FSM

Pandeng
2004-6-29

Verilog

°
FSM
FSM
process block
Verilog “always” block
FSM
FSM FSM Verilog P181
always
always @(posedge clk)
if (Ireset)
always @(posedge clk or negedge reset)
if (Ireset)
case sensitive list current statement and a (b.c.d...........)
°
one-hot gray binary
Binary gray-code one-hot
FPGA CPLD gray-code
one-hot gray-code binary
synplicity 24 5 24

FSM

process block

CPLD
FPGA

one-hot

Administrator
Highlight

Administrator
Highlight

synplify FSM compile

¥ FEM Compiler
v FSM Explorer
¥ Resource Sharing

coding
VHDL

binary one-hot

attribute TYPE_ENCODING_style of <typename> : type is ONEHOT;

Verilog

Reg[2:0] state; // synthesis syn_encoding = "value"(onehot)

FPGA GSR Global Set/Reset

RAM / FPGA

GSR FPGA

default
case if else
CASE “When Others”
“ELSE” Verilog “case”

Verilog
Synplicity

case (current_state) // synthesis full_case
2'b00 : next_state <= 2'b01;

2'b01 : next_state <= 2'b11;

2'bl1l : next_state <= 2'b00;

1

case (current_state)

2'b00 : next_state <= 2'b01;

2'b01 : next_state <= 2'b11;

2'b1l : next_state <= 2'b00;

default : next_state <= 2bx;

Synplicity
“ " parallel
parameter

parameter “define

parameter

(reset) (default)
FPGA GSR
VHDL
“IF...THEN...ELSE”
“default” “if...else”
“full case”

Synplify/Synplify Pro

“/l synthesis parallel_case”

‘define

always @(posedge clk or posedge rst)
if (rst)
state <= #1 IDLE;
else

state <= #1 nextstate;

M. RTL
hold
IV.
moore FSM
always meely FSM
FSM
nextstate

ISE Foundation

“"intra-assignment timing delay"

clock-to-output

models from an RTL model.

Coding style FSM

moore

state-maching

single
FSM two always
always block

FSM

03.12.24

The Fundamentals of Efficient Synthesizable Finite State Machine
Design using NC-Verilog and BuildGates

| CU-2002
San Jose, CA

Voted Best Paper

2" Place

Clifford E. Cummings

Sunburst Design, Inc.
503-641-8446
cliffc@sunbur st-design.com

INTERNATIONAL CADENCE USERGROUP CONFERENCE
September 16-18, 2002
San Jose, California

Abstract

This paper details proven RTL coding styles for efficient and synthesizable Finite State Machine (FSM)
design using |EEE-compliant Verilog simulators. Important techniques related to one and two always block
styles to code FSMs with combinational outputs are given to show why using atwo aways block styleis
preferred. An efficient Verilog-unigue onehot FSM coding style is also shown. Reasons and techniques for
registering FSM outputs are a so detailed. Myths surrounding erroneous state encodings, full-case and
parallel-case usage are a so discussed. Compliance and enhancements related to the IEEE 1364-2001
Verilog Standard, the proposed |EEE 1364.1 Verilog Synthesis I nteroperability Standard and the proposed
Accellera SystemVerilog Standard are also discussed.

1. Introduction

FSM is an abbreviation for Finite Sate Machine.

There are many ways to code FSMs including many very poor ways to code FSMs. This paper will
examine some of the most commonly used FSM coding styles, their advantages and disadvantages, and
offer guidelines for doing efficient coding, simulation and synthesis of FSM designs.

This paper will also detail Accellera SystemV erilog enhancements that will facilitate and enhance future
Verilog FSM designs.

In this paper, multiple references are made to combinational always blocks and sequential always blocks.
Combinational always blocks are always blocks that are used to code combinational logic functionality and
are strictly coded using blocking assignments (see Cummings[4]). A combinational always block has a
combinational sensitivity list, a sensitivity list without "posedge” or "negedge” Verilog keywords.

Sequential always blocks are always blocks that are used to code clocked or sequentia logic and are always
coded using nonblocking assignments (see Cummings[4]). A sequential always block has an edge-based
sensitivy list.

2. Mealy and Moore FSMs

A common classification used to describe the type of an FSM is Mealy and Moore state machineg 9][10].

inputs (Mealy State Machine Only)

combinational
logic

combinational sequential
logic logic

AJ

outputs

Present
State
FF's

state

Figurel - Finite State Machine (FSM) block diagram

International Cadence Users Group 2002 2 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
下划线
1 为什么使用两个always块进行编码。

Administrator
下划线
2 one-hot编码方式

Administrator
附注
“Administrator”设置的“None”

Administrator
下划线
3 FSM的寄存器输出也有详细的说明

Administrator
下划线
4 错误的编码方式与full case、parallel case的讨论

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
在文本上注释
正确的编码方式应该把FSM分写为上图三个部分。控制状态转移的组合逻辑＋由时钟控制的同步状态转移的时序逻辑＋每个状态对应的输出的组合逻辑。

A Moore FSM is a state machine where the outputs are only a function of the present state. A Mealy FSM
is a state machine where one or more of the outputs is afunction of the present state and one or more of the
inputs. A block diagram for Moore and Mealy FSMs is shown Figure 1.

3. Binary Encoded or Onehot Encoded?

Common classifications used to describe the state encoding of an FSM are Binary (or highly encoded) and
Onehot.

A binary-encoded FSM design only requires as many flip-flops as are needed to uniquely encode the
number of statesin the state machine. The actual number of flip-flops required is equal to the ceiling of the
log-base-2 of the number of statesin the FSM.

A onehot FSM design reguires aflip-flop for each state in the design and only one flip-flop (the flip-flop
representing the current or "hot" state) is set at atime in aonehot FSM design. For a state machine with 9-
16 states, abinary FSM only requires 4 flip-flops while a onehot FSM requires aflip-flop for each state in
the design (9-16 flip-flops).

Binary (Highly Encoded) FSM

FPGA vendors frequently recommend using a onehot state encoding style because flip-flops are plentiful in
an FPGA and the combinational logic required to implement a onehot FSM design is typically smaller than
most binary encoding styles. Since FPGA performance istypically related to the combinational logic size
of the FPGA design, onehot FSMs typically run faster than a binary encoded FSM with larger
combinational logic blockg[8].

4. FSM Coding Goals

To determine what constitutes an efficient FSM coding style, we first need to identify HDL coding goals
and why they are important. After the HDL coding goals have been identified, we can then quantify the
capabilities of various FSM coding styles.

The author has identified the following HDL coding goals as important when doing HDL -based FSM
design:

The FSM coding style should be easily modified to change state encodings and FSM styles.

The coding style should be compact.

The coding style should be easy to code and understand.

International Cadence Users Group 2002 3 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
下划线
FPGA的性能决定于组合逻辑的必要延时

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

The coding style should facilitate debugging.
The coding style should yield efficient synthesis results.

