Introduction

The 8051 is an 8-bit microcontroller. This basically means that each machine language opcode
in its instruction set consists of a single 8-bit value. This permits a maximum of 256
instruction codes (of which 255 are actually used in the 8051 instruction set).

The 8051 also works almost exclusively with 8-bit values. The Accumulator is an 8-bit value,
as is each register in the Register Banks, the Stack Pointer (SP), and each of the many Special
Function Registers (SFRs) that exist in the architecture. In reality, the only values that
the 8051 handles that are truly 16-bit values are the Program Counter (PC) that internally
indicates the next instruction to be executed, and the Data Pointer (DPTR) which the user
program may utilize to access external RAM as well as directly access code memory. Other
than these two registers, the 8051 works exclusively with 8-bit values.

For example, the ADD instruction will add two 8-bit values to produce a third 8-bit value.
The SUBB instruction subtracts an 8-bit value from another 8-bit value and produces a third
8-bit value. The MUL instruction will multiply two 8-bit values and produce a 16-bit value.

Programming Tip: It could be said that the MUL instruction is a 16-bit math instruction
since it produces a 16-bit answer. However, its inputs are only 8-bit. The result
is 16-bits out of necessity since any multiplication with two operands greater than
the number 16 will produce a 16-bit result. Thus, for the MUL operation to have any
value at all it was absolutely necessary to produce a 16-bit result.
As we can see, the 8051 provides us with a number of instructions aimed at performing
mathematical calculations. Unfortunately, they are all work with 8-bit input values——and
we often find ourselves working with values that simply cannot be expressed in 8-bits.

This tutorial will discuss techniques that allow the 8051 developer to work with 16—bit values
in the 8051’ s 8-bit architecture. While we will only discuss 16-bit mathematics, the
techniques can be extended to any number of bits (24-bit, 32-bit, 64-bit, etc.). It’s just
a matter of expanding the code to support the additional bytes. The algorithms remain the
same.

These tutorials will explain how to perform 16-bit addition, subtraction, and multiplication
with the 8051. For the time being, 16-bit division is outside the scope of this tutorial.

Programming Tip: Compared to addition, subtraction, and multiplication, division is
a relatively complicated process. For the time being 16-bit division will not be
discussed because the author has not had a need to develop such routines, nor an
opportunity to analyze the process in performing the calculation. If you have
developed a routine that allows a 16-bit value to be divided by another 16-bit value
and would like to contribute the code to 8052. com, along with a tutorial similar to
those found in these sections, please contact us..

How did we learn math in primary school?

http://blog.ednchina.com/acxc44/

Before jumping into multibyte mathematics in machine language, let’s quickly review the
mathematics we learned as children. For example, we learned to add two numbers, say 156 +
248, as follows:

How do we calculate the above? We start in the 1’s column, adding 6 + 8 = 14. Since 14 can’t fit in a single
column, we leave 4 in the 1’s column and carry the 1 to the 10’s column. We then add 5 + 4 = 9, add the 1
we carried, to get 10. Again, 10 doesn’t fit in a single column. So we leave the 0 in the 10’s column and
carry the 1 to the 100’ s column. Finally, we add 1 + 2 = 3, add the 1 we carried to get 4, which is our final

answer in the 100’ s column. The final answer, thus, is 404.

It is important to remember this when working with multibyte math, because the process is
going to be the same. Let’s start by doing 16-bit addition.

16-Bit Addition

16-bit addition is the addition of two 16-values. First, we must recognize that the addition of two 16-bit
values will result in a value that is, at most, 17 bits long. Why is this so? The largest value that can fit
in 16-bits is 256 * 256 — 1 = 65,535. If we add 65,535 + 65,535, we get the result of 131,070. This value
fits in 17 bits. Thus when adding two 16-bit values, we will get a 17-bit value. Since the 8051 works with
8-bit values, we will use the following statement: “Adding two 16-bit values results in a 24-bit value”. Of
course, 7 of the highest 8 bits will never be used—but we will have our entire answer in 3 bytes. Also keep

in mind that we will be working with unsigned integers

Programming Tip: Another option, instead of using 3 full bytes for the answer, 1s
to use 2 bytes (16-bits) for the answer, and the carry bit (C), to hold the 17th
bit. This is perfectly acceptable, and probably even preferred. The more advanced
programmer will understand and recognize this option, and be able to make use of It.
However, since this is an introduction to 16-bit mathematics it 1s our goal that the
answer produced by the routines be in a form that is easy for the reader to utilize,
once calculated. It is our belief that this Is best achieved by leaving the answer
fully expressed in 3 §-bit values.

