

206v02 RVDS Introductory Tutorial 1

RVDS 2.2
Introductory

Tutorial

206v02 RVDS Introductory Tutorial 2

Introduction
Aim
This tutorial provides you with a basic introduction to the tools provided with the
RealView Developer Suite version 2.2 (RVDS). This will include the use of
command line and GUI tools, to build and debug projects.

The tutorial is split into three practical sessions:

Session 1 – Command line tools.
Session 2 – Creating projects and debugging using the CodeWarrior IDE and

RealView Debugger (RVD).
Appendix - An Introduction to AXD

Pre-requisites
This tutorial is intended for use with a Microsoft Windows version of RVDS v2.2.
You should be familiar with Microsoft DOS/Windows, and have a basic knowledge
of the C programming language.

Note: Explanation of File Extensions:

.c C source file.

.h C header file.

.o object file.

.s assembly language source file.

.prj project file, as used by RealView Debugger (RVD).

.axf ARM Executable file, as produced by armlink.

.txt ASCII text file.

Additional information
This tutorial is not designed to provide detailed documentation of RVDS. Full
documentation is provided with the product.

Further help can be accessed by pressing F1 when running RVD, from the help menu,
or by using the --help switch for a command line tool. The documentation is also
available in PDF format. This can be found by going to Start → Programs → ARM
→ RealView Developer Suite 2.2 → PDF Documentation.

206v02 RVDS Introductory Tutorial 3

Section 1: Command Line Tools
This section covers the command line tools required to create and examine executable
images from the command line. These include:

 armcc ARM C compiler.
 tcc Thumb C compiler.
 armlink Object code linker.
 armasm Assembler for ARM/Thumb source code.
 armsd ARM command line debugger.
 fromelf File format conversion tool.

Help is available from the command line for all of the tools covered in
this session by typing the name of the tool followed by --help.

For more details please refer to the following documentation: Compiler
and Libraries Guide, Linker and Utilities Guide.

 For the exercises in this section, you will receive a warning from the
 compiler: “-g defaults to –O2 if no optimisation level is specified”.
 You can ignore this warning, as we will not be debugging the image
 files in this section.

Consider the following simple C program which calls a subroutine. This file is
provided as hello.c in c:\rvds22_tutorial\intro\session1\

/* hello.c Example code */

#include <stdio.h>
#include <stdlib.h> /*for size_t*/

void subroutine(const char *message)
{
 printf(message);
}

int main(void)
{
 const char *greeting = "Hello from subroutine\n";
 printf("Hello World from main\n");
 subroutine(greeting);
 printf("And Goodbye from main\n\n");
 return 0;
}

206v02 RVDS Introductory Tutorial 4

Exercise 1.1 - Compiling and running the example

Compile this program with the ARM C compiler:

 armcc -g hello.c

The C source code is compiled and an ARM ELF object file, hello.o, is created.
The compiler also automatically invokes the linker to produce an executable with the
default executable filename __image.axf.

The -g option adds high level debugging information to the object/executable. If –g
is not specified then the program will still produce the same results when executed but
it will not be possible to perform high level language debugging operations.

Thus this command will compile the C code, link with the default C library and
produce an ARM ELF format executable called __image.axf.

The generated image will execute on an ARM core.
armsd runs the image using the ARMulator (ARM Instruction Set
Simulator).

Execute this program using armsd as follows:

 armsd -exec __image.axf

This command informs the debugger to execute the image and then terminate.

armsd responds with:

Hello World from main
Hello from subroutine
And Goodbye from main

Program terminated normally at PC = 0x000089c8 (_sys_exit + 0x8)
+0008 0x000089c8: 0xef123456 V4.. : swi 0x123456
Quitting

206v02 RVDS Introductory Tutorial 5

Exercise 1.2 - Compilation options

Different arguments can be passed to the compiler from the command line to
customize the output generated. A list of the more common options, together with
their effects, can be viewed by entering armcc -help at the command line. Some of
these options are listed below:

 -c Generate object code only, does not invoke the linker.
 -o <filename> Name the generated output file as ‘filename’.
 -S Generate an assembly language listing.
 -S --interleave Generate assembly interleaved with source code.