Three different FSM designs will be examined in this paper. Thefirst is a simple 4-state FSM design
labeled fsm_cc4 with one output. The second is a 10-state FSM design labeled fsm_cc7 with only afew
transition arcs and one output. The third is another 10-state FSM design labeled fsm_cc8 with multiple
transition arcs and three outputs. The coding efforts to create these three designs will prove interesting.

5. Two Always Block FSM Style (Good Style)

One of the best Verilog coding stylesis to code the FSM design using two always blocks, one for the
seguential state register and one for the combinational next-state and combinational output logic.

nodul e fsmcc4_2
(out put reg gnt,

Irst_n
input dly, done, req, clk, rst_n); 'req

paraneter [1:0] IDLE = 2'b00,
BBUSY = 2' b01,
BWAI T = 2' b10,
BFREE = 2' b11;

reg [1:0] state, next;

al wvays @ posedge cl k or negedge rst_n)
if (!rst_n) state <= | DLE;
el se state <= next;

always @state or dly or done or req) begin

gnt = 1'bO;
case (state)
I DLE : if (req) next = BBUSY; dly
el se next = | DLE;
BBUSY: begin
gnt = 1'bl;
if (!done) next = BBUSY;
else if (dly) next = BWAIT;
el se next = BFREE;
end
BWAI T: begin
if (!dly next = BFREE;
el se next = BWAIT;
end
BFREE: if (req) next = BBUSY;
el se next = | DLE;
endcase
end
endnodul e

Example 1 - fsm_cc4 design - two always block style - 37 lines of code

5.1 Important coding style notes:

Parameters are used to define state encodings instead of the Verilog “define macro definition
construct[3]. After parameter definitions are created, the parameters are used throughout the rest of the

International Cadence Users Group 2002 4 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
删划线
最好把reg定义放在下面

Administrator
在文本上注释
如果只用一个always块，那么不用next。把组合逻辑模块中的next全部换成state。

Administrator
在文本上注释
参数化定义。

Administrator
高亮
时序逻辑，状态变化在时钟上升沿－同步设计

Administrator
在文本上注释
组合逻辑，异步逻辑。输出应该满足时钟的建立保持时间。

Administrator
在文本上注释
敏感变量表的完整性，避免产生latch

Administrator
在文本上注释
moore状态机，只与状态有关，与输入无关，可以把这个提出，单独作为一个“输出的组合逻辑”。同时：gnt=1'b1代表的是当前状态的输出，即代表的是BBUSY状态的输出，与singal always module方法区别。

Administrator
下划线

Administrator
在文本上注释
有含义的状态参数

Administrator
在文本上注释
完备设计

Administrator
删划线
缺省的输出设置，最好放在case...default的default里面。

Administrator
在文本上注释
初始状态的设定

Administrator
在文本上注释
next状态的描述应该放在一个单一的case语句里，输出reg(gnt)可以放在一个单独的输出module中。

Administrator
在文本上注释
不完全相当于把gnt=1'b0放在default选项里。根据顺序执行语句，这里对所有未在case语句中赋值的gnt赋值。

Administrator
删划线
对比P31页多输出FSM ！一般来说，越是简单的 FSM越是可以随便，越是复杂的FSM，越需要注意Coding style。

design, not the state encodings. This means that if an engineer wants to experiment with different state
encodings, only the parameter values need to be modified while the rest of the Verilog code remains
unchanged.

Declarations are made for st at e and next (next state) after the parameter assignments.

The sequential always block is coded using nonblocking assignments.

The combinational always block sensitivity list is sensitive to changes on the st at e variable and all of
the inputs referenced in the combinational always block.

Assignments within the combinational always block are made using Verilog blocking assignments.
The combinational always block has a default next state assignment at the top of the always block
(see section 5.3 for details about making default-X assignments).

Default output assignments are made before coding the case statement (this eliminates latches and
reduces the amount of code required to code the rest of the outputs in the case statement and
highlightsin the case statement exactly in which states the individual output(s) change).

In the states where the output assignment is not the default value assigned at the top of the aways
block, the output assignment is only made once for each state.

Thereisani f -statement, an el se-i f -statement or an el se statement for each transition arc in the
FSM state diagram. The number of transition arcs between states in the FSM state diagram should
equal the number of i f -el se-type statements in the combinational always block.

For ease of scanning and debug, all of the next assignments have been placed in a single column, as
opposed to finding next assignments following the contour of the RTL code.

5.2 The unfounded fear of transitions to erroneous states

In engineering school, we were all cautioned about "what happens if you FSM gets into an erroneous
state?' In general, this concern is both invalid or poorly devel oped.

| do not worry about most of my FSM designs going to an erroneous state any more than | worry about any
other register in my design spontaneously changing value. It just does not occur!

There are exceptions, such as satellites (subject to alpha particle bombardment) or medical implants
(subject to radiation and requiring extra robust design), plus other examples. In these situations, one does
have to worry about FSM's going to an erroneous state, but most engineering schools fail to note that
getting back to a known state is typically not good enough! Even though the FSM is now in aknown state,
the rest of the hardware is still expecting activity related to another state. It is possible for the design to
lockup waiting for signals that will never arrive because the FSM changed states without resetting the rest
of the design. At the very least, the FSM should transition to an error state that communicates to the rest of
the design that resetting will occur on the next state transition, "get ready!"

5.3 Making default next equal all X's assignment

Placing a default next state assignment on the line immediately following the always block sensitivity list is
avery efficient coding style. This default assignment is updated by next-state assignments inside the case
statement. There are three types of default next-state assignments that are commonly used: (1) next is set to
al X's, (2) next is set to a predetermined recovery state such as IDLE, or (3) next is just set to the value of
the state register.

By making a default next state assignment of X's, pre-synthesis simulation models will cause the state
machine outputs to go unknown if not al state transitions have been explicitly assigned in the case
statement. Thisis a useful technique to debug state machine designs, plus the X's will be treated as "don't
cares' by the synthesis toal.

Some designs require an assignment to a known state as opposed to assigning X's. Examples include:

satellite applications, medical applications, designs that use the FSM flip-flops as part of a diagnostic scan

International Cadence Users Group 2002 5 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
下划线

Administrator
在文本上注释
上面指的是next状态的完备(if...else)。这里指的是输出reg的完备(gnt)。

Administrator
下划线
状态转移图中的状态转移连线应该与if-else或if-else-if相同。

Administrator
下划线
一个状态里面的输出reg只能被赋值一次。（当然！）

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
在文本上注释
用于debug！

Administrator
下划线

Administrator
高亮

Administrator
高亮

Administrator
下划线

Administrator
下划线
保持当前状态寄存器的值。

chain and some designs that are equivalence checked with formal verification tools. Making a default next
state assignment of either IDLE or all O's typically satisfies these design requirements and making the
initial default assignment might be easier than coding all of the explicit next-state transition assignmentsin

the case statement.