Let’s consider adding the following two decimal values: 6724 + 8923. The answer 1s, of course,
15647, How do we go about adding these values with the 80517 The first step is to always
work with hexadecimal values. Simlply convert the two values you wish to add to hexadecimal.
In this case, that is equivalent to the following hexadecimal addition: 1444 + Z22DB.

How do we add thes two numbers? Let’s use the exact same method we used in primary school,
and 1in the previous section:

http://blog.ednchina.com/acxc44/

| (256" sl1" s

B 12 44
o 22 DB
S 3D 1IF

First, notice the difference. We are no longer working witha 1’s, 10’s, and 100’ s columns. We are just working
with two columns: The 1’s column and the 256’ s column. In familiar computer terms: We' re working with the

low byte (the 1’s column) and the high byte (the 256’ s column). However, the process is exactly the same

First we add the values in the 1’ s column (low byte): 44 + DB = 11F. Only a 2-digit hexadecimal
value can fit in a single column, so we leave the 1F in the low-byte column, and carry the
1 to the high-byte column. We now add the high bytes: 1A + 22 = 3C, plus the 1 we carried
from the low—byte column. We arrive at the value 3D.

Thus, our completed answer is 3D1F. If we convert 3DIF back to decimal, we arrive at the
answer 15647. This matches with the original addition we did in decimal. The process works.
Thus the only challenge is to code the above process into 8051 assembly language. As it turns
out, this is incredibly easy.

We’ 11 use the following table to explain how we’ re going to do the addition:

| [65536” 5]256” s{1” 5
| R6 RT
H R4 RS
5 Rl RZ2 R3

Since we’ re adding 16-bit values, each value requires two 8-bit registers. Essentially, the first value to
add will be held in R6 and R7 (the high byte in R6 and the low byte in R7) while the second value to add will
be held in R4 and R5 (the high byte in R4 and the low byte in R5). We will leave our answer in R1, R2, and
R3.

Programming Tip: Remember that we mentioned above that the sum of two 16-bit values
is a 17-bit value. In this case, we’ 11 using 24-bits (R1, R2, and R3) for our answer,
even though we’ 11 never use more than 1 bit of RI.

Let’ s review the steps involved in adding the values above:

1. Add the low bytes R7 and Rb, leave the answer in R3.

2. Add the high bytes R6 and R4, adding any carry from step 1, and leave the answer in
R2.

3. Put any carry from step 2 in the final byte, RI.

We’ 11 now convert the above process to assembly language, step by step.

http://blog.ednchina.com/acxc44/

Step 1: 4dd the low byvtez ET and Ef, leawe the anzwer in E3.

Mo A8, BT ;Mowe the low=byte into the accumulator
ADD A,ER ;Add the =zecond low-byte to the accumulator
MW RE3,4 ;Mowe the anaswer to the low-byte of the result

Step 2: Add the Ef and R4, add carrvy, leave the answer in R:.

MOV A, E6 ;Mowe the high-byte into the accumulator
ADDC A, FEd ;Add the second high-byte to the accumulator, plus carry.
MOV R2,4 ;Mowe the answer to the high-byte of the result

Step 3: Put any carrv from step 2 in the final bwte, Rl

MOV A, #00h ;Bw default, the highest byte will be zero.
ADDC A, #00h ;Add zero, plus carry from step 2.
MOV Rl1, 4 :Move the answer to the highest byte of the result

http://blog.ednchina.com/acxc44/

That®z it! Combining the code from the three steps, we come up with the following subroutine:

ADD16_16:
i5tep 1 of the proceszzs
NP a, BT Mowe the low-byte into the accumulator
ATD A, EAR c4dd the second low-byte to the accumilator
Mo 3, 4 ‘Mowve the anzwer to the low-byte of the result

i5tep ¢ of the proceszzs

Nor 4, K& ‘Mowe the high-byte into the acoumulator
ADDC A, F4 c4dd the zecond high-byte to the acoumulator, plus carry.
Mo B2, 4 ‘Mowe the anzwer to the high-byte of the result

‘5tep 3 of the procezz

Mo A, #00h By default, the highest byte will be zero.

ADDC A, #00k Add =zero, plus carry from step 2.