When the compiler is asked to generate a non-object output file, for example when
using –c or -S, the linker is not invoked, and an executable image will not be created.
These arguments apply to both the ARM and Thumb C compilers.

RVCT uses a -- prefix for multi character switches like interleave.
Legacy versions of switches (eg: -fs) are still supported, but will
generate a deprecated option warning.

 Use the compiler options with armcc or tcc to generate the following
 output files from hello.c:

 image.axf An ARM executable image.
 source.s An ARM assembly source.
 inter.s A listing of assembly interleaved with source code.
 thumb.axf A Thumb executable image.
 thumb.s A Thumb assembly source.

 Run the Thumb executable image using armsd, the output generated
 should be the same as before.

 Use a suitable text editor to view the interleaved source file.

 To use Notepad from the command line type Notepad <filename>.

Note the sections of assembly source that correspond to the interleaved C source
code.

206v02 RVDS Introductory Tutorial 6

Exercise 1.3 - armlink

In previous exercises we have seen how the compiler can be used to automatically
invoke the linker to produce an executable image. armlink can be invoked
explicitly to create an executable image by linking object files with the required
library files. This exercise will use the files, main.c and sub.c which can be linked
to produce a similar executable to the one seen in the previous exercises.

 Use the compiler to produce ARM object code files from each of the
 two source files.

Remember to use the -c option to prevent automatic linking

 Use armlink main.o sub.o -o link.axf to create a new ARM
 executable called link.axf

armlink is capable of linking both ARM and Thumb objects.
If the -o option is not used an executable with the default filename,
__image.axf, will be created.

 Run the executable using armsd and check that the output is similar to
 before.

The ability to link files in this way is particularly useful when link order is important,
or when different C source modules have different compilation requirements It is also
useful when linking with assembler object files.

206v02 RVDS Introductory Tutorial 7

Exercise 1.4 - fromelf

ARM ELF format objects and ARM ELF executable images that are produced by the
compilers, assembler and/or linker can be decoded using the fromelf utility, and the
output examined. Shown below is an example using the –-text option with the /c
switch to produce decoded output, showing disassembled code areas, from the file
hello.o:

 fromelf –-text=/c hello.o

Alternatively re-direct the output to another file to enable viewing with a text editor:

 fromelf –-text=/c hello.o > hello.txt

Use the fromelf utility to produce and view disassembled code listings from the
main.o and sub.o object files.

A complete list of options available for ‘fromelf’ can be found from
the command line using fromelf –-help, or by consulting the on-line
documentation.

The –-text=/c option can be replaced with the abbreviated –c
switch.

206v02 RVDS Introductory Tutorial 8

Section 1 - Review

We have now seen how the command line tools can be used to compile, link and
execute simple projects.

armcc The compiler can be called with many different options. The -g

option is required to enable source level debugging. The compiler can
be used to generate executable images, object files and assembly
listings.

tcc The Thumb compiler can be used in the same way as armcc.

armasm The assembler can be used to construct object files directly from

assembly source code.

armlink The linker can be used to produce executable images from ARM or

Thumb object files.

fromelf The ‘fromelf’ facility can be used to generate disassembled code

listings from ARM or Thumb object or image files.

armsd Can be used to execute applications from the command line.

Help is available from the command line. Alternatively, consult the
online documentation for further information.

206v02 RVDS Introductory Tutorial 9

Section 2: Creating projects and debugging
using CodeWarrior and RVD
In this session we will see how the CodeWarrior Integrated Development
Environment can be used with the RealView Debugger (RVD) to create and develop
projects.

Exercise 2.1 - Creating a header file

In this exercise, we will create a new header file using CodeWarrior.

 Start CodeWarrior by clicking on the icon in the Windows Start Menu
 folder: ARM→ RealView Developer Suite→ CodeWarrior for RVDS

 Close any open project(s) by clicking the close button in their project
windows.

 Select File → New from the menu. Select the File tab as shown below,
and click on Text File in the selection list. Click Ok.

206v02 RVDS Introductory Tutorial 10

 Enter the following C struct definition:

/* Struct definition */

struct Date_Format
{
 int day;
 int month;
 int year;
};

 Select File→ Save As from the menu.

 Navigate the directory structure to:
 c:\rvds22_tutorial\intro\session2\
 and save as filename date_format.h

You have now created a very simple header file. This will be used later by the
example program: month.c.