5.4 10-state simple FSM design - two always blocks

Example 2 isthe fsm_cc7 design implemented with two always blocks. Using two always blocks, the
fsm_cc7 design requires 50 lines of code (coding requirements are compared in alater section).

nodul e fsmcc7_2
(output reg yl1,

i nput

par amet er SO

reg [3:

al wvays @ posedge cl k or negedge rst_n)

j mp,

S1
S2
S3
$4
S5
S6
S7
S8
S9

0] state,

RRERRARRARRRARA

go, clk, rst_n);

b0000,
b0001,
b0010,
b0011,
b0100,
b0101,
b0110,
b0111,
b1000,
b1001;

next ;

if (Irst_n) state <= S0;

el se

always @state or go or jnp) begin

state <=

next = 4'Dbx;
yl = 1' bO;
case (state)

SO : if (!go) next
else if (jnp) next
el se next

S1: if (jnp) next
el se next

S2 . next

S3 : begin yl = 1'b1;

if (jnp) next
el se next
end

sS4 if (jnp) next
el se next

S5 if (jnp) next
el se next

S6 : if (jnp) next
el se next

S7 . if (jnp) next
el se next

S8 : if (jnp) next
el se next

S9 : if (jnp) next
el se next

endcase
end
endnodul e

next ;

SO;
S3;
S1;
S3;
S2;
S3;

S3;

S3;
S5;
S3;
S6;
S3;
S7;
S3;
S8;
S3;
S9;
S3;
SO;

Example 2 - fsm_cc7 design - two always block style - 50 lines of code

International Cadence Users Group 2002

Rev 1.1

6

Fundamentals of Efficient Synthesizable FSM
Design using NC-Verilog and BuildGates

Administrator
下划线

Administrator
在文本上注释
输出在组合逻辑的case语句中赋值。对比P31页多输出FSM ！

5.5 10-state moderately complex FSM design - two always blocks

Example 3 isthe fsm_cc8 design implemented with two always blocks. Using two always blocks, the
fsm_cc8 design requires 80 lines of code (coding requirements are compared in alater section).

Irst_n i

S0 |
ya=0y2=0y1=0) 90 & limp

sk1 & sk0 & ljmp--

sk1 & Isk0 & ljimp.

Isk1 & skO & ljmp -------"%---------mm---
go & limp

------- sk0 & ljmp
Igo & limp
nodul e fsmcc8_2
(output reg yl, y2, y3,
i nput jmp, go, skO, ski1, clk, rst_n);
paranmeter SO = 4'b0000,
S1 = 4'b0001,
S2 = 4'b0010,
S3 = 4'b0011,
S4 = 4'b0100,
S5 = 4'b0101,
S6 = 4'b0110,
S7 = 4'b0111,
S8 = 4'b1000,
S9 = 4'bl001;
reg [3:0] state, next;
al wvays @ posedge cl k or negedge rst_n)
if (Irst_n) state <= S0;
el se state <= next;
always @state or jnp or go or skO or skl) begin
next = 4'Dbx;
yl = 1' bO;
y2 = 1' bO;
y3 = 1' bO;
case (state)
SO : if ('go) next = SO;
else if (jnp) next = S3;
International Cadence Users Group 2002 7 Fundamentals of Efficient Synthesizable FSM

Rev 1.1 Design using NC-Verilog and BuildGates

el se next = S1;
S1 : begin
y2 = 1'b1;
if (jnp) next = S3;
el se next = S2;
end
S2 . if (jnp) next = S3;
el se next = S9;
S3 : begin
yl = 1'bl;
y2 = 1'bl;
if (jnp) next = S3;
el se next = $4;
end
S4 0 if (j mp) next = S3;
else if (skO && !jnp) next = S6;
el se next = S5;
S5 if (j mp) next = S3;
else if (Iskl & !sk0 && !'jnp) next = S6;
else if (Iskl & skO && !'jnp) next = S7,;
else if (skl & !sk0 && !'jnp) next = SB8;
el se next = S9;
S6 : begin
yl = 1'bl;
y2 = 1'bl;
y3 = 1' bl;
i f (j mp) next = S3;
else if (go && !jnp) next = S7;
el se next = S6;
end
S7 : begin
y3 = 1' bl;
if (jnp) next = S3;
el se next = S8;
end
S8 : begin
y2 = 1'bl;
y3 = 1'bl;
if (jnp) next = S3;
el se next = S9;
end
S9 : begin
yl = 1'bl;
y2 = 1'bl;
y3 = 1' bl;
if (jnp) next = S3;
el se next = S0;
end
endcase
end
endnodul e
Example 3 - fsm_cc8 design - two always block style - 80 lines of code
International Cadence Users Group 2002 8 Fundamentals of Efficient Synthesizable FSM

Rev 1.1 Design using NC-Verilog and BuildGates

6. One Always Block FSM Style (Avoid This Style!)

One of the most common FSM coding stylesin use today is the one sequential always block FSM coding
style. This coding styleis very similar to coding styles that were popularized by PLD programming
languages of the mid-1980s, such as ABLE. For most FSM designs, the one always block FSM coding
style is more verbose, more confusing and more error prone than a comparable two aways block coding

style.

Reconsider the fsm_cc4 design shown in section 5.

nodul e fsmecc4_1
(output reg gnt,
i nput dly, done, req,
| DLE
BBUSY
BWAI T
BFREE

paraneter [1:0]

reg [1:0] state;

al wvays @ posedge clk or
if (!rst_n) begin

cl k,

rst_n);

2' do,
2'di,
2'd2,
2' d3;

negedge rst_n)

state <= | DLE;
gnt <= 1'DbO;
end
el se begin
state <= 2' bx;
gnt <= 1'DbO;
case (state) dly
IDLE : if (req) begin
st at e <= BBUSY;
gnt <= 1'bl;
end
el se state <= | DLE;
BBUSY: if (!done) begin
st at e <= BBUSY;
gnt <= 1'bl;
end
else if (dly) begin
state <= BWAIT;
gnt <= 1'bl;
end
el se st at e <= BFREE;
BWAIT: if (dly) begin
state <= BWAIT;
gnt <= 1'bl;
end
el se st at e <= BFREE;
BFREE: if (req) begin
st at e <= BBUSY;
gnt <= 1'bl;
end
el se state <= | DLE;
endcase
end
endnodul e
Example 4 - fsm_cc4 design - one always block style - 47nes of code
International Cadence Users Group 2002 9 Fundamentals of Efficient Synthesizable FSM

Rev 1.1

Design using NC-Verilog and BuildGates

Administrator
高亮

Administrator
下划线
把条件转移的组合逻辑＋时序逻辑＋输出数据的组合逻辑全部合成为一个模块。

Administrator
在文本上注释
顺序执行语句begin-end保证state只有在case语句中未被赋值时，state才是2'bx的值。

Administrator
删划线
two always is 37 line

6.1 Important coding style notes:

Parameters are used to define state encodings, the same as the two always block coding style.

A declaration is made for st at e. Not for next .

Thereisjust one sequential always block, coded using honblocking assignments.

Thethereis still adefault st at e assignment before the case statement, then the case statement tests
the st at e variable. Will this be a problem? No, because the default st at e assignment is made with a
nonblocking assignment, so the update to the st at e variable will happen at the end of the simulation
time step.