Mo MoV El1,4 Mowe the anawer to the highest byte of the reszult

‘Eeturn — answer now resgides in El, RZ, and E3.
FET

ind to call our routine to add the two walues we used in the example above, we'd use the code:

;Load the first walue into E6 and RT
MOV RE, #14h
MoV RT, #d4h

:Load the second walue into Ed and E&
MOY Rd, #22h
MOY Eh, #00Eh

Call the 16-bit addition routine
LCALL ADDIG_16

16-Bit Subtraction

16-bit subtraction is the subtraction of one 16-bit value from another. A subtraction of this nature results
in another 16-bit value. Why? The number 65535 is a 16-bit value. If we subtract 1 from it, we have 65534

which is also a 16-bit value. Thus any 16-bit subtraction will result in another 16-bit value

Let’ s consider the subtraction of the following two decimal values: 8923 — 6905. The answer
is 2018. How do we go about subtracting these values with the 8051? As is the case with addition,
the first step is to convert the expression to hexadecimal. The above decimal subtraction
is equivalent to the following hexadecimal subtraction: 22DB — 1AF9.

Again, we’ 1l go back to the way we learned it in primary school:

http://blog.ednchina.com/acxc44/

| [2567 s[1” s
| 92 DB
= 14 F9
5 07 E?

First we subtract the second value in the 1’s column (low byte): DB — F9. Since F9 is greater than DB, we
need to “borrow” from the 256’ s column. Thus we actually perform the subtraction 1DB — F9 = E2. The value

E2 is what we leave in the 1’s column.

Now we must perform the subtraction 22 — 1A. However, we must remember that we “borrowed”
1 from the 256’ s column, so we must subtract an additional 1. So the subtraction for the
256’ s column becomes 22 — 1A — 1 = 7, which is the value we leave in the 256’ s column.

Thus our final answer is 07E2. If we conver this back to decimal, we get the value 2018,
which coincides with the math we originally did in decimal.

As we did with addition, we 11 use a small table to help us conver the above process to 8051
assembly language:

| [256° 51" 5
| R6 ETY
ﬂ Ed ER
= R? R3

Since we’ re subtracting 16-bit values, each value requires two 8-bit registers. Essentially, the value to
be subtracted from will be held in R6 and R7 (the high byte in R6 and the low byte in R7) while the value
to be subtracted will be held in R4 and R5 (the high byte in R4 and the low byte in R5). We will leave our

answer in R2, and R3
Let’s review the steps involved in subtracting the values above:

1. Subtract the low bytes R5 from R7, leave the answer in R3.
2. Subtract the high byte R4 from R6, less any borrow, and leave the answer in R2.

We’ 11 now convert the above process to assembly language, step by step.

http://blog.ednchina.com/acxc44/

5tep 1: Subtract the low bytes Kb from RY, leave the answer in EK3.

Mo A, KT Mowve the low-byte into the acoumulator

CLE C JAlwavz clear carry before first subtraction

SUBE 4, RE5 ;Subtract the second low-byte from the accumulator
MO B3, 4 Mowve the answer to the low-byte of the result

Step 2: Subtract the high byte E4d from R6, less any borrow, and leave the answer in E2.

NoT A, E6 Mowve the high-byte into the accumulator
SUBE A, B4 ;Subtract the second high-byte from the accumilator
MOV RZ2, A Mowve the answer to the low-byte of the result

Programming Tip: The SUBB instruction always subtracts the second value in the
instruction from the first, less any carry. While there are two versions of the ADD
instruction (ADD and ADDC), one of which ignores the carry bit, there is no such
distinction with the SUBB instruction. This means before you perform the first
subtraction, you must always be sure to clear the carry bit. Otherwise, if the carry
bit happens to be set you 11 end up subtracting it from your first column value ——
which would be incorrect.

