
r
ions

ack-
Multicycles Exception Between Two Synchronous Clock
Domains

set_multicycle_pathpath_multiplier [-setup|-hold] [-start|-end] -from <Start-
Point> -through <ThroughPoint> -to <EndPoint>

Default path_multiplier: Setup 1, Hold 0.

Setup: Regarding to EndClock by Default. (-end is the default)
Hold: Regarding to StartClock by Default. (-start is the default)

In single clock domain design there is no meaning to the-start and-end flags. !!!

Note: In case your setup path_multiplier is X, use the path_multiplier of X-1 fo
hold. In any case check out the report of your multicycles and the report except
(Plus the report_exceptions -ignore) results.

Table 1 describes how the check points for setup and hold timing are moved b
ward of forward depend on the -start/-end flags and the path_multiplier.

Table 1: Clock Edges in M.C.

RED =
Default

StartClock EndClock

Setup <---- ---->

Hold ----> <----

Multicycle In Single Clock Domain

Figure 0-1. Single Clock Domains Design

0.1 SETUP PATH_MULTIPLIER 5, HOLD REMAINS DEFAULT
• set_multicycle_path -setup 5 -from CLK1 -to CLK2

without hold multiplier.

FF

Q

Q
FF

Q

Q

CLK1 CLK2
(Fast) (Fast)

delay>4 fast_clk_period

CLK1

CLK2

Setup
Hold

Default:

CLK2(0)+Thold < delay(min)
 delay(max) < CLK2(5)-Tsetup

Required:

1 3 4 520

Figure 0-2. Setup 5, Hold default.

0.2 SETUP PATH_MULTIPLIER 5, HOLD PATH_MULTIPLIER 4

• set_multicycle_path -setup 5 -from CLK1 -to CLK2

• set_multicycle_path -hold 4 -from CLK1 -to CLK2

Figure 0-3. Setup 5, Hold 4.

CLK1

CLK2

Setup
Hold

 0 1 2 3 4

0 1 2 3 4 5

CLK1

CLK2

SetupHold

 0 1 2 3 4

, is
Examples for SLOW-to-FAST path.

Figure 0-4 - Figure 0-5 show the timing analysis in case the StartClock, CLK1
slow clock and the EndClock, CLK2, is fast clock.

The RED text is the default and can be removed.

The GREEN text is the user override

Figure 0-4. Two Clock Domains Design

FF

Q

Q
FF

Q

Q

CLK1 CLK2
(Slow) (Fast)

delay>fast_clk_period

CLK1

CLK2

Setup
Hold

0.3 DEFAULT
Figure 0-5 shows the default scenario:

• set_multicycle_path 1 -setup -end -from CLK1 -to CLK2

• set_multicycle_path 0 -hold -start -from CLK1 -to CLK2

Figure 0-5. Default Scenario. Setup 1 (-end) , Hold 0 (-start)

Setup
Hold

CLK1

CLK2

0.4 SETUP PATH_MULTIPLIER 2, HOLD REMAINS DEFAULT
Figure 0-6 shows the case of path_multiplier 2 for setup and not defined path_multiplier
for hold. (The user is not writing the multicycle for hold)

In this case even though the user is not writing the multicycle for the hold, the hold check
is updated upon the setup check !!!

• set_multicycle_path 2 -setup -end -from CLK1 -to CLK2

Figure 0-6. Setup 2 (-end) , Default Hold.

SetupHold

CLK1

CLK2

0.5 SETUP PATH_MULTIPLIER 2, HOLD PATH_MULTIPLIER 1

Figure 0-7 shows the case where the user sets the setup path_multiplier to 2 and the hold
path_multiplier to 1. (Using the default -start) In this case the hold check is moved one
clock forward relative to StartClock, CLK1.

• set_multicycle_path 2 -setup -end -from CLK1 -to CLK2

• set_multicycle_path 1 -hold -start -from CLK1 -to CLK2

Note: This check is incorrect !!! Jump to the next example.

Figure 0-7. Setup 2 (-end) , Hold 1 (-start)

Setup Hold CLK1

CLK2

0.6 SETUP PATH_MULTIPLIER 2, HOLD PATH_MULTIPLIER 1
Figure 0-8 the case where the user sets the setup path_multiplier to 2 and the hold
path_multiplier to 1 relative to the EndClock, CLK2 (Using the -end flag). In this case the
hold check was moved one clock backward relative to EndClock, CLK2.