Default output assignments are made before coding the case statement (this reduces the amount of
code required to code the rest of the outputsin the case statement).

A st at e assignment must be made for each transition arc that transitionsto a st at e where the output
will be different than the default assigned value. For multiple outputs and for multiple transition arcs
into ast at e where the outputs change, multiple st at e assignments will be required.

The st at e assignments do not correspond to the current st at e of the case statement, but the st at e
that case statement is transitioning to. Thisiserror prone (but it does work if coded correctly).

Again, for ease of scanning and debug, the all of the st at e assignments have been placed in asingle
column, as opposed to finding st at e assignments following the contour of the RTL code.

All outputs will be registered (unless the outputs are placed into a separate combinational always block
or assigned using continuous assignments). No asynchronous Mealy outputs can be generated from a
single synchronous always block.

Note: some misinformed engineers fear that making multiple assignments to the same variable, in the
same always block, using nonblocking assignments, is undefined and can cause race conditions. Thisis
not true. Making multiple nonblocking assignments to the same variable in the same always block is
defined by the Verilog Standard. The last nonblocking assignment to the same variable wins! (See
reference [5] for details).

6.2 10-state simple FSM design - one always blocks

Example 5 isthe fsm_cc7 design implemented with one always blocks. Using one always blocks, the
fsm_cc7 design requires 79 lines of code (coding requirements are compared in alater section).

nodul e fsmcc7_1
(output reg yl1,

i nput jmp, go, clk, rst_n);

paranmeter SO = 4'b0000,
S1 = 4'b0001,
S2 = 4'b0010,
S3 = 4'b0011,
S4 = 4'b0100,
S5 = 4'b0101,
S6 = 4'b0110,
S7 = 4'b0111,
S8 = 4'b1000,
S9 = 4'bl001;

reg [3:0] state;

al wvays @ posedge cl k or negedge rst_n)
if (!rst_n) begin
state <= S0;
yl <= 1'bO;
end
el se begin
yl <= 1'b0;

International Cadence Users Group 2002 10 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
高亮

Administrator
下划线

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
在文本上注释
状态转移时，需要在case语句中对next state对应的每一个gnt进行赋值。

Administrator
下划线
同上面的解释。即：输出reg（gnt）的赋值不是对应当前这一个状态，而是对应转移的下一个状态。

Administrator
高亮

Administrator
下划线

Administrator
下划线

Administrator
下划线
所有的都是同步输出。

Administrator
下划线

state <
case (s
SO :

Sl

S2

S3

S5

S6

SYA

S8

S9

endcase
end
endnodul e

= 4' bx;
tate)
if (!go) state
else if (jnp) begin
yl <= 1'b31;
state
end
el se state
if (jnp) begin
yl <= 1'b31;
state
end
el se state
begi n
yl <= 1'b1;
state
end
if (jnp) begin
yl <= 1'b1;
state
end
el se state
if (jnp) begin
yl <= 1'b1;
state
end
el se state
if (jnp) begin
yl <= 1'b1;
state
end
el se state
if (jnp) begin
yl <= 1'b1;
state
end
el se state
if (jnp) begin
yl <= 1'b1;
state
end
el se state
if (jnp) begin
yl <= 1'b31;
state
end
el se state
if (jnp) begin
yl <= 1'b31;
state
end
el se state

Example 5 - fsm_cc7 design - one always block style - 79-ines of code

International Cadence Users Group 2002

Rev 1.1

11

Fundamentals of Efficient Synthesizable FSM
Design using NC-Verilog and BuildGates

Administrator
删划线
2 always 50 lines

6.3 10-state moderately complex FSM design - one always blocks

Example 6 is the fsm_cc8 design implemented with one always blocks. Using one always blocks, the
fsm_cc8 design requires 146 lines of code (coding requirements are compared in a later section).

Irst_n i

S0 |
ya=0y2=0y1=0) 90 & limp

sk1 & sk0 & ljmp--

sk1 & Isk0 & ljimp.

Isk1 & skO & ljmp -------------o-oo

Igo & limp

Isk1 & Isk0 & limp

nodul e fsmcc8_1
(output reg yl, y2, y3,

i nput jmp, go, skO, ski1, clk, rst_n);

paranmeter SO = 4'b0000,
S1 = 4'b0001,
S2 = 4'b0010,
S3 = 4'b0011,
S4 = 4'b0100,
S5 = 4'b0101,
S6 = 4'Db0110,
S7 = 4'Db0111,
S8 = 4'b1000,
S9 = 4'bl001;

reg [3:0] state;

al wvays @ posedge cl k or negedge rst_n)
if (!rst_n) begin
state <= S0;
yl <= 1'b0;
y2 <= 1'b0;
y3 <= 1'b0;

el se begin
state <= 4'bx;
yl <= 1'b0;
y2 <= 1'b0;

International Cadence Users Group 2002 12 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

y3 <= 1'b0;
case (state)
SO : if (!go) state <= S0;
else if (jnp) begin
state <= S3;
yl <= 1'b31;
y2 <= 1'b1;
end
el se begin
state <= S1;
y2 <= 1'b1;
end
S1: if (jnp) begin
state <= S3;
yl <= 1'b1;
y2 <= 1'b1;
end
el se state <= S2;
S2 : if (jnp) begin
state <= S3;
yl <= 1'b1;
y2 <= 1'b1;
end
el se begin
state <= S9;
yl <= 1'b1;
y2 <= 1'b1;
y3 <= 1'b1;
end
S3 : if (jnp) begin
state <= S3;
yl <= 1'b1;
y2 <= 1'b1;
end
el se state <= $4;
S4 : if (jnp) begin
state <= S3;
yl <= 1'b1;
y2 <= 1'b1;

else if (skO & !jnp) begin
state <= S6;
yl <= 1'b1;
y2 <= 1'b1;
y3 <= 1'b1;

el se state <= S5;
S5 : if (jnp) begin
state <= S3;
yl <= 1'b31;
y2 <= 1'b1;

else if (!'skl & !'sk0 && !jnp) begin
state <= S6;
yl <= 1'b31;
y2 <= 1'b1;
y3 <= 1'b1;

else if (Iskl & skO && !jnp) begin
state <= S7;
y3 <= 1'b1;
else if (skl & !'skO && !jnp) begin

International Cadence Users Group 2002 13 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

state <= S8;
y2 <= 1'b1;
y3 <= 1'b1;

el se begin
state <= S9;
yl <= 1'b31;
y2 <= 1'b1;
y3 <= 1'b1;

S6 : if (jnp) begin

yl <= 1'b1;
y2 <= 1'b1;

else if (go & & !jnp) begin
state <= S7;
y3 <= 1'b1;

el se begin
state <= S6;
yl <= 1'b1;
y2 <= 1'b1;
y3 <= 1'b1;

S7 : if (jnp) begin
state <= S3;
yl <= 1'b1;
y2 <= 1'b1;
end
el se begin
state <= S8;
y2 <= 1'b1;
y3 <= 1'b1;
end
S8 : if (jnp) begin
state <= S3;
yl <= 1'b1;
y2 <= 1'b1;

state <= S9;
yl <= 1'b1;
y2 <= 1'b1;
y3 <= 1'b1;

S9 : if (jnp) begin
state <= S3;
yl <= 1'b31;
y2 <= 1'b1;
end
el se state <= S0;
endcase
end
endnodul e

Example 6 - fsm_cc8 design - one always block style - 446-ines of code

International Cadence Users Group 2002 14 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
删划线
2 always 80 lines

7. Onehot FSM Coding Style (Geed-Style)

Efficient (small and fast) onehot state machines can be coded using an inverse case statement; a case
statement where each caseitem is an expression that evaluates to true or false.