Combining the code from the two steps above, we come up with the following subroutine:

http://blog.ednchina.com/acxc44/

SUEE16_16:
i5tep 1 of the procezs
Mo A, BT Mowve the low-byte into the acoumulator
CLE C JAlwavz clear carry before first subtraction
SUBE A,R5 ;Subtract the szecond low-byte from the accumulator
MOV B3, 4 Mowve the answer to the low-byte of the rezult

i5tep ¢ of the procezz

Mo A, E6 ;Mowve the high-byte into the accumulator

SUBE A,Fd ;Subtract the zecond high-byte from the accumulator
NOvW B2, 4 :Move the answer to the low-byte of the reszult

:Eeturn — anszwer now resides in EZ, and E3.
EET

drnd to call our routine to subtract the two walues we uszed in the example abowe, we' d usze the code:

;Load the first walue into E6 and RT
MOW R&, #22h
MOW ET, #0DEh

:Load the second walue into Ed and Rb
MOV ERd,#14h
MOV EhB, #0F%h

:Call the 16-bit zubtraction routine
LCALL SUBELG_16

16-Bit Multiplication

16-bit multiplication is the multiplication of two 16-bit value from another. Such a multiplication results

in a 32-bit value

Programming Tip: In fact, any multiplication results in an answer which is the sum
of the bits in the two multiplicands. For example, multiplying an 8-bit value by a
16-bit value results in a 24-bit value (8 + 16). A 16-bit value multiplied by another
16-bit value results in a 32-bit value (16 + 16), etc.

For the sake of example, let’s multiply 25, 136 by 17, 198. The answer is 432, 288, 928. As with
both addition and subtraction, let’s first convert the expression into hexadecimal: 6230h
x 432Eh.

Once again, let’s arrange the numbers in columns as we did in primary school to multiply
numbers, although now the grid becomes more complicated. The green section represents the
original two values. The yellow section represents the intermediate calculations obtained
by multipying each byte of the original values. The red section of the grid indicates our
final answer, obtained by summing the columns in the yellow area.

http://blog.ednchina.com/acxc44/

‘Byte 4Bytc 3Byte 2Byte 1
T

-] 08 AD
11 9C
0c 90

i
i
B A5
{1 T G S e

Remember how we did this in elementary school? First we multiply 2Eh by 30h (byte 1 of both numbers), and
place the result directly below. Then we multiply 2Eh by 62h (byte 1 of the bottom number by byte 2 of the
upper number). This result is lined up such that the right-most column ends up in byte 2. Next we multiply
43h by 30h (byte 2 of the bottom number by byte 1 of the top number), again lining up the result so that the
right-most column ends up in byte 2. Finally, we multiply 43h by 62h (byte 2 of both numbers) and position
the answer such that the right-most column ends up in byte 3. Once we’ ve done the above, we add each column,

with appropriate carries, to arrive at the final answer.

Our process in assembly language will be identical. Let’ s use our now-familiar grid to help
us get an idea of what we’ re doing:

Byte 4Byte 3Byte 2Byte 1
i R6 RT
a R4 RG
s RO R1 R2 R3

Thus our first number will be contained in R6 and R7 while our second number will be held in R4 and R5. The
result of our multiplication will end up in RO, R1, R2 and R3. At 8-bits per register, these four registers

give us the 32 bits we need to handle the largest possible multiplication. Our process will be the following:

1. Multiply R5 by R7, leaving the 16-bit result in R2 and R3.
2. Multiply R5 by R6, adding the 16-bit result to R1 and R2.
3.Multiply R4 by R7, adding the 16-bit result to Rl and R2.
4. Multiply R4 by R6, adding the 16-bit result to RO and RI1.

We’ 11 now convert the above process to assembly language, step by step.

http://blog.ednchina.com/acxc44/

Step 1. Hultiply RS by RT, leaving the 16-bit result in RZ? and R3.

Mo A, ER Mowe the Eb into the Accumulator
MO B, ET ;Mowe ET into B

NIL AR Maultiply the two waluez

MOV R2,E :Mowe B (the high-byte) into RE2
MOV R3, & ;Mowe & (the low-byte) into E3

Step 2. Multiply E5 by R, adding the 16-bit result to Kl and E2.

MOY 4, RE
MOW B, R6
MUL AR

ADD 4, RZ2
MOV EZ2, 4
MOV A, B
ADDIC &, #00h
MOV K1, 4
MOV A, #00h
ADDIC &, #00h
MOV RO, &

;Mowe BB back into the Accumulator

Mowve E6 into B

Multiply the two walues

;Add the low-byte into the walue already in E2
Mowe the resulting walue back into E2
Mowe the high-byte into the accumulator
4dd zero (plus the carry, if any)

Mowe the rezulting answer into Kl

;Load the accumulator with =zero

4dd zero (plus the carry, if any)

Mowe the rezulting answer to RO.

Step 3. HMultiply E4 by RT, adding the 16-bit result to Kl and E2.