 Leave the editor window open for use later in the exercise.

206v02 RVDS Introductory Tutorial 11

Exercise 2.2 - Creating a new project
We will now create a new project and add our files month.c and datetype.h to it

 Select File→ New… from the menu.

The New dialog appears again:

 Ensure that the Project tab is selected, and that ARM Executable Image

is highlighted in the stationery selection list.

 Use the Set button next to the Location text box to navigate to the

project directory: c:\rvds22_tutorial\intro\session2\.

206v02 RVDS Introductory Tutorial 12

 Clear the Create folder check box and enter calendar as the name in

the Create New Project dialog as above. Click Save. Click OK to close
the New dialog and create the project.

The project window appears for the calendar project that you have just created:

 Click in a blank area of the project window to ensure that it has focus,
 then select Project → Add Files… from the main menu.

The Select files to add… dialog appears.

 Navigate to the directory:
 c:\rvds22_tutorial\intro\session2\
 Double click on the file month.c

206v02 RVDS Introductory Tutorial 13

The Add Files dialog appears showing the targets to which the files can be added:

 Click OK to add the file to both of the targets in the project.

We should also add the header file that we created earlier to the project. This is so
that any changes to the header file will cause the associated modules to be rebuilt.

 Click the title bar of the date_format.h window so that it has the focus.
 Now select Project → Add date_format.h to Project… from the menu.

The Add Files dialog reappears.

 Click OK to add the header file to the project.

Finally, we must check that the correct build target is selected.

 Ensure that the Debug target is the active target in the project window,

as shown below.

206v02 RVDS Introductory Tutorial 14

 The two default targets available refer to the level of debug
 information contained in the resultant image.

Debug Contains full debug table information and very limited optimization.
Release Enables full optimization, resulting in a worse debug view.

It is the Debug build target that we shall use for the remainder of this tutorial.

Exercise 2.3 - Building the project (Debug target)

 Select Project→ Make from the menu, or press F7.

The Errors & Warnings window appears with the several messages generated as a
result of the attempted build:

The code pane of the window opens the relevant source file and an arrow highlights
the line of code associated with the first error message. There is something wrong
with the code; a close bracket is missing. The line should read:

printf("\ne.g. 1972 02 17\n\n");

 Correct the error by adding the missing bracket and then save the
 updated source file.

 Rebuild the project (F7).

The Errors & Warnings window again shows the errors associated with the failed
build. The first error message is:

"month.c", line 20: Error: #70: incomplete type is not allowed
 scanf ("%d%d%d", &date.year, &date.month, &date.day);

206v02 RVDS Introductory Tutorial 15

Once again, the code pane of the Errors & Warnings window displays the relevant
source file and an arrow highlights the line of code associated with the first error
message. You will find that there is nothing wrong with the code on this line!

Towards the top of the file, the preprocessor directives contain a reference to the
macro INCLUDE_DATE_FORMAT, which has not been defined in any of the source
files. Normally a command line parameter would have to be supplied to the C
compiler, armcc, to specify:

 -D INCLUDE_DATE_FORMAT

We must edit the command line arguments for this project’s settings:

 Open the <Target> Settings window (Alt + F7), here we can use the

Target Settings Panels pane on the left to access the ARM compiler
 preprocessor settings.

 Note that as we are editing the Debug target, the window title and
 menu option will show Debug Settings.

 Select the RealView Compiler item in the Language Settings branch of
 the tree. Click on the Preprocessor tab.

 Click in the text box under the empty list of macro definitions. Enter

INCLUDE_DATE_FORMAT and click the Add button.

206v02 RVDS Introductory Tutorial 16

We also need to change the optimisation level to –O1. This is so that variables are
stored in registers automatically, while still retaining a reasonable debug view.

Select the Debug/Opt tab. In the list of optimisation levels, select level
1 (good debug view, good code). Click OK to close
the Target Settings dialog and save the changes.

 Select File→ Save from the menu to save the changes to the project.

 Finally, select Project→ Make (F7) from the menu once more. The
project should build successfully.

If a project is already up-to-date then nothing will be done by the IDE
when it is requested to build a project. If you wish to do a forced
rebuild of all the source files then select Project → Remove Object
Code… to delete the relevant object files.

