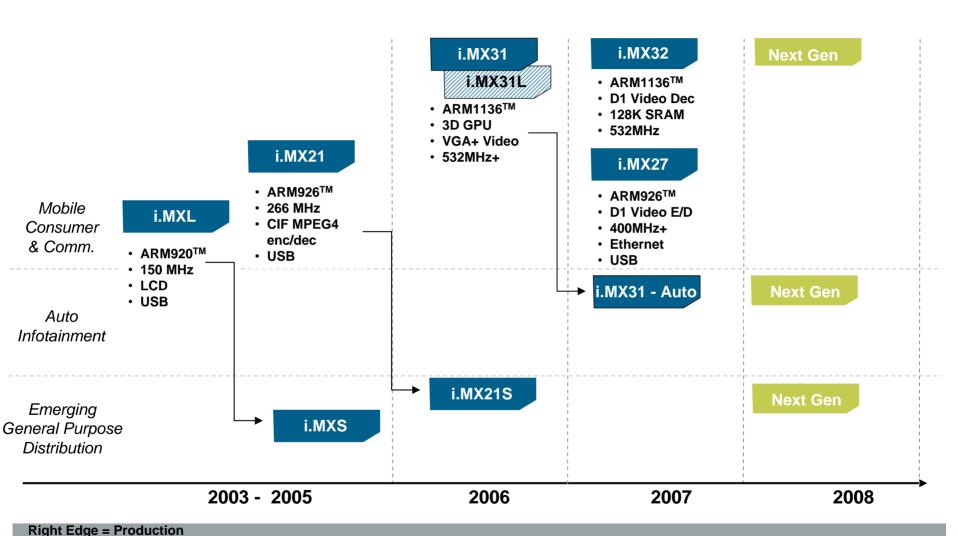
Entertainment

Enterprise

* = benchmarked to leading competition by 3rd party


Video 3D Graphics Security Audio Connectivity Low Power

i.MX Momentum in Automotive w/ Microsoft/Ford


Ford's new fully integrated, voice-activated in-car communications and entertainment system for mobile phones and digital music players

- ► Ford Sync powered by Microsoft Auto Software and Freescale i.MX31 processor
- Planned availability in 12 Ford, Lincoln and Mercury models in 2008 in U.S.
- Users can access their mobile phone or digital music player via voice commands.

i.MX Applications Processor Roadmap

i.MX31 Applications Processor

Specifications:

 CPU: ARM1136JF-S™, 532 MHz; 400 MHz Auto version

· Process: 90nm

Core Voltage: 1.2-1.6V

Key i.MX31 Features and Advantages

ARM1136JF-S with 128Kb L2 Cache

Integrated 3D graphics processor

• Eliminates 2 chip solution

Eliminates separate memory subsystem

Integrated HW Image Processing Unit (IPU)

CMOS/CCD Interface

Resize, CSC, Deblock, Dering, Blending

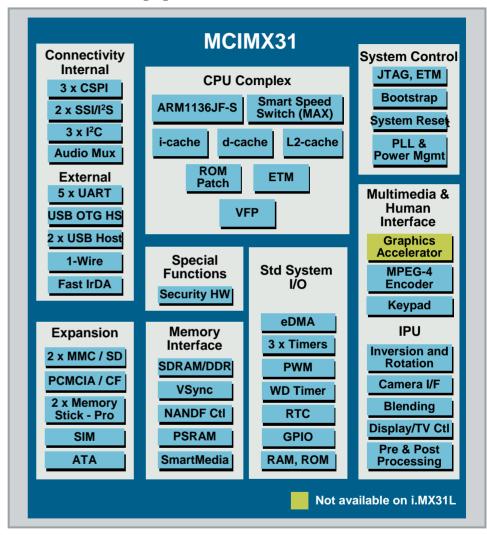
Vector Floating Point Co-Processor (VFP)