MOV 4, R4
MOV E, BT
WL 4iE
ADD 4, R2
MOV 2, A
MoV 4, F
ADDC 4, Rl
MOV Ri, A
MOV 4, #00k
ADDC 4, RO
MoV Ri, A

Move Ed into the Lccumulator

Move RET into B

Multiply the two walues

;4dd the low-bwte into the walue already in EZ
;Move the reszulting walue back into EZ

;Move the high-byvte into the accumulator

;hdd the current walue of El (plus any carry)
;Move the resulting answer into El.

;Load the accumulator with zero

;4dd the current walue of E0 (plus any carry)
Move the resulting answer to EKl.

Step 4. Wultiply E4 by Rf, adding the 16-bit result to K0 and Rl.

MOV 4, Ed :Maowe Ed back into the Acoumulator

MOV B,E6 :Mowe Ef into B

NIL &F Maltiply the two waluez

ADD A,K1 :Add the low-byte into the walue already in El

MW Rl1,4 Mowe the resulting walue back intao El

Mo 4, B Mowve the high-byte into the accumulator

ADDC 4, R0 ;4dd it to the walue already in E0 (plus any carry)
MW R0, 4 Mowe the resulting answer back to EO

http://blog.ednchina.com/acxc44/

the code from the two steps above, we come up with the following subroutine:

Combining

MUL16 16:

:Multiply E3 by K7

MOV A, K3 ;Move the K3 inte the Accumlator

MOV B, EY :Move K7 into B

MUL AB ;Multiply the two walues

MOV R2. B :Move B (the high—byte} into R2

MOV E3, A :Move A (the lowbrte) intc E3

;:Multipls E5 by B&

HOWV A, R3 :¥ove K3 back inte the Accumulator

HOV B, F& :Move R6 into B

MUL AB :Multiply the two walues

ADD A, R2 :Add the lowbyte into the walue already in R2
MOV RZ, A :Move the resulting value back into K2
MOV A B :Move the high—bryte into the accumulator

MOV Fi. A

MOV RO, A

Multiply
MOV A, Fd
MOV B, R7
MUL AB
ADD A, R2
MOV R2; A
MOV AL B
ATDC A, Ri
HOV Ri, A

ADDC A, RO
NOV RO, A

cMulitipiy
MOV A, R4
MOV B Re
MUL AE
ADD A, F1
BHOV Ri, &
HOV &, B
ADDC A, RO
MOV RO, A

:Eeturn -
EET

ATDC A, #00h :Add zero (plus the carry, if anr}

:Move the resulting answer into Rl

MOV A, #00h :Load the accumulator with zero
ADDC A, #00h :Add zeroc (plus the carry, if anv}

:¥ove the resulting aneswer to RO.

F4 by EY
:Move Fd into the Accumulator
:Move K7 into B
Multiply the two wvalues
;Add the lowbyvte into the walue already in R2
:Mowve the resulting wvalue back intec E2
:Move the high—bvte into the accumulater
:Add the current walue of Rl {plus eny carrr)
:Move the resulting answer into Ei.

HOV A, #00h :Leoad the accumulator with zerc

:Add the current wvalue of RO I:plus any {:EIJ.‘}'}
:Move the resulting answer to El.

F4 br F6

:Move F4 back into the Accumulator

:Move Ro into B

:Multiply the two walues

:Add the low—brvte into the value alreadr in Ri
:Move the resulting wvalue back into Ei

:Move the high~byte intoc the accumulator

;Add it to the value already in RC (plus any carry)
:Mowe the resulting answer back to ED

anewer is now in RO, Ei, E2, and E3

And to call our routine to multiply the two values we used in the example above, we’ d use

the code:

http://blog.ednchina.com/acxc44/

:Load the first walue into EA and RT
MOV E&, #62h
MOV RV, #30h

:Load the first walue into Ed and Eb
MOV Ed, #435h
MOV EhB, #2Eh

;2all the 16-bit subtraction routine
LCALL MUL16_164

16-Bit Division

16-bit division is the division of one 16-bit value by another 16-bit value, returning a 16-bit quotient and

a 16-bit remainder. I used r1/r0 for dividend/remainder and r3/r2 for divisor/quotient.

Programming Tip: The number of bits in the quotient and the remainder can never be
larger than the number of bits in the original divident. For example, if you are
dividing a 16-bit value by a 2-bit value, both the quotient and the remainder must
be able to handle a 16-bit result. If you are dividing a 24-bit value by a 16-bit
value, the quotient and remainder must both be able to handle a 24-bit result.