206v02 RVDS Introductory Tutorial 17

Exercise 2.4 - Executing the example

Before the image can be executed it must be loaded to an appropriate target using the
debugger. This example will use the RealView Instruction Set Simulator (RVISS), as
the target to execute the image using the RealView Debugger (RVD).

 In CodeWarrior, select Project → Debug from the menu. RVD is
started.

 If there is no connection to a target already set up, the dialog box
below will appear and RVD will prompt you to wait for a connection
to be made. Click Yes.

 Select Target → Connect to Target… from the menu to launch the

Connection Control window.

 Expand the Server, Local Host branches in the Name tree, then right
 click “new_arm” and select Configure Device Info.

206v02 RVDS Introductory Tutorial 18

The ARMulator Configuration window appears:

 Select ARM7TDMI as shown above and click OK to return to the
Connection Control window.

 Tick the new_ARM checkbox in the connection control window to
 connect.

RealView Debugger is now connected to the ARM7TDMI RVISS target.

 You can now close the Connection Control window..

206v02 RVDS Introductory Tutorial 19

If you were prompted to earlier wait for a connection, the image is loaded and the
Code pane shows the source code for the project image. If not, the Code pane now
prompts you to load the recently built image to the target. In this case, you need to
click on the link to load the image to the target:

 Click on the Load link to load the image.

The Code pane now shows that the image is loaded and the red box indicates the
current execution position:

 Select Debug → Run from the menu (F5).

Execution begins. The Output pane at the bottom of the window shows the StdIO tab
which performs console I/O operations for the current image. The program is now
awaiting user input:

 Enter today’s date in the format described, e.g. 2005 01 11

206v02 RVDS Introductory Tutorial 20

The program will display the dates for the following calendar month and then
terminate.

 Note that there is no source code available for the system exit routines
 and RVD displays No source for context SYS_S_sys_exit

 The disassembled project code can be viewed by selecting the Dsm tab
 in the Code pane.

All windows can be resized by clicking and dragging at the edges.

Docked panes can be changed to floating windows by clicking on the
Pane Content button (Alt + *) and selecting Float from the menu:

206v02 RVDS Introductory Tutorial 21

Exercise 2.5 - Debugging the example

 Select Target → Reload Image to Target from the menu.

RVD will load the image ready for debugging. Again the current execution position
is shown at main.

 Select Debug → Run from the menu (F5).

 You will once again be prompted to enter a date.
 This time enter 2005 11 30. The program will terminate after it has
 output the set of dates for the following month.

 Use the scroll bar at the edge of the Output Pane to view the dates at
 the end of November. You will find that there is an extra day!

 Reload the image into the debugger

 Select View → Data Navigator from the menu to open a Data

Navigator pane. Select the Functions tab.

206v02 RVDS Introductory Tutorial 22

 Enter the string @calendar\MONTH\nextday in the Filter textbox
 and press Enter.

The basic filter strings are of the form:
@image_name\module_name\function_name, and you can also
use wildcards. For example, to list all of the functions in the month
module, you can specify: @calendar\MONTH*. Full details of
additional filters that can be used can be found in the RVD User
Guide.

 Highlight the nextday entry, right-click it and select Show Source
 from the context menu to locate this function in the source file. Then
 close the Data Navigator pane.

 Select Edit → Advanced → Show Line Numbers from the menu
 to display line number information in the source code:

206v02 RVDS Introductory Tutorial 23

 Set a breakpoint on the switch statement on line 40 by
 double-clicking to the left of the line number.

The line will receive a red breakpoint marker.

 Resume execution and enter the date 2005 11 30 again. The
 program will stop at the breakpoint.

 Right click on the variable name daysInMonth on line 38 and select
 Watch from the context menu.

A new entry appears in the Watch pane showing daysInMonth. Its value has not
been determined yet and it is currently set to 0:

 Right click on the word date in the variable name date.month on
 line 40 and select Watch from the context menu.

The display in the Watch pane is updated. The date struct is now visible.

 Click on the cross to the left of date to view the struct’s fields.

 Right click on the date field and select Format… from the context
 menu to change the display format of the variables.

 Select Signed Decimal from the List Selection dialog and click OK.

