PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

V2.0

SRSO07HDL

@ MOTOROLA

Verilog HDL Coding
Semiconductor Reuse Standard

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design.
Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does
it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain
life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and B are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 1999

Revision History

Semiconductor Reuse Standard

Version Number Date Author Summary of Changes
1.0 29 JAN 1999 SoCDT Original
Revision based on SRS development process.
L1 08 MAR 1999 SoCDT Detailed history contained in DWG records.
20 06 DEC 1999 SoCDT Revision based on SRS development process.

Detailed history contained in DWG records.

@ MOTOROLA

Version 2.0 10 DEC 1999

7-3

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

Semiconductor Reuse Standard

d3d NI .AdOD d3TTOHLINOD. A3ddAVLS NIHM 1Ld3OX3 dITT0HLNODNN FHV SNOISHIN d3LNIdd

@ MOTOROLA

Version 2.0 10 DEC 1999

7-4

Semiconductor Reuse Standard

Table of Contents

Section 7 Verilog HDL Coding

7.1 INtrodUCHION.
7.2 Reference Information
7.2.1 Documented References
7.2.2 Terminologyo
7.3 Naming ConVENLIONSottt
7.3.1 File Naming
7.3.2 Naming of HDL Code Items oot e
7.4 COMMENTS . .ot e e e e
7.4.1 File Headers.
7.4.2 Additional Construct Headers i
7.4.3 Other CommENtS
7.5 Code Style . ..
7.6 Module Partitioning & Reusability.
7.7 Modeling Complex Behavior.
7.8 General Coding TeChNIQUES. i e
7.9 Standards for Structured Test Techniques
7.10 General Standards for Synthesis

Appendix A
Al Example Header Files

@ MOTOROLA Version 2.0 10 DEC 1999

7-5

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

Semiconductor Reuse Standard

d3d NI .AdOD d3TTOHLINOD. A3ddAVLS NIHM 1Ld3OX3 dITT0HLNODNN FHV SNOISHIN d3LNIdd

@ MOTOROLA

Version 2.0 10 DEC 1999

7-6

Semiconductor Reuse Standard

List of Figures

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6

@ MOTOROLA

Verilog File Header 7-14
Verilog Functions, User-defined Primitives and Tasks Header 7-16
Verilog Coding Format. 7-20
Clock Domain Partitioning oo 7-22
Partition ASynchronous Logic i 7-23
Scan Support for Mixed Latch/Flip-Flop Designs 7-27

Version 2.0 10 DEC 1999 7-7

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

Semiconductor Reuse Standard

d3d NI .AdOD d3TTOHLINOD. A3ddAVLS NIHM 1Ld3OX3 dITT0HLNODNN FHV SNOISHIN d3LNIdd

@ MOTOROLA

Version 2.0 10 DEC 1999

7-8

Semiconductor Reuse Standard

Section 7 Verilog HDL Coding

7.1 Introduction

The general coding standards pertain to |P/V C generation and deal with naming conventions,
documentation of the code and the format, or style, of the code. Conformity to these standards simplifies
reuse by describing insight that is absent from the code, making the code more readable and assuring
compatibility with most tools. Any exceptionsto the rules specified in this standard, except as noted, must
be justified and documented.

The methodology standards promote reuse by ensuring a high adaptability among applications. The intent
of this document isto ensure that the gate level implementation isidentical to the HDL code asit is
understood by a standard Verilog simulator. Partitioning can affect the ease with which a model can be
adapted to an application. The modeling complex behavior section deals with structures that are typically
difficult to address well in a synthesis environment and are needed to ensure pre- and post-synthesis
consistency. These standards apply to behavioral as well as synthesizable code.

These Verilog-centric standards were devel oped after an analysis of the M otorola design community, and
are heavily based on the existing Module Board coding guidelines. However, several other sources were
also considered, including VSIA, M-CORE, and Star12.

7.2 Reference Information

7.2.1 Documented References

[1] Reuse Methodology Manual for System-on-a-Chip Designs, M. Keating, P. Bricaud, Kluwer
Academic Publishers, 2nd Edition, 1999.

7.2.2 Terminology

HDL : Hardware Description Language
MTBF: Mean Time Between Failures
PLL: Phase Locked Loop

RTL: Register Transfer Level

7.3 Naming Conventions

7.3.1 File Naming
RULE 7.3.1 One design unit per file

A filemust not contain more than one design unit. Everything contained in adesign unit must be completely containedina
single module/endmodul e construct.