Enhanced DMA RISC-based DMA controller

Connectivity

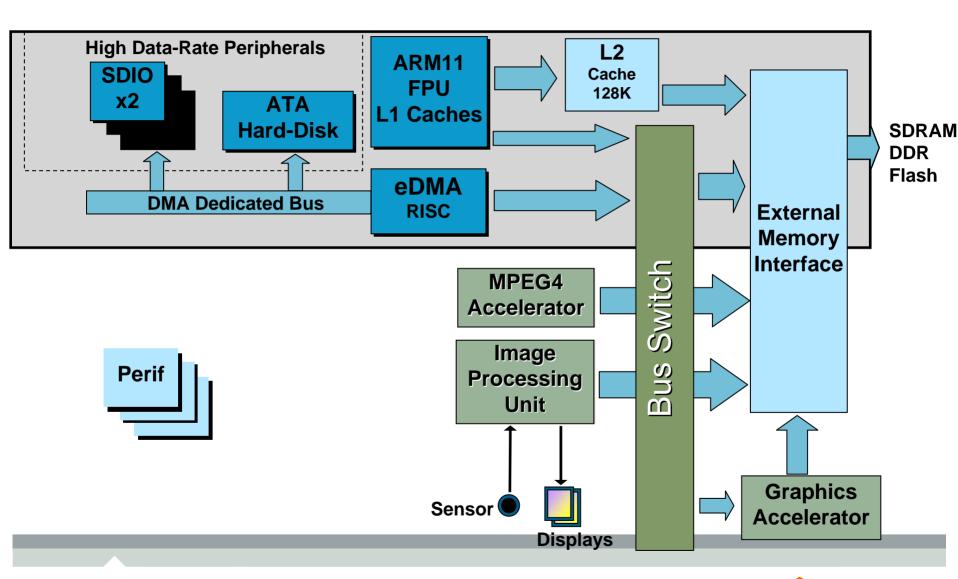
WLAN, BT, GPS via external chipset

HS USB, ATA-6, MMC/SDIO, MS-Pro, Compact Flash

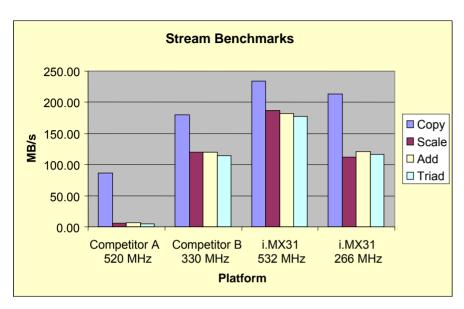

• 266MHz Mobile DDR, NAND/NOR, Mobile SDRAM, SRAM

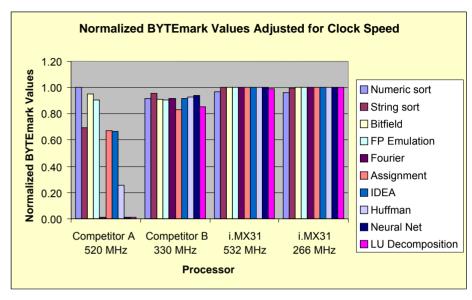
Scale - shipped multi-million units

 Breadth – design wins in PMP, PND, Cellular, IP Telephony, POS terminals, automotive infotainment


Availability:

Shipping Now




i.MX31 Detailed

i.MX31 – Best In Class Apps Processor

Higher MB/s is better

Higher Normalized BYTEmark value is better

The i.MX31 architecture scales well with clock frequency and outperforms other architectures even at lower clock frequencies.

i.MX32 Block Diagram

CPU Platform

- ARM1136JF-S CPU, I-Cache, D-Cache, L2-Cache
- Jazzelle Java Acceleration
- VFP Vector Floating Point Co-processor

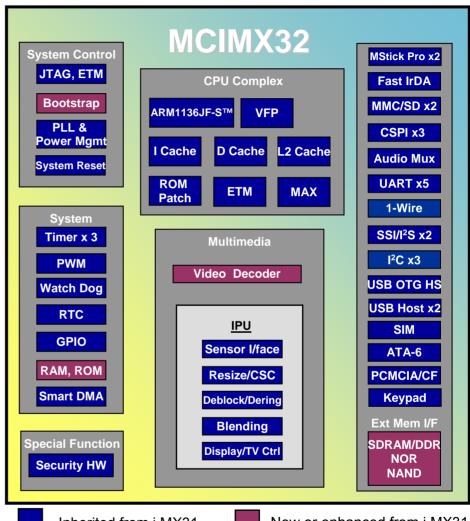
Multimedia

- Multi-standard HW Decoder
- IPU Image Processing Unit

EMI – External Memory Interface

- (mobile) SDRAM 16/32 bit, 133 MHz
- DDR 16/32 bit. 266 MHz
- SLC/MLC NAND Flash 8/16-bit