Reconsider the fsm_cc4 design shown in section 5. Eight coding modifications must be made to the two
always block coding style of section 5 to implement the efficient onehot FSM coding style.

The key to understanding the changes is to realize that the parameters no longer represent st at e
encodings, they now represent an index into the st at e vector, and comparisons and assignments are now
being made to single bitsin either the st at e or next -state vectors. Notice how the case statement is now
doing a 1-bit comparison against the onehot state bit.

modul e fsmcc4_fp Index into the state register,
(out put r_eg §nt not state encodings

!rst_nlv
input dly, done, req, clk, rst_n); !req

paranmeter [3:0] IDLE = 0,

BBUSY = 1,

Onehot requires larger BWAIT = 2,
declarations BFREE = 3;

re\gA[S:O] state, next;

al wvays @ posedge cl k or negedge rst_n)
if (!rst_n) begin

state <= 4' b0;
state[I DLE] <= 1' bl; w4
end Reset modification

el se state <= next;

always @state or dly or done or req) begin

next = 4'b0; 4—]

dly

Must make all-0's assignment

gnt = 1 bo; Add "full" & "parallel" case
case (I'b1) [P case (1'bl) // anbit full_case parallel_case 4]
state[| DLE] : if (req) next [BBUSY] = 1'bil;
el se next[I DLE] = 1'bl;
st at e[BBUSY] : begin
gnt = 1'bil;
if (!done) next [BBUSY] = 1'bil;
state[current_state] else if (dly) next[BWAIT] = 1'b1l;
case items el se next [BFREE] = 1' b1,
T end —
state[BWAI T] : begin Only update the
gnt = 1'bl; nextlnext statel bit
it (1dly) next [BFREE] = 1'bl: &
el se next[BWAI T] = 1' bl;
end
st at e[BFREE] : begin
if (req) next [BBUSY] = 1'bil;
el se next[I DLE] = 1'bl;
end
endcase
end
endnodul e

Example 7 - fsm_cc4 design - case (1'b1) onehot style - 42 lines of code

International Cadence Users Group 2002 15 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
下划线
通常情况是指state的编码方式为one-hot（为了消除状态转移时的组合逻辑race，one-hot每次变更一位，没有race）。这里，是一个全新的one-hot coding方法，值得学习！

Administrator
删划线
不推荐这种编码方式。但可简单学习，很有创意。

7.1 10-state simple FSM design - case (1'b1) onehot coding style

Example 8 isthe fsm_cc7 design implemented with the case (1'b1) onehot coding style. Using this style,
the fsm_cc7 design requires 53 lines of code (coding requirements are compared in a later section).

nodul e fsm cc7_onehot _fp

(out put
i nput

par amet er SO
S1
S2
S3
sS4
S5
S6
S7
S8

reg vyi,
j nmp,

go, clk, rst_n);

CONNUARWNRO

SO

reg [9:0] state, next;

al wvays @ posedge cl k or negedge rst_n)

if (!Irst_n) begin

state <=
state[SO] <=
end
el se state <=

always @state or go or jnp)

0;
1' bl;

next ;

begi n

next [SO] =1"
next [S3] =1"
next [S1] =1"
next [S3] =1"
next [S2] =1"
next [S3] =1'
bl;
next [S3] =1"
next [$4] =1

next [S3] =1"
next [S5] =1"
next [S3] =1"
next [S6] =1'
next [S3] =1"
next [S7] =1
next [S3] =1"
next [S8] =1"
next [S3] =1"
next [S9] =1"
next [S3] =1"
next [SO] =1"

bl;
bl;
bl;
bl;
bl;
bl;

bl;
bl;

bl;
bl;
bl;
bl;
bl;
bl;
bl;
bl;
bl;
bl;
bl;
bl;

next = 10' bO;
yl = 1' bO;
case (1'bl) // anbit full _case parallel _case
st at e[SO] if (!go)
else if (jnp)
el se
st at e[S1] if (jnp)
el se
st at e[S2]
st at e[S3] begin yl1 = 1
if (jmp)
el se
end
st at e[$4] if (jnp)
el se
st at e[S5] if (jnp)
el se
st at e[S6] if (jnp)
el se
stat e[S7] if (jnp)
el se
st at e[S8] if (jnp)
el se
st at e[S9] if (jnp)
el se
endcase
end
endnodul e

Example 8 - fsm_cc7 design - case (1'b1) onehot style - 53 lines of code

International Cadence Users Group 2002
Rev 1.1

16

Fundamentals of Efficient Synthesizable FSM
Design using NC-Verilog and BuildGates

+2 10-state moderately complex FSM design - case (1'b1) onehot coding style

Example 9 isthe fsm_cc8 design implemented with the case (1'b1) onehot coding style. Using this style,
the fsm_cc8 design requires 86 lines of code (coding requirements are compared in a later section).

sk1 & sk0 & ljmp--

sk1 & Isk0 & ljimp.

Isk1 & skO & ljmp -------------o-oo

Igo & limp

Isk1 & Isk0 & limp

nodul e fsm cc8_onehot _fp
(output reg yl, y2, y3,
i nput jmp, go, skO, ski1, clk, rst_n);

par amet er SO
S1
S2
S3
sS4
S5
S6
S7
S8
S9

CONOUAWNRO

reg [9:0] state, next;

al wvays @ posedge cl k or negedge rst_n)
if (!rst_n) begin

state <= 0;
state[S0] <= 1'bil;
end
el se state <= next;

always @state or jnp or go or skO or skl) begin

next = 0;
case (1'bl) // anbit full _case parallel _case
state[SO] : if ('go) next [SO] =1' bl;
else if (jnp) next [S3] =1' bl;
el se next [S1] =1' bl;
International Cadence Users Group 2002 17 Fundamentals of Efficient Synthesizable FSM

Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
高亮
对于复杂的FSM设计才体现出coding style的重要性！