206v02 RVDS Introductory Tutorial 24

The Watch pane is updated again:

 Select Debug → Execution Control → StepOver (F10) to perform the
 next step in the program.

You will note that the case statements have been skipped and that the
default path will be taken.

As the default path assumes the month has 31 days. This is not correct for
November. There is a fragment of code, case 11:, missing from line 51. To rectify
this permanently we would have to edit the source file. For the purposes of this
example we will modify the variable daysInMonth to produce the desired result.

 Double-click on the breakpoint set on line 40 to remove it.

 Set a new breakpoint on line 58 after the block of code containing the
 switch statement.

 Resume program execution, the debugger will stop at the new
 breakpoint.

 Right click on the daysInMonth variable in the Watch pane and
 change the format of this variable to Signed Decimal.

You will see that the value of daysInMonth is 31, but we require it to be 30.

 Click on the value to edit it and change the value to 30, then press
 enter.

 Remove the breakpoint on line 58.

206v02 RVDS Introductory Tutorial 25

 Restart the program and finish executing the example.

Note that the output generated by the program is now correct.

206v02 RVDS Introductory Tutorial 26

Exercise 2.6 – Viewing registers and memory

 Reload the image into the debugger

RVD will load the image ready for debugging. Again the current execution position
is shown at main.

 Set a breakpoint on the printf statement on line 29 by double
 clicking in the region to the left of the statement.

 Select Debug → Run from the menu (F5).

You will once again be prompted to enter a date.

 This time enter 2005 12 25.

The program will stop at the breakpoint on the printf statement.

 Right click inside the address column of Memory pane and select Set
 New Start Address…from the context menu:

 Type date at the Prompt dialog and press enter.

The Memory pane is updated and now shows memory beginning at the address of the
date struct.

206v02 RVDS Introductory Tutorial 27

 Click on the Memory Pane Menu and select Signed Decimal as the
 memory display format:

 Click on the Memory Pane Menu again and select Words (32 bits) as
 the memory display width.

 Note how the three successive words in memory correspond to the
 three fields in the date struct (26/12/2005):

 Restart the program, execution will stop at the breakpoint again.

 Open a register pane by selecting View → Registers from the menu.

206v02 RVDS Introductory Tutorial 28

 Click on the Register Pane Menu (Alt + -) and select Unsigned
 Decimal to change the register display format:

At this point in the program r3 holds the value stored in the day field of the date
variable in the Memory window (The value of day is now 27 as the nextday
function has been called.):

 Use the Go button to execute the while loop until r3 has the value 2.

 Double click on the highlighted date.day value (2) in the Watch
 pane to edit it. Change it to 22 and press Enter.

 Use the Go button to pass through the while loop until the program
 ends.

Note how the value entered in variable watch pane affects the value in the register r3,
the corresponding entry in the memory window and the program output.

206v02 RVDS Introductory Tutorial 29

 Remove all current breakpoints from the image by selecting
 Debug → Breakpoints → Clear All Break/Tracepoints from the
 menu:

206v02 RVDS Introductory Tutorial 30

Exercise 2.7 – Using the command line

 Reload the image into the debugger

RVD will load the image ready for debugging. Again the current execution position
is shown at main.

 Click on the Cmd tab of the Output pane to view the command line
 interface, and click in the grey command line bar to give it the focus:

 Re-size any other windows as necessary to ensure the command line
 interface is in clear view.

Set a breakpoint on line 40 of the source file by using the break command then start
program execution using go:

 Stop> break #40
 Stop> go

 Enter the date 2005 11 30 in the Console window when prompted.

Execution will stop at the breakpoint. Now check the values of the program
variables:

 You will need to click on the Cmd tab of the Output pane to switch
 focus.

 Stop> print daysInMonth

 Note that as it is a C variable the name is case sensitive. The value of
 daysInMonth is zero as it is a static variable and has not yet been
 initialized.

 Stop> print date

206v02 RVDS Introductory Tutorial 31

Remove the breakpoint on line 40 using the clear command (The clear command
will clear all breakpoints. If you need to clear a specific breakpoint, you can find the
reference for the breakpoint you need using the break command. This will print a list
of current breakpoints. For example to clear the first breakpoint listed type: clear 1).