Connectivity


- USB 2.0 High Speed
- ATA-6 (HDD) Interface, Audio MUX
- MMC/SDIO, Memory Stick

Power Management

- Advanced Power Management (DVFS, DPTC)
- Active well-bias, Power Gating

Specs Summary

- CPU Speed: starting at 532 MHz
- Core Voltage: 1.0 1.45 V
- Technology: 90 nm

Inherited from i.MX31

New or enhanced from i.MX31

i.MX32 Applications Processor

Display

- WVGA Main Display
- Secondary Display Support

► Camera

- Direct interface to CMOS/CCD sensors
- 5M pixel @ 6 fps

► Security

- MMU (Memory Management Unit)
- High Assurance Boot (HAB)
- Security Controller (SCC), including Secure RAM and Security Monitor
- Run-Time Integrity Checker (RTIC), Including SHA-1 accelerator
- Random Number Generator Accelerator (RNGA)
- Secure JTAG Controller (with optional JTAG disabling)
- Universal Unique Identification
- Tamper Detection

Multimedia

- Multi Standard HW Video Decoder @ D1 30fps
 - MPEG4 SP, H.263 P3, H.264 BP, VC-1 MP
- Low Power Audio using 128KB embedded SRAM
- Image Processing Unit (IPU)

Connectivity

- SSI, i2S, I2C, UARTs
- HS USB, ATA-6, MMC/SDIO, MS-Pro, Compact Flash
- BT, WLAN, AGPS (all via external ICs)
- 266MHz Mobile DDR, NAND/NOR, Mobile SDRAM, SRAM
- SLC/MLC NAND Flash

Power Management

- Advanced power management (DVFS, DPTC)
- Active well-bias, power gating

i.MX32: Audio Playback Mode Power

Major improvement achieved in software audio codec optimization:

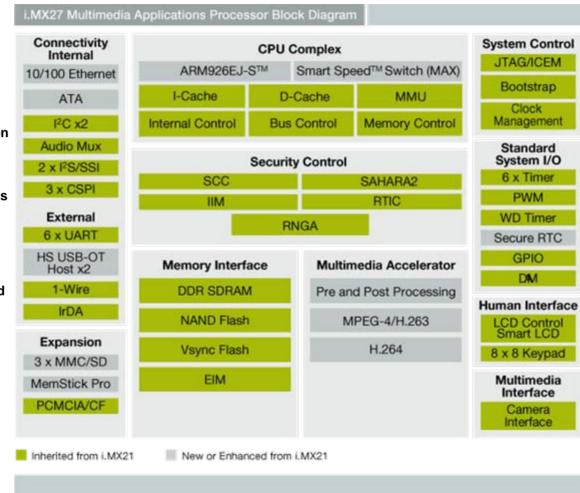
- -30% reduction for i.MX Power
- -17% reduction for PMP Platform

Optimization List	
1V	yes
1 PLL	yes
Reduce PLL Vcc	yes
Run QPER on 33Mhz	yes
Use 13mW DAC+HP (new data)	yes
Automatic EMI clock gating	yes

Conditions:	
Battery	350 mAh
	3.7 V
	80 % down limit
	85 % efficiency
Buck converter	95 % efficiency

	Domain Name	MX32/System Power GSO codec [mW]	MX32/System Power MAD codec [mW]
	QARM	15.70	8.70
	QPER	10.40	9.40
	QL2	0.22	0.22
MX32	FVCC	1.31	1.31
	extMemDomai n	3.60	2.70
	extPeriphDom ain	15.80	15.80
	iODomain	2.80	
System	NAND	2.00	2.00
	Total Power [mW]	51.83	42.93
	Play Time [h]	16.14	19.49
	MX32 Power:	27.63	19.63

i.MX32 running 133MHz Core and 33MHz Bus at 1.0V core voltage


SoC Video Decoder Power = ~140mW

(with associated audio and high level OS)