Administrator
删划线
不推荐这种编码方式。但很有创意。

state[S1] : if (jnp) next [S3] =1' bl;

el se next [S2] =1' bl;
state[S2] : if (jnp) next [S3] =1' bl;
el se next [S9] =1' bl;
state[S3] : if (jnp) next [S3] =1' bl;
el se next [$4] =1' bl;
state[$4] : if (j mp) next [S3] =1' bl;
else if (skO && !jnp) next [S6] =1' bl;
el se next [S5] =1' bl;

state[S5] : if (j mp) next [S3] =1' bl;
else if (I'skl & !'sk0 && !jnp) next[S6]=1'bil;
else if (Iskl & skO && !'jnp) next[S7]=1'bil;
else if (skl &% !sk0 && !'jnp) next[S8]=1'bil;
el se next [S9] =1' bl;
state[S6] : if (j mp) next [S3] =1' bl;
else if (go && !jnp) next [S7] =1' bl;
el se next [S6] =1' b1;
state[S7] : if (jnp) next [S3] =1' bl;
el se next [S8] =1' bl;
state[S8] : if (jnp) next [S3] =1' bl;
el se next [S9] =1' bl;
state[S9] : if (jnp) next [S3] =1' bl;
el se next [S0] =1' bl;
endcase
end

al wvays @ posedge cl k or negedge rst_n)
if (!Irst_n) begin

yl <= 1'b0;
y2 <= 1'b0;
y3 <= 1'b0;
end
el se begin
yl <= 1'b0;
y2 <= 1'b0;
y3 <= 1'b0;
case (1'bl)
next[SO], next[S2], next[S4], next[S5] : ; // default outputs
next [S7] : y3 <= 1'b1;
next[S1] : y2 <= 1'b1;
next[S3] : begin
yl <= 1'b31;
y2 <= 1'b1;
end
next[S8] : begin
y2 <= 1'b1;
y3 <= 1'b1;
end
next[S6], next[S9] : begin
yl <= 1'b1;
y2 <= 1'b1;
y3 <= 1'b1;
end
endcase
end
endnodul e

Example 9 - fsm_cc8 design - case (1'b1) onehot style - 86 lines of code

Thisisthe only coding style where | recommend using full_case and parallel_case statements. The parallel
case statement tells the synthesis tool to not build a priority encoder even though in theory, more than one
of the state bits could be set (as engineers, we know that thisis a onehot FSM and that only one bit can be
set so no priority encoder is required). The value of the full_case statement is still in question.

International Cadence Users Group 2002 18 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
在文本上注释
分离出的输出module

Administrator
下划线
y1=0;y2=0;y3=0

Administrator
高亮
注意是next是s7，不是当前state是s7。对比P12页，注意区别。

8. Registered FSM Outputs (Good Style)

Registering the outputs of an FSM design insures that the outputs are glitch-free and frequently improves
synthesis results by standardizing the output and input delay constraints of synthesized modules (see
reference [1] for more information).

FSM outputs are easily registered by adding a third always sequential block to an FSM module where
output assignments are generated in a case statement with case items corresponding to the next state that
will be active when the output is clocked.

nodul e fsm.cc4_2r
(output reg gnt,
input dly, done, req, clk, rst_n);

paraneter [1:0] IDLE = 2'b00,
BBUSY = 2' b01,
BWAI T = 2' b10,
BFREE = 2' b11;

reg [1:0] state, next;

al wvays @ posedge cl k or negedge rst_n)
if (!rst_n) state <= | DLE;
el se state <= next;

always @state or dly or done or req) begin
next = 2'bx;
case (state)

IDLE : if (req) next = BBUSY;
el se next = |DLE; dly
BBUSY: if (!done) next = BBUSY;
else if (dly) next = BWAIT;
el se next = BFREE;
BWAIT: if (!dly) next = BFREE;
el se next = BWAIT;
BFREE: if (req) next = BBUSY;
el se next = | DLE;
endcase

end

al wvays @ posedge cl k or negedge rst_n)
if (!rst_n) gnt <= 1'bO;
el se begin
gnt <= 1'bO;
case (next)
IDLE, BFREE: ; // default outputs
BBUSY, BWAIT: gnt <= 1'bl;
endcase
end
endnodul e

Example 10 - fsm_cc4 design - three always blocks wir egister ed outputs - 40 lines of code

International Cadence Users Group 2002 19 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
高亮

Administrator
高亮
注意与P22页的输出block对比！

8.1 10-state simple FSM design - three always blocks - registered outputs

Example 11 isthe fsm_cc7 design with registered outputs implemented with three always blocks. Using
three always blocks, the fsm_cc7 design requires 60 lines of code (coding requirements are compared in a
later section).

nodul e fsm cc7_3r
(output reg yl1,

i nput jmp, go, clk, rst_n);

paranmeter SO = 4'b0000,
S1 = 4'b0001,
S2 = 4'b0010,
S3 = 4'b0011,
S4 = 4' b0100,
S5 = 4'b0101,
S6 = 4'b0110,
S7 = 4'b0111,
S8 = 4'b1000,
S9 = 4'bl001;

reg [3:0] state, next;

al wvays @ posedge cl k or negedge rst_n)
if (Irst_n) state <= S0;
el se state <= next;

always @state or go or jnp) begin
next = 4'Dbx;

yl = 1' bO;
case (state)

SO : if (!go) next = SO;
else if (jnp) next = S3;
el se next = S1;

S1: if (jnp) next = S3;
el se next = S2;

S2 next = S3;

S3 : begin yl = 1'bl;

if (jnp) next = S3;
el se next = $4;
end

sS4 if (jnp) next = S3;
el se next = S5;

S5 if (jnp) next = S3;
el se next = S6;

S6 : if (jnp) next = S3;
el se next = S7;

S7 . if (jnp) next = S3;
el se next = S8;

S8 : if (jnp) next = S3;
el se next = S9;

S9 : if (jnp) next = S3;
el se next = S0;

endcase
end

al wvays @ posedge cl k or negedge rst_n)
if (!Irst_n) yl <= 1'bO0;
el se begin
yl <= 1'b0;
case (state)
S0, S1, S2, sS4, S5, S6, S7, S8, S9:; // default

International Cadence Users Group 2002 20 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

S3 : yl <= 1'bil;
endcase
end
endnodul e

Example 11 - fsm_cc7 design - three always blocks wi/r egister ed outputs - 60 lines of code
8.2 10-state moderately complex FSM design - three always blocks - registered
outputs

Example 12 isthe fsm_cc8 design with registered outputs implemented with three always blocks. Using
three always blocks, the fsm_cc8 design requires 83 lines of code (coding requirements are compared in a
later section).

Irst_n i

S0 |
y3=0y2=0y1=0) 90 & limp

sk1 & sk0 & ljmp--

sk1 & Isk0 & ljimp.