 Stop> clear

Set another breakpoint immediately after the switch statement then resume program
execution:

 Stop> break #58
 Stop> go

Check the value of the daysInMonth variable:

 Stop> print daysInMonth

 It is possible to use the cursor keys, ↑ and ↓, to recall recent
 commands.

Correct the value from 31 to 30 using the ce command:

 Stop> ce daysInMonth=30

 ce is an abbreviation of the CExpression command. This can be
 used on its own to view the value of an expression, or with a modifier,
 such as = in this case, to change the value of an expression.

Use the go command to pass through the while loop until the output displays the date
2005 12 3

 Stop> go

 You will need to toggle between the StdIO and Cmd tabs of the
 Output pane.

206v02 RVDS Introductory Tutorial 32

Use the dump command to view the date variable in memory.

 Stop> dump /w &date

 The /w argument specifies how to display the area of memory, in this
 case as words. &date specifies the address of the date variable.

Note how the successive words in memory correspond to the fields in the date struct.

Use the step command to execute the next two instructions:

 Stop> step
 Stop> step

Use the dump command to view the date variable in memory again.

 Stop> dump /w &date

Note how the value of date.day has been incremented.

Remove the breakpoint on line 58 and resume program execution

 Stop> clear
 Stop> go

The program terminates normally.

206v02 RVDS Introductory Tutorial 33

Exercise 2.8 – Using include files in RVD

In this exercise we will see how multiple commands can be combined in an include
command file to control execution within the debugger.

Consider the file month.inc found in c:\rvds22_tutorial\intro\session2:

break #40
go
print daysInMonth
print date.day
print date.month
print date.year
clear
break #58
go
print daysInMonth
ce daysInMonth=30
go
go
go
dump /w &date
step
step
dump /w &date
clear
go

The file consists of a simple selection of commands which will perform the same task
that was performed in the previous exercise.

 Reload the image into the debugger

 Invoke the include file by selecting Tools → Include Commands from
 File from the menu.

 Use the Select File dialog to locate and open the file
 c:\rvds22_tutorial\intro\session2\month.inc

 Enter the date 2005 11 30 in the Console window when prompted.

When the program has terminated use the Cmd tab to view the values of the variables
displayed by the script file.

 Check the output is correct then quit the debugger to finish the
 exercise.

206v02 RVDS Introductory Tutorial 34

Section 2 - Review

We have seen how the CodeWarrior IDE can be used to:

Create source files and projects

Invoke the compiler and linker to generate executable images.

Automatically open files for editing from a project, or a compilation
warning or error message.

Invoke the compiler and linker to generate executable images.

Automatically open files for editing from a project, or a compilation
warning or error message.

We have seen how the RVD debugger can be used to:

Control and modify execution of code.

View and modify locals, globals and memory

Accept commands via the CLI or from a script file to automate
debugging.

A complete range of debugging facilities is available within RVD.
Consult the online documentation for complete information.

206v02 RVDS Introductory Tutorial 35

Appendix: An introduction to AXD
In this session we will use AXD to execute and debug a simple example program
which performs an exchange (or bubble) sort on elements of an array.

Exercise A.1 - Building and running the example
The program has only a single source file (sort.c) and can be built from the
command line. Navigate to the directory containing the source file and compile the
program using the ARM C compiler.

 cd c:\rvds22_tutorial\intro\appendix\
 armcc -g –O1 -c sort.c

The C source is compiled and an ARM ELF object file, sort.o is created. Generate an
ARM executable image (sort.axf) using the ARM linker.

 armlink sort.o -o sort.axf

 Start AXD by clicking on the icon in the Windows Start Menu folder:
 ARM→ RealView Developer Suite→ AXD Debugger

You now need to connect AXD to the RealView Instruction Set Simulator (RVISS).

 Open the Choose Target window by clicking Options → Configure
 Target… from the menu.

 Select the “ARMUL” entry from the list, and click Configure as shown
 below.

206v02 RVDS Introductory Tutorial 36

 In the ARMulator Configuration dialog box, select “ARM7TDMI” as
 the processor variant, and click OK. Click OK to close the Choose
 Target window.

AXD will connect to the RealView Instruction Set Simulator (RVISS). The RDI log
should show a connection to an ARM7TDMI core as shown.