i.MX27 Application Processor

- **▶** CPU Complex
 - · ARM926EJ-S™ 400 MHz @1.6V, 266 MHz @1.2V*
 - 16 Kb L1 I- and D-caches
 - 16 Channel DMA
 - Architecture compatible with i.MX21
 - · ETM Real-Time Debug
- Low Power
 - · Active Well-Bias
 - · Dynamic Process and Temperature Compensation
 - · Dynamic Voltage and Frequency Scaling
- Security
 - Sahara2 Crypto Accelerator (AES, 3DES)
 - Electronically-Blown Fuse Box for custom HW IDs
- Connectivity
 - Ethernet MAC
 - 6x UARTs, IrDA
 - 480 Mbps USBOTG + 2 Hosts
- Expansion
 - MemStick Pro, PCMCIA/CF, MMC & SD/SDIO Card Interface
 - ATA-6 HDD Interface
- Multimedia
 - MPEG 4/ H.263/H.264 D1 @30fps HW Codec w/ pre- & post- processing
 - High speed CMOS sensor I/F + I²C
- ► External Memory Interface
 - · 16/32-bit SDRAM @133 MHz
 - · 16/32-bit DDR @266 MHz
 - 8/16-bit NAND Flash, PSRAM support
- ▶ Technology
 - Low power 90nm

Changes from i.MX21

New Features

- 10/100baseT Ethernet MAC
- Memory Stick Pro
- 3 Additional General Purpose timer channels
- 2 Additional irDA capable UARTS for a total of 6
- ATA Host Controller
- 1 Additional I²C for control of USB transceiver
- 1 Additional MMC/SD controller
- Symmetric / Asymmetric Hashing and Random Accelerator (SAHARA2)
- Secure RTC

Enhanced Features

- ARM926 at 400 MHz
- USB 2.0 OTG High Speed
- EMI updated with mobile DDR
- Video CODEC updated with D1 H264, H.263 P3
- Pre- and Post-Processing with added rotation, mirroring, zoom
- Updated LCDC with 24-bit panel support.
- SCC updated with isolated power supply for keeping secure information on standby power.
- JTAG boundary scan support added.

Removed Features

- FIRI
- BMI

ARM926EJ-S Architectural Benefits

5 Stage Pipeline with Branch Prediction

- Harvard Architecture, with 16 KB Instruction and Data Caches
- Allows for greater CPU core parallelism (5 stages working at a time).

ARM v5TE ISA

- Single cycle MAC operations.
- 16-bit fixed point DSP instructions include support for saturated arithmetic to enhance signal processing algorithms.
- Memory Management Unit supports open operating systems.
- Greater Multiply capabilities with enhanced 16x32-bit multiplier.
- ISA can be extended via co-processors.

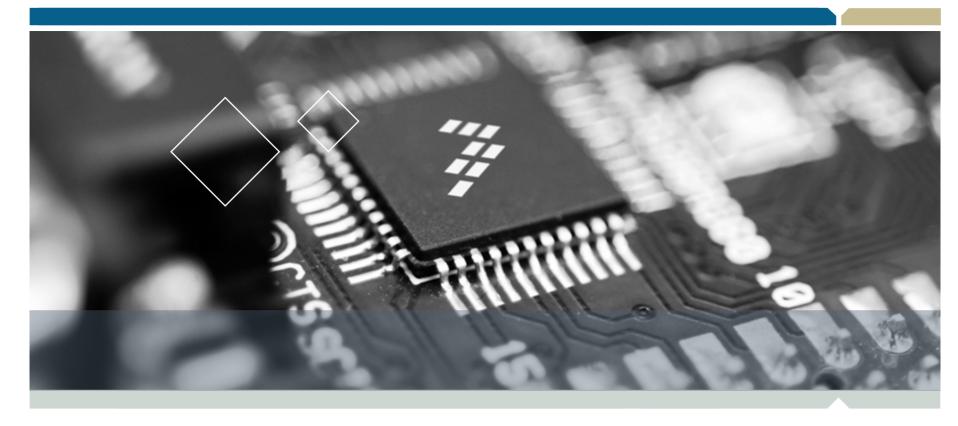
Thumb ISA

- Added 16-bit instructions for providing greater code density, usually 30-40%.
- Adds greater compiler capability to balance ARM and Thumb routines to balance code size and performance.