• set_multicycle_path 2 -setup -end -from CLK1 -to CLK2

• set_multicycle_path 1 -hold -end -from CLK1 -to CLK2

Figure 0-8. Setup 2 (-end) , Hold 1 (-end)

This is the required check. !!!

In General:

set_multicycle_path X -setup -end -from CLK1 -to CLK2

set_multicycle_path X-1 -hold -end -from CLK1 -to CLK2

RED=Default

GREEN=Override

Setup

CLK1

CLK2

Hold

, is
Examples of FAST-to-SLOW path.

Figure 0-9 - Figure 0-12 show the timing analysis in case the StartClock, CLK1
fast clock and the EndClock, CLK2, is slow clock.

The RED text is the default and can be removed.

The GREEN text is the user override

Figure 0-9. Two Clock Domains Design

FF

Q

Q
FF

Q

Q

CLK1 CLK2
(Fast) (Slow)

delay>fast_clk_period

CLK1

CLK2

Setup Hold

0.7 DEFAULT
Figure 0-10 shows the default scenario:

• set_multicycle_path 1 -setup -end -from CLK1 -to CLK2

• set_multicycle_path 0 -hold -start -from CLK1 -to CLK2

Figure 0-10. Default Scenario. Setup 1 (-end) , Hold 0 (-start)

CLK1

CLK2

Setup Hold

0.8 SETUP PATH_MULTIPLIER 2, HOLD REMAINS DEFAULT
Figure 0-11 shows the case of path_multiplier 2 for setup and not defined path_multiplier
for hold. (The user is not writing the multicycle for hold)

In this case even though the user is not writing the multicycle for the hold, the hold check
is updated upon the setup check !!!

• set_multicycle_path 2 -setup -start -from CLK1 -to CLK2

Figure 0-11. Setup 2 (-start) , Default Hold.

CLK1

CLK2

Setup Hold

0.9 SETUP PATH_MULTIPLIER 2, HOLD PATH_MULTIPLIER 1
Figure 0-12 shows the case where the user sets the setup path_multiplier to 2 relative to
the StartClock (Using the override -start flag), and the hold path_multiplier to 1 relative to
the StartClock (Using the default -start flag). In this case the hold check was moved one
clock backward relative to StartClock, CLK1.

• set_multicycle_path 2 -setup -start -from CLK1 -to CLK2

• set_multicycle_path 1 -hold -start -from CLK1 -to CLK2

Figure 0-12. Setup 2 (-start) , Hold 1 (-start)

This is the required check !!!

In General:

set_multicycle_path X -setup -start -from CLK1 -to CLK2

set_multicycle_path X-1 -hold -start -from CLK1 -to CLK2

RED=Default

GREEN=Override

CLK1

CLK2

Setup Hold

Solvnet Articles Regarding to Multicycles Setting

• set_multicycle_path and hold checks

 Question:

 I have a path that is set as multicycle path for the setup check. For some
 reason, PrimeTime seems to be treating it as a multicycle path for hold time
 checking as well. I’m using:

 set_multicycle_path -setup 7 -to [whatever]

 Why are the hold time checks multicycle?

 Answer:

 By default, if you specify ’set_multicycle_path -setup X’, PrimeTime and
 Design Compiler assume the datapath could change during any clock before
 clock edge number X. To deal with this situation, PrimeTime and Design
 Compiler implicitly add ’set_multicycle_path -hold 0 -to [whatever]’. This
 positions the hold check one clock cycle before the setup check, effectively
 constraining the path delay to be between X-1 and X clock cycles, or in
 equation form:

 X-1 cycles + T_hold < path delay (min)
 path delay (max) < X cycles - T_setup

So by default the tools assume you want the path buffered up so that the
 minimum change is > X-1 cycles.

 This may not be the desired behavior. You can move the hold check back
 towards the start of the multicycle period by specifying:

 set_multicycle_path -hold X-1 -to [whatever]

 In the above example, add

 set_multicycle_path -hold 6 -to [whatever]

 to the constraints and the hold check should occur on the desired edge. Note
 that moving this check back requires the designer to handle possible
 metastability. If the endpoint is a multi-bit signal, then you may need
 to generate register-enabling logic to avoid clocking data before all of
 it is valid.