 Select File → Load Image from the menu.

 Navigate to the directory:
 c:\rvds22_tutorial\intro\appendix\
 Select sort.axf and click Open to load the file into the debugger.

206v02 RVDS Introductory Tutorial 37

The disassembled code at the programs entry point is visible in the Disassembly
window.

 From the menu select Execute→ Go or press F5.

Another window, C:\rvds22_tutorial\intro\session2\sort.c, appears. This contains the
source code relevant to the currently executing image. Execution has halted on the
breakpoint at main(). AXD places a breakpoint here by default.

To view all current breakpoints, select SystemViews→ Breakpoints
from the main menu.

All windows can be resized by clicking and dragging at the edges.
Alternatively, right click in the title area of a window and select Float
within main window for greater freedom when resizing windows.

 Select Execute→ Go (F5) from the menu.

The program now completes. The results are printed to the Console Window where
program input and output takes place.

The disassembled code at the programs exit point is now visible in the Disassembly
Window.

 Quit AXD by selecting File→ Exit.

You can have multiple instances of AXD open, but each time it is
launched from the IDE a new instance is opened; hence you can end up

206v02 RVDS Introductory Tutorial 38

with a previous instance of AXD still running. It is therefore good
practice to close down AXD after each debug session is complete.

206v02 RVDS Introductory Tutorial 39

Exercise A.2 - Simple Debugging

 Re-start AXD, load the image sort.axf and run to the breakpoint at
 main().

The example uses the local variable Moves to keep track of how many swap
operations need to be performed on adjacent numbers to sort the array.

The function bubblesort contains two for loops used to reorder the elements of
the array. How many moves occur in one iteration of the outer for loop?

 Find the function body of bubblesort, by selecting Low-Level
 Symbols from the Processor Views menu and double clicking the
 bubblesort entry.

The order of symbol display can be chosen by right clicking within the
symbol window. Breakpoints can be set on symbols by right clicking
on their name and selecting Toggle Break Point from the pop-up menu.

 Set a breakpoint on the inner for loop at line 34 by double
 clicking in the grey region to the left of the statement.

The line will receive a red breakpoint marker.

 Resume execution. The program will stop at the second breakpoint.

 Display the local variables by selecting Processor Views→ Variables,
 or by pressing Ctrl+F.

A Variables window appears. Ensure the Local tab is selected.

206v02 RVDS Introductory Tutorial 40

 Note: the values of the outer loop counter i and the swap operation
variable Moves have been initialised to 0.

 Resume execution. The program halts again after it completes the first
 iteration of the outer for loop.

The local variables pane shows the updated value of Moves.

 Right click on the Moves and Elements fields in turn and select
 Format → Decimal to change the display format of the variables:

 In the source window of AXD, double click on the variable Numbers
 at line 36 to select it. Right click and select Add to watch.

206v02 RVDS Introductory Tutorial 41

 Expand the array Numbers in the Watch window and change the
 format of the elements so they are displayed in decimal

.

 Resume execution. The program halts after each iteration of the for
 loop.

Note the changes to the local variable Moves and the contents of the
partially sorted contents of the array Numbers at each iteration.

 Continue execution until the program exits.

206v02 RVDS Introductory Tutorial 42

How is the total number of moves affected if the last element of the array is changed
to 99?

 Reload the image into the debugger and run to the first breakpoint at
 main().

 In the watch window double click on the contents of the last element of
 the array and change the value to 99.

 Remove the remaining breakpoint (on the for loop) at line 34, by
 double clicking in the grey region to the left of the statement.

 Run the code to completion and note the new number of Moves printed
 in the console window.

206v02 RVDS Introductory Tutorial 43

Exercise A.3 – Interleaving Disassemby and Viewing memory

 Reload the image into the debugger and run to the first breakpoint at
 main().

 Select Execute→ Step (F10) and step through the program until you
 reach the call to bubblesort at line 19

 Select Execute→ Step-In (F8) to step into the function code

 Right click on the source code window and select
 Interleave disassembly

 View the current registers contents by selecting Processor Views→
 Registers.

206v02 RVDS Introductory Tutorial 44

 Step the code (F10) until the local variable
 Position appears in the watch window and has the value 3.