Java Capabilities

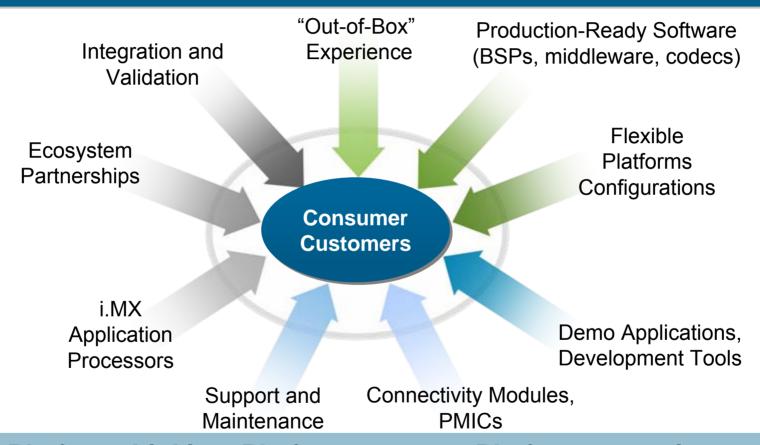
• Jazelle co-processor added to ARM core, adding a third ISA (ARM, Thumb, Java).

Applications for the i.MX27


Video and Voice over IP Phone

Unit shown = *Quanta YV11*Based on the i.MX27 processor

Video Surveillance


i.MX MAX Product Development Kit

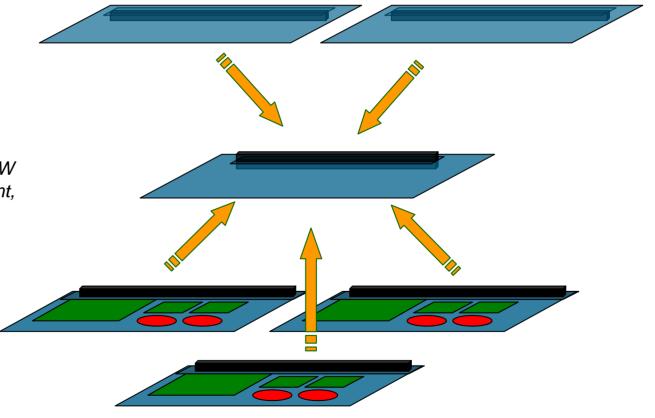
i.MX Consumer Platforms

Develop and market platform-level solutions that enable innovative consumer product development with i.MX processors

Platform thinking. Platform strategy. Platform execution.

Product Development Kit (PDK)

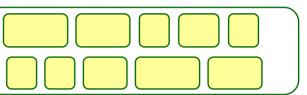
- ▶ Product Development Kit (PDK) is a superset of several reference designs (Portable Media Player, Portable Navigation Devices, etc...)
 - Being developed to speed customers' Time To Market for i.MX based designs
 - Reduces FSL support effort for low touch opportunities
- ▶ PDK includes standard offering, and options as follows
 - Standard PDK
 - Hardware board (small & modular 3 stack solution)
 - Software SDK (Software development kit that includes Optimized BSP and minimal middleware and basic Codecs)
 - Associated documentation
 - Options (already integrated and tested with PDK)
 - Codecs not included in the standard offering
 - Additional middleware framework & components (MMF: Multimedia Framework, Security, Power management XEC)
 - Freescale GUI builder Power Parts

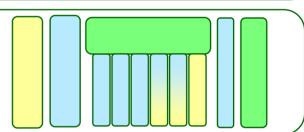

3-Stack Development & Demo Board

- ➤ 3 stackable boards that are near form-factor demonstration modules and working platforms
- ► Total cost (BOM and manufacturing) to be sub \$1000
- Personality Module
 Peripherals board, 1
 superset board or 1 for
 each application
- Debug Board

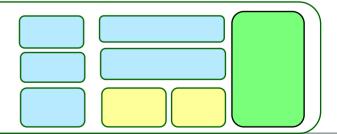
All functions necessary for SW and Applications development, but do not reside on final consumer product hardware

One board for each SoC (i.MX27, i.MX31, future


generation i.MX)