Isk1 & skO & ljmp -------------o-oo

Igo & limp

Isk1 & Isk0 & limp

nodul e fsm cc8_3r
(output reg yl, y2, y3,

i nput jmp, go, skO, ski1, clk, rst_n);

paranmeter SO = 4'b000QQ,
S1 = 4'b0001,
S2 = 4'b0010,
S3 = 4'b0011,
S4 = 4'b0100,
S5 = 4'b0101,
S6 = 4'b0110,
S7 = 4'Db0111,
S8 = 4'b1000,
S9 = 4'bl001;

reg [3:0] state, next;

al wvays @ posedge cl k or negedge rst_n)
if (Irst_n) state <= S0;
el se state <= next;

always @state or jnp or go or skO or skl) begin

International Cadence Users Group 2002 21 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
在文本上注释
标准编码！

Administrator
删划线
变化binary code为one-hot code。这个module的写法就是标准编码。

next = 4'Dbx;
case (state)

SO : if ('go) next = SO;
else if (jnp) next = S3;
el se next = S1;

S1: if (jnp) next = S3;
el se next = S2;

S2 . if (jnp) next = S3;
el se next = S9;

S3 : if (jnp) next = S3;
el se next = $4;

S4 0 if (j mp) next = S3;
else if (skO && !jnp) next = S6;
el se next = S5;

S5 if (j mp) next = S3;
else if (Iskl & !sk0 && !'jnp) next = S6;
else if (Iskl & skO && !'jnp) next = S7,;
else if (skl & !sk0 && !'jnp) next = SB8;
el se next = S9;

S6 : if (j mp) next = S3;
else if (go && !jnp) next = S7;
el se next = S6;

S7 : if (jnp) next = S3;
el se next = S8;

S8 : if (jnp) next = S3;
el se next = S9;

S9 : if (jnp) next = S3;
el se next = S0;

endcase
end

al wvays @ posedge cl k or negedge rst_n)
if (!Irst_n) begin

yl <= 1'b0;
y2 <= 1'b0;
y3 <= 1'b0;
end
el se begin
yl <= 1'b0;
y2 <= 1'b0;
y3 <= 1'b0;
case (next)
S0, S2, S4, S5 : ; /] default outputs
S7 : y3 <= 1'b1;
S1 : y2 <= 1'b1;
S3 : begin
yl <= 1'b1;
y2 <= 1'b1;
end
S8 : begin
y2 <= 1'b1;
y3 <= 1'b1;
end
S6, S9 . begin
yl <= 1'b1;
y2 <= 1'b1;
y3 <= 1'b1;
end
endcase
end
endnodul e

Example 12 - fsm_cc8 design - three always blocks wir egister ed outputs - 83 lines of code

International Cadence Users Group 2002 22 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
高亮
与P22页输出block的写法对比。代码长度差不多，这种编码更容易理解。

9. Comparing RTL Coding Efforts

In the preceding sections, three different FSM designs were coded four different ways: (1) two aways
block coding style, (2) one always block coding style, (3) onehot, two aways block coding style, and (4)
three always block coding style with registered outputs.

Three aways
Two aways block One al_ways block Onehat, two block coding style
coding stvle coding style always block W/ reqistered
9 sty (12%-83% larger) coding style €9
outputs
fsm_cc4 . 47 lines of code : ;
(4 Sates, smple) 37 lines of code (12%-27% larger) 42 lines of code 40 lines of code
fsm_cc7 . 79 lines of code : ;
(10 states, smple) 50 lines of code (329%-58% larger) 53 lines of code 60 lines of code
fsm_cc8 146 lines of code
(10 states, moderate 80 lines of code ' 86 lines of code 83 lines of code
. (70%-83% larger)
complexity)

Table1-Linesof RTL coderequired for different FSM coding styles

From Table 1, we see that the one always block FSM coding style is the least efficient coding style with
respect to the amount of RTL code required to render an equivalent design. In fact, the more outputs that an
FSM design has and the more transition arcs in the FSM state diagram, the faster the one always block
coding style increases in size over comparable FSM coding styles.

If you are a contractor or are paid by the line-of-code, clearly, the one always block FSM coding style

should be your preferred style. If you are trying to complete a project on time and code the design in a
concise manner, the one always block coding style should be avoided.

10.Synthesis Results
Synthesis results were not complete by the time the paper was submitted for publication.

11.Running Cadence BuildGates

ac_shel | (for command-line mode)
ac_shell -gui & (for GUI mode with process running in background)

12.Verilog-2001 Enhancements

As of thiswriting, the Cadence Verilog simulators do not support many (if any) of the new Verilog-2001
enhancements. All of the preceding examples were coded with Verilog-2001 enhanced and concise ANSI-
style module headers. In reality, to make the designs work with the Cadence Verilog simulators, | had to
also code Verilog-1995 style module headers and select the appropriate header using macro definitions. To
ease the task, | have created two aliases for 1995-style Verilog simulations.

alias ncverilog95 "ncverilog +define+V95"
alias verilog95 "verilog +define+V95"

International Cadence Users Group 2002 23 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
下划线

Administrator
高亮
推荐！

Administrator
高亮
老外的恶趣味：如果你是一个按编码行数收费的合同工，显然，你应该选择single always block方式。

12.1 ANSI-Style port declarations

ANSI-style port declarations are a nice enhancement to Verilog-2001 but they are not yet supported by
version 3.4 of NC-Verilog or Verilog-XL, but they are reported to work with BuildGates. This
enhancement permits module headers to be declared in a much more concise manner over traditional
Verilog-1995 coding requirements.

Verilog-1995 required each module port be declared two or three times. Verilog-1995 required that (1) the
module ports be listed in the module header, (2) the module port directions be declared, and (3) for reg-
variable output ports, the port data type was also required.

Verilog-2001 combined all of thisinformation into single module port declarations, significantly reducing
the verbosity and redundancy of Verilog module headers. Of the major Verilog vendors, only the Cadence
Verilog simulators do not support this Verilog-2001 feature. This means that users who want to take
advantage of this feature and who use simulators from multiple vendors, including Cadence, must code
both styles of module headers using “ifdef statements to select the appropriate module header style.

| prefer the following coding style to support retro-style Verilog simulators:

“ifdef V95

/'l Verilog-1995 ol d-style, verbose nodul e headers
‘el se

/'l Verilog-2001 newstyle, efficient nmodul e headers
“endi f

The following example is from the actual fsm_cc4 1.v file used to test one always block FSM coding
stylesin this paper.

“ifdef V95
nodul e fsmcc4_1 (gnt, dly, done, req, clk, rst_n);
out put gnt;
input dly, done, req;
input clk, rst_n;
reg gnt;
‘el se
nodul e fsmcc4_1
(output reg gnt,
input dly, done, req, clk, rst_n);
“endi f

It should be noted that thisis an easy enhancement to implement, significantly improves the coding
efficiency of module headers and that some major Verilog vendors have supported this enhanced coding
style for more than ayear at the time this paper was written. The author strongly encourages Cadence
simulator developersto quickly adopt this Verilog-2001 enhancement to ease the Verilog coding burden for
Cadence tool users.

12.2 @* Combinational sensitivity list

Verilog-2001 added the much-heralded @* combinational sensitivity list token. Although the
combinational sensitivy list could be written using any of the following styles:

al wvays @
always @*)
always @ *)
always @(*)

International Cadence Users Group 2002 24 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
高亮

Administrator
高亮

or any other combination of the characters @ (*) with or without white space, the author prefers the first
and most abbreviated style. To the author, "always @*" clearly denotes that a combinational block of logic
follows.