• Setting a Multicycle Path in a Multifrequency Design

 Question:

 In my design, I have a crossing domain path from FF1 (controlled by 50-MHz
 clock A) to FF2 (controlled by 100-MHz clock B), on which I need to set a
 multicycle path 2. I used the following constraints:

 Set_multicycle_path 2 -from FF1/CK -to FF2/D -setup
 Set_multicycle_path 1 -from FF1/CK -to FF2/D -hold

 However, report_timing shows that only the setup timing check works, with a
 timing window from waveform edge 0 to edge 20. The hold timing check is
 performed from edge 20 to edge 10 instead of from edge 0 to edge 0. This hold
 timing check result is too optimistic.

 What can I do?

 Answer:

 To set a multicycle maximum path, you can either move the end clock forward or
 the start clock backward. To set a multicycle minimum path, you can either move
 the end clock backward or the start clock forward. You control the movement by
 using the -end and -start switches. By default, set_multicycle_path moves the
 end clock for the max path and the start clock for the min path. For a single
 clock domain path, there is no need to specify the -end or -start option (it
 has no effect). But for a crossing domain path, moving the start clock forward
 one cycle is not equal to moving the end clock backward one cycle. The different
 options give totally different timing windows. So in the case of your hold
 timing check, you need to use the -end option to tell the tool to move the end
 clock backward one cycle.

0 10 20

SetupHold

50-MHz

100-MHz

• How to use -setup and -hold options for set_multicycle_path

 Question:

 How do I specify a multicycle path with a setup constraint of 2 cycles?
 I tried ’set_multicycle_path 2 -setup -hold -from A’ but this does not
 seem to give me what I want.

 Answer:

 The ’2 -setup -hold’ syntax tells Design Compiler to ensure that the data
 is available after 2 clocks, but makes the hold constraint very loose,
 which you might not want.

 Also, if you specify a ’set_multicycle_path -setup X’, the default
 behavior is for Design Compiler to assume that your want the path to be
 X cycles long and no less. For example, if X=2, you are saying that the
 path has 2 cycles to meet setup, and you don’t want any of the data to
 be valid after only 1 cycle. (That is, data launched on one edge cannot
 be captured by the following edge.)So, Design Compiler inserts buffers
 to insure that the data will not be valid after only 1 cycle.

 If you do not care if the path is faster than your ’-setup X’ number of
 cycles, you can move the hold check. Here is an example:

 set_multicycle_path -setup 2 -from DFF1/CLK
 set_multicycle_path -hold 1 -from DFF1/CLK

 This set of commands says that you do not care how fast the path
 starting at DFF1/CLK is, as long as it meets the 2 cycle setup. The
 hold check will work the same as it does without a multicycle path.
 (Data launched on one edge cannot be captured on the same edge.)

 For paths with more then 2 cycles, increase the -hold amount similarly:

 set_multicycle_path -setup 3 -from DFF1/CLK
 set_multicycle_path -hold 2 -from DFF1/CLK

	Multicycles Exception Between Two Synchronous Clock Domains
	Table 1: Clock Edges in M.C.

	Multicycle In Single Clock Domain
	Figure 0-1. Single Clock Domains Design
	0.1 Setup path_multiplieR 5, hold remains default
	Figure 0-2. Setup 5, Hold default.

	0.2 Setup path_multiplieR 5, hold path_multiplieR 4
	Figure 0-3. Setup 5, Hold 4.

	Examples for SLOW-to-FAST path.
	The RED text is the default and can be removed.
	The GREEN text is the user override
	Figure 0-4. Two Clock Domains Design
	0.3 Default
	Figure 0-5. Default Scenario. Setup 1 (-end) , Hold 0 (-start)

	0.4 Setup path_multiplier 2, hold remains default
	Figure 0-6. Setup 2 (-end) , Default Hold.

	0.5 Setup path_multiplier 2, hold path_multiplier 1
	Figure 0-7. Setup 2 (-end) , Hold 1 (-start)

	0.6 Setup path_multiplier 2, hold path_multipliER 1
	Figure 0-8. Setup 2 (-end) , Hold 1 (-end)

	Examples of FAST-to-SLOW path.
	The RED text is the default and can be removed.
	The GREEN text is the user override
	Figure 0-9. Two Clock Domains Design
	0.7 Default
	Figure 0-10. Default Scenario. Setup 1 (-end) , Hold 0 (-start)

	0.8 Setup path_multiplieR 2, hold remains default
	Figure 0-11. Setup 2 (-start) , Default Hold.

	0.9 Setup path_multiplier 2, hold path_multipliER 1
	Figure 0-12. Setup 2 (-start) , Hold 1 (-start)

	Solvnet Articles Regarding to Multicycles Setting