So, again, let’ s remember how we did division in elementary school. For example, 179 divided
by 8:

Lo

T f B = 22 iguotiemt)

1
1

|Hlm
£ L=a V<]

{remminder}

It’ s necessary necessary to follow this same process step by step. There is a 3—digit—dividend,
so we expect 3 digits maximum for quotient. We ”“shift left” the divisor 2 digits (3-1) such
that the number of digits in the divisor is the same as the number of digits in the dividend.
So we get:

179/800=272°7?

We divide the two numbers, multiply the result by the divisor and substract this result from
the dividend. In this first step 179 can’t be divided by 800, so the the result is 0. We
subtract 0 from 179 and still have 179:

http://blog.ednchina.com/acxc44/

1 T2 fB00=0%7
0

179

We then ”“shift right” the divisor 1 digit and repeat the process. 179 divided by 80 results
in an answer of 2. After we subtract 160 (2x80) we are left with a remainder of 19:

LA

This may have been an unnecessary review of elementary school math, but it is important to
remember exactly how the process is performed because we do exact/y the same with the 8052
in binary system.

In this routine we will place the original dividend into R1 (high-byte) and RO (low-byte)
and the divisor in R3 (high-byte) and R2 (low-byte).

In the case of our example (179 divided by 8), the initial registers would be:

R1/R0O 00000000 10110011
R3/R2 00000000 00001000

Step 1. 5hift left the divisor.

MW B, #00h ;Clear B since B will count the rumber of left-shifted bitz

divl:
INC B ;Increment counter for each left shift
Mo A, K2 Mowe the current diwvisor low byte into the accumulator
RLC & ;53hift low-byte left, rotate through carry to apply highest bit to hizh-bite

MOV E2,4 :Sawe the updated diwvizor low-bite

MW A, K3 :Mowe the current diwizor hizh byte into the acoumulator
RLC & i5hift high-byte left high, rotating in carry from low-bite
MOW E3,4 Sawe the updated diwizor high-bite

JHC diwl Eepeat until carry flag 1z =zet from high-bite

http://blog.ednchina.com/acxc44/

In the case of our example, once the above code is executed the registers will be
as follows (including the carry bit 'C’):

C/R1/R0O 0 00000000 10110011
C/R3/R2 1 00000000 00000000

At this point we can do the division itself. As we are in binary mode there is no
need for a real division—it’ s just a comparison. At this point it’ s important to
know the steps from above.

Step 2. S5hift left the divisor.

divi: ;Shift right the divisor
MOV A R3 :Move high-byte of divisor into accumulator
ERC 4 :Fotate high-byte of diwisor right and into carry

MOV E3, 4 iSave updated walue of high-byte of divisor
MOV A, R2 Mowve low—byte of divisor into accumulator

ERC 4 :Fotate low-byte of diwvisor right, with carry from high-bite
MOV R2, 4 cSave updated walue of low-byte of divisor
CLE C :Clear carry, we don’t need it anymore

MOV 0Th,El ;Make a zafe copw of the diwidend high-bryte
MOV 06h, R0 ;Make a =afe copy of the diwvidend low-hbite
MOV A, RO Move low—byte of dividend into accumulator
SUBE 4,R2 :Dividend - shifted diwviszor = result bit (no factor, only 0 or 1)
MOV RO, 4 ;Save updated diwvidend
MOV A, Rl Mowve high-bwte of dividend into accumulator
SUBE 4,E3 ;Subtract high-byte of divizor (all together 16-bit substraction)
MOV Ri,4 ;Save updated high-bvte back in high-bvte of divisor
JHNC diw3d If carry flag i1z NOT =et, result 1= 1
MOV RE1,0Th ;Otherwisze result 1z 0, =save copy of divisor to undo subtraction
MoY RO, 06h
div3:
GEL=1E ;Inwvert carry, =o it can be directly copied into result
Mov &, Rd
RLC & iShift carry flag into temporary result
MoV Rd, 4
Mov &, BB
FLC &
MoV Rh, 4
DINT B, diw2 ;Now count backwards and repeat wtil "B i= zero

To see how the loop works here are the registers after each step:

1 r1/0 00000000 10110011 ;dividend
r3/2 10000000 00000000 ;divisor
r5/4 00000000 00000000 ;result

2 r1/0 00000000 10110011 ;dividend
r3/2 01000000 00000000 ;divisor
r5/4 00000000 00000000 ;result

http://blog.ednchina.com/acxc44/

8 rl1/0
r3/2
r5/4

9 rl1/0
r3/2
r5/4

10 r1/0
r3/2
r5/4

11 r1/0
r3/2
r5/4

12 r1/0
r3/2
r5/4

13 r1/0
r3/2
r5/4

STOP!