Note how the value of the registers used to keep track of the local loop
variables change as you single step.

 Return to a source level view by right clicking on the source code
 window and select Interleave disassembly

 Complete execution of the function bubblesort and return to
 main() by clicking step-out (Shift F8)

We will edit the contents of the array before the program prints the results.

 Go to the Watch Window. Right click on the array Numbers displayed
 here and select Locate Using Address

A memory window opens with the contents of the first element of the array
highlighted.

 Right click in the Memory Window and change the size of the
 elements displayed to 32bit.

206v02 RVDS Introductory Tutorial 45

 In the Watch Window double click on the first element of the array to
 change it’s value.

 Change the values of the elements to have the following hex values:
 0x54,0x48,0x45,0x20,0x45,0x4E,0x44,0x20,0x20,0x20

Note how changes to the array in the Watch Window are reflected in
the Memory Window view.

 Change the format of the Memory Window to display ASCII, by right
 clicking.

 You will see a message.

 Restart the program and finish executing the example.

 Quit AXD by selecting File→ Exit

206v02 RVDS Introductory Tutorial 46

Exercise A.4 – Using the AXD command line

In this exercise we will see how the tasks performed using the graphical interface can
be replicated using the command line.

 Re-start AXD, load the image sort.axf

 Select System Views → Command Line Interface from the menu to
 open the Command Line Interface window.

Re-size any other windows as necessary to ensure the Console and
Command Line Interface windows are in clear view.

 Ensure the debugger Command Line Interface window is currently in
 focus then start program execution by using the go command at the
 Debug > prompt.

 Debug > go

Once again execution halts on entry to main before the first instruction to be
executed.

Set another breakpoint on line 19 of the source file by using the break command
with sort.c as the file context qualifier, then resume program execution:

 Debug > break sort.c|19
 Debug > go

Execution will stop at the breakpoint. Now check the values of the program
variables:

 Debug > print Elements dec

The dec part of the print command specifies the format of the output
generated.

Change the default output format of the debugger using the format command:

 Debug > format dec

206v02 RVDS Introductory Tutorial 47

Use the memory command to view the contents of the array Numbers in memory.

 Debug > memory @Numbers +0x28 32

 The +0x28 argument specifies how many bytes of memory are to be
 displayed. 32 specifies the memory display format in bits,

Change the first element of Numbers from 69 to 20 using the let command:

 Debug > let Numbers[0] 20

Use the step command to step into the function bubblesort().

 Debug > step in

Examine the contents of the current registers:

 Debug > registers current

Use the step command to step through the first iteration of the loop and note how the
local variables in registers change.

 Debug > step

Remove the breakpoint on line 19 using the unbreak command (you can find the
reference for the breakpoint you need using the break command which will print a
list of current breakpoints):

 Debug > unbreak #2

Use the go command to finish executing the program and print the results to the
console.

 Debug > go

 Check the output is correct in the Console window then quit the
 debugger to finish the exercise.

206v02 RVDS Introductory Tutorial 48

Exercise A.5 – Using script files in AXD

In this exercise we will see how multiple commands can be combined in a script file
to control execution within the debugger.

Consider the file sort.txt found in c:\rvds22_tutorial\intro\appendix\:

go
break sort.c|19
go
print Elements dec
format dec
memory @Numbers +0x28 32
let Numbers[0] 20
step in
registers current
step
unbreak #1
go

The file consists of a simple selection of commands which will perform the same task
that was performed in the previous exercise.

 Re-start AXD, load the image sort.axf

 Ensure the debugger Command Window is currently in focus then
 invoke the script file by using the obey command as below:
 obey “c:\rvds22_tutorial\intro\appendix\sort.txt”

When the program has terminated use the scroll bar on the right hand
side of the Command Line window to view the values of the variables
displayed by the script file.

 Check the output in the Console window then quit the debugger to
 finish the exercise.

206v02 RVDS Introductory Tutorial 49

Appendix - Review

We have seen how the AXD debugger can be used to:

Control and modify execution of code.

View code at source and disassembly level.

View and modify locals, globals and memory

Accept commands via the CLI or from a script file to automate
debugging.

A complete range of debugging facilities is available within AXD. Consult the online
documentation for complete information.