The Verilog-2001 "aways @*" coding style has a number of important advantages over the more
cumbersome Verilog-1995 combinational sensitivity list coding style:

Reduces coding errors - the code informs the simulator that the intended implementation is
combinational logic, so the simulator will automatically add and remove signals from the sensitivity
list as RTL codeis added or deleted from the combinational always block. The RTL coder is no longer
burdened with manually insuring that all of the necessary signals are present in the sensitivity list. This
will reduce coding errors that do not show up until a synthesistool or linting tool reports errorsin the
sengitivity list. The basic intent of this enhancement isto inform the simulator, "if the synthesis tool
wants the signals, so do we!"

Abbreviated syntax - large combinational blocks often meant multiple lines of redundant signal
naming in a sensitivity list. The redundancy served no appreciable purpose and users will gladly adopt
the more concise and abbreviated @* syntax.

Clear intent - an always @* procedural block informs the code-reviewer that this block isintended to
behave like, and synthesize to, combinational logic.

13.SystemVerilog Enhancements

In June of 2002, Accellera released the SystemVerilog 3.0 language specification, a superset of Verilog-
2001 with many nice enhancements for modeling, synthesis and verification. The basis for the
SystemV erilog language comes from a donation by CoDesign Automation of significant portions of their
Superlog language.

Key functionality that has been added to the Accellera SystemVerilog 3.0 Specification to support FSM
design includes:

Enumer ated types - Why do engineers want to use enumerated types? (1) Enumerated types permit
abstract state declaration without defining the state encodings, and (2) enumerated types can typically be
easily displayed in awaveform viewer permitting faster design debug. Enumerated types allow abstract
state definitions without required state encoding assignments. Users also wanted the ability to assign state
encodings to control implementation details such as output encoded FSM designs with simple registered
outputs.

One short coming of traditional enumerated types was the inability to make X-state assignments. As
discussed earlier in this paper, X-state assignments are important to simulation debug and synthesis
optimization. SystemV erilog enumerated types will permit data type declaration, making it possible to
declare enumerated types with an all-X's definitions.

Other SystemV erilog proposals under consideration for FSM enhancement include:
Different enumerated styles - the ability to declare different enumerated styles, such as enum_onehot, to
make experimentation with different encoding styles easier to do. Currently, when changing from a binary

encoding to an efficient onehot encoding style, 8 different code changes must be made in the FSM module.
Wouldn't it be nice if the syntax permitted easier handling of FSM styles without manual intervention.

Transition statement and ->> next state transition operator -

International Cadence Users Group 2002 25 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

Administrator
下划线

Administrator
下划线

Administrator
下划线

Administrator
下划线

These enhancements were removed from the SystemVerilog 3.0 Standard only because their definition was
not fully elaborated and understood. Some people like the idea of a next-state transition operator that
closely corresponds to the transition arcs that are shown on an FSM state diagram.

Theinfinitely abusable " goto" statement - Concern about a "goto" statement that could " cause spaghetti-
code" could be avoided by limiting a goto-transition to a label within the same procedural block. Implicit
FSM coding styles are much cleaner with a goto statement. A goto statement combined with a carefully
crafted disable statement makes reset handling easier to do. A goto statement alleviates the problem of
multiple transition arcs within atraditional implicit FSM design. Goto isjust a proposal and may not pass.

14.Conclusions

There are many ways to code FSM designs. There are many inefficient ways to code FSM designs!

Use parameters to define state encodings. Parameters are constants that are local to a module. After
defining the state encodings at the top of the FSM module, never use the state encodings again in the RTL
code. This makesit possible to easily change the state encodingsin just one place, the parameter
definitions, without having to touch the rest of the FSM RTL code. This makes state-encoding-
experimentation easy to do.

Use atwo aways block coding style to code FSM designs with combinational outputs. This styleis
efficient and easy to code and can also easily handle Mealy FSM designs.

Use athree always block coding style to code FSM designs with registered outputs. This styleis efficient
and easy to code. Note, another recommended coding style for FSM designs with registered outputsis the
"output encoded” FSM coding style (see reference [1] for more information on this coding style).

Avoid the one aways block FSM coding style. It is generally more verbose than an equivalent two always
block coding style, output assignments are more error prone to coding mistakes and one cannot code
asynchronous Mealy outputs without making the output assignments with separate continuous assign
Statements.

15.Acknowledgements

I would like to especially thank both Rich Owen and Nasir Junejo of Cadence for their assistance and tips
enabling the use of the BuildGates synthesis tool. Their input hel ped me to achieve very favorable resultsin
ashort period of time.

16.References

[1] Clifford E. Cummings, "Coding And Scripting Techniques For FSM Designs With Synthesis-Optimized, Glitch-
Free Outputs,” SNUG'2000 Boston (Synopsys Users Group Boston, MA, 2000) Proceedings, September 2000.
(Also available online at www.sunburst-design.com/papers)

ifford E. Cummings, "full_case parallel_case", the Evil Twins of Verilog Synthess, UG'99 Boston

2] Clifford C i full allel h il i f il hesis| SNUG'99
(Synopsys Users Group Boston, MA, 1999) Proceedings, October 1999. (Also available online at www.sunburst-
design.com/papers)

[3] Clifford E. Cummings, "New Verilog-2001 Techniques for Creating Parameterized Models (or Down With
“define and Death of a defparamt!),” International HDL Conference 2002 Proceedings, pp. 17-24, March 2002.
(Also available online at www.sunburst-design.com/papers)

[4] Clifford E. Cummings, "Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!," SNUG'2000
Boston (Synopsys Users Group San Jose, CA, 2000) Proceedings, March 2000. (Also available online at
www.sunburst-design.com/papers)

International Cadence Users Group 2002 26 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

[5] IEEE Standard Hardware Description Language Based on the Verilog Hardware Description Language, |EEE
Computer Society, |EEE Std 1364-1995, pg. 47, section 5.4.1 - Determinism.

[6] Nasir Junejo, personal communication

[7] Rich Owen, personal communication

[8] The Programmable Logic Data Book, Xilinx, 1994, pg. 8-171

[9] William I. Fletcher, An Engineering Approach To Digital Design, New Jersey, Prentice-Hall, 1980

[10] 2vi Kohavi, Switching And Finite Automota Theory, Second Edition, New Y ork, McGraw-Hill Book Company,
1978

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and trainer with 20
years of ASIC, FPGA and system design experience and ten years of Verilog, synthesis and methodology
training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (VSG) since 1994, chaired the VSG
Behaviora Task Force, which was charged with proposing enhancements to the Verilog language. Mr.
Cummingsis aso amember of the IEEE Verilog Synthesis Interoperability Working Group and the
Accellera SystemV erilog Standardization Group.

Mr. Cummings holds a BSEE from Brigham Y oung University and an M SEE from Oregon State
University.

E-mail Address: cliffc@sunburst-design.com
An updated version of this paper can be downloaded from the web site: www.sunburst-design.com/papers
(Data accurate as of July 22™, 2002)

International Cadence Users Group 2002 27 Fundamentals of Efficient Synthesizable FSM
Rev 1.1 Design using NC-Verilog and BuildGates

	FSM设计指导
	设计方法
	设计注意要点
	编码风格
	设计总结

	标准编码