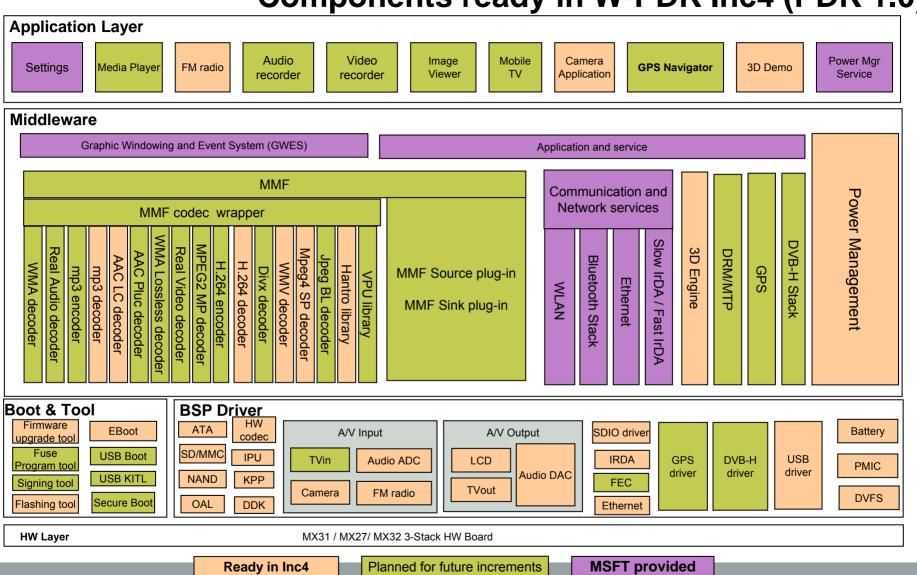


SDK (Software Development Kit)

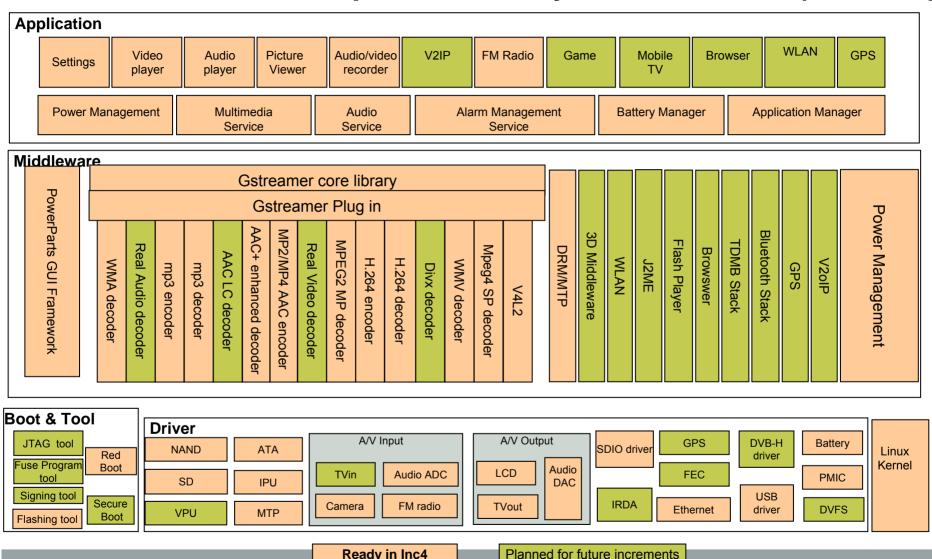

- ► All production ready Software components required to create a product. Components development source identified as GSO, DevTech, MAD R&D or 3rd party
- ► <u>Tool Set:</u> FSL supplied and list of 3rd party development tools
- ► <u>Applications sampler</u>, set of apps for demos or to serve as starting point for customers

▶ <u>Middleware:</u> open source Gstreamer + plug-ins and wrappers, or WinCE DLLs or MAD R&D MMF & PowerParts

O/S & Drivers, from standard BSP with additional drivers to support Peripherals on Personality Module


MAD Platform Team

GSO/DTO Team


Third Party or Open Source

Components ready in W-PDK Inc4 (PDK 1.0)

Components ready in L-PDK Inc4 (PDK 1.0)

Related Session Resources

Sessions

Session ID	Title
NC303	i.MX Technology Overview
NC312	.Net MicroFramework on i.MXS
NC313	Developing Codec-Based Video Systems
NC305	Building an Embedded Linux System on an i.MX Processor
NC306	Efficient Power Management Techniques for devices Based on i.MX Applications Processors