00000000
00000001
00000000

00000000
00000000
00000000

00000000
00000000
00000000

00000000
00000000
00000000

00000000
00000000
00000000

00000000
00000000
00000000

10110011
00000000
00000000

00110011
10000000
00000001

00110011
01000000
00000010

00010011
00100000
00000101

00000011
00010000
00001011

00000011
00001000
00010110

rdividend
rdivisor
‘result

rdividend
rdivisor
‘result

rdividend
rdivisor
‘result

rdividend
rdivisor
‘result

rdividend
rdivisor
‘result

rdividend
rdivisor
‘result

Register "B” is zero at this point. The remainder is already in R1/RO, and it is 3
decimal, same as above. The result is still in R5/R4, but we can see it’s correct,
too (10110b=22d). To finish the routine, we just “clean up” by moving R5/R4 to R3/R2.

Step 3. Final Clean—up.

MO E3, 05h
MO REZ2, 0dh

:Mowe result to E3/RZ2
:Mowe result to E3/RZ2

We used small numbers here for easier explanation. Of course it works also with 16-bit

numbers, that’s what it was designed to do.

Taken as a whole, the above division algorithm can be converted into an easy—to—use
function that can be called from your program. To call this function, you should
pre-load R1/RO with the high/low value to be divided, and R3/R2 with the high/low

value that the number is to be divided by.

http://blog.ednchina.com/acxc44/

diwvig 16:

CLE
MOV
MOV
MOV
diwl:
INC
MOV

MOV
MOV
MOV

C

Fd. #00h
F3. #00h
B, #00h

E
I
A

T
! A R3

FE3. 4
divi

! A; R3

F2. 4

B2, 4

C

O7h, E1
06h, RO
A, RO

SUEE A, R2

MOV
MOV

RO, A
ARl

SUEE A, R3

MOV
JwC
MOV
MOV
div3:
EPL
MOV
ELC
MOV
MOV
FLC
MOV

DINI B, divZ2 :Now count backwards and repeat until

MOV
MOV
RET

Ei, A
diva
Ei, O0Th
RO, O6h

L
A, R4
A
Fd. &
A, RS
A
F3. &

E3, 0Sh
F2, 04h

:Clear carry initiallsy

:Clear Rd working warisble initially

;CLear K3 working variable initially

;:Clear B since B will count the number of left—shifted bits

;Increment counter for each left shift

:Move the current divisor low byte into the accumulator

:Bhift low byte left, rotate through carry to apply highest bit to high—brvte
:Save the updated divisocr low brte

:Move the curzent divisor high brte into the accumulator

;Shift high—brvte left high, rotating in carry from low bryte
:Save the updated divisor high—brte

:Repeat until carry flag is set from high-brte

:5hift right the diwvisor

:Move high-brvte of divisor into accumulator

:Fotate high~byte of diwvisecr right and intec carxy

:Save updated walue of high~brte of divisor

‘Move lowbryte of divisor into accusmlator

:Fotate lowbryte of diwvisor right, with carry from high—brte
:Save updated walue of low brte of divisor

:Clear carrr., we don t need it anymore

:Make a safe copr of the dividend high-brte

:Make 3 safe copy of the dividend lowbrte

:Mpve lewbrte of dividend inteo accumulator

:Dividend — shifted divisor = result bit {no factor, only O or 1)
:Save updated dividend

:Move high—~bvte of dividend into accumulator

:Subtract hish—brte of diwvisor (all together 16-bit subetraction)
:Save updated high-byte back in high—bryte of divisor

:If carry flap is MOT set, Tesult is 1

:Otherwige result is 0, save copy of diwisor to unde subtracticn

:Invert carry; o it can be directly copied into result

;Ehift carry flag into temporary result

*

B" it zero
Move result to RE,-"RZ
‘Move result to R3/R2

http://blog.ednchina.com/acxc44/

	Introduction
	16-Bit Addition
	16-Bit Subtraction
	16-Bit Multiplication
	16-Bit Division