(M) moToroLA Version 2.0 10 DEC 1999 7-9

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

reason: Simplifiesdesign modifications.

RULE 7.3.2 File naming conventions
Thefile name must be composed in the following way:
<design unit name>.<ext>
where:
<design unit name> isthe name of the design unit (i.e., module name).
<ext> signifiesthatitisaVerilogfile:
.v Verilogfile
.va Verilog-AMSfile
. v. mpp MotorolaPre-processor file

reason: Simplifiesunderstanding the design structure, and file contents.
example: spooler.v Synthesizable Verilog code for modul e spooler
note: Refer tothelP Block Deliverables section for model naming conventions,

RULE 7.3.3 Analog and digital Verilog files

Anindividual filemust contain: (1) only analog Verilog (withthe. va file extension); or (2) only digital Verilog (withthe
. v fileextension; or (3) only explicit mixed analog/digital Verilog (withthe. va file extension).

reason: Analog compilersmay not handledigital constructs, and viceversa.

7.3.2 Naming of HDL Code Items

A meaningful name very often helps more than several lines of comment. Therefore, names should be
meaningful (i.e., the nature and purpose of the object it refers to should be obvious and unambiguous).

RULE 7.3.4 Allowable character set

Names must be composed of a phanumeric charactersor underscores[A-Z, a-z, 0-9,] (seeRULE 7.3.5).
exception; Consecutive underscoresare not allowed.

reason: Doubleunderscoreswill not work with hardware emulation (Quickturn)

RULE 7.3.5 First character of a name
Names must start with aletter, not anumber or underscore (see RULE 7.3.4).
reason: Names starting with anumber or underscore may cause conflictswithtools.

RULE 7.3.6 All names must be unique irrespective of case
Casemust not be used to differentiate cell names or signals.

reason: Use of sometools may not be ableto differentiate on the basis of case. Moving designs between Verilog (case

sensitive) to VHDL (caseinsensitive) isfacilitated by acaseinsensitive design style.

RULE 7.3.7 Consistent use of signal names

Consistent usagein the spelling and naming style of signalsand variables must be used. Thisincludes case and naming
conventions.

reason:; In contrast to VHDL, Verilog aswell as sometools supporting VHDL design are case sensitive. Immediate
identification of signal types(e.g., activelow signalsor clocks) eases debug.

RULE 7.3.8 Constant, parameter and block label are upper case
Consistent upper case spelling of parameter and constant names must be used. Therefore, all |etters must be upper casefor:
e constants

7-10 Version 2.0 10 DEC 1999 (M) moToroLa

Semiconductor Reuse Standard

+ parameters

* block labels
reason: Provides amechanism to identify objectsthat do not go through data changes during simulation.

RULE 7.3.9 Signal, constructs and instance labels are lower case

Consistent lower case spelling of signal and construct names, and instance labelsmust be used. Therefore, all letters must
belower casefor:

* dignals
+ constructs

e andinstance labels

reason: Differentiates signalsand constructs from objectsthat do not change data during simulation, and maintainsa
consistent ook and feel between designs.

RULE 7.3.10 Meaningful signal and variable names
Thelower-case name must contain the purpose of the variable/signal .
reason: Description of what not how aidsin understanding the design.
example: data_bus, set _priority

RULE 7.3.11 Meaningful constant names

A constant name must describe the purpose of the constant. The type of the constant must be obvious by the purposeandis
not part of the name. Constants are upper-case.

reason: M eaningful names are particularly important for constants.
example: Good naming: SBUS_DATA BI TS, MEMORY_W DTH, CLK_PERI CD
example; Bad naming: ADDRESS_SI ZEisnot clear if it refersto the number of bitsor the size of the address space.

RULE 7.3.12 Meaningful construct names

Construct names such asfunctions, modul es, tasks, etc. must be named according to what they do rather than how they doiit.
Construct namesare lower case.

reason: Description of what, not how, aidsin understanding the design. How can be seen from the code, what may not
beimmediately obvious.)

RULE 7.3.13 Meaningful instance labels

I nstance | abel s must be named according to what task is carried out by the construct, not according to how it isdone.
Instance labelsarelower case.

reason: Description of what, not how, aidsin understanding the design.
example: addr _decode, bit_stuff, sbus_ if

RULE 7.3.14 Underscore separate names composed of several words

For names composed of several words, underscore separated lower case letters must be used. Also seeRULE 7.3.4, RULE
7.3.5,RULE 7.3.6,andRULE 7.3.7.

reason: Improvesreadability.
example: ram addr

RULE 7.3.15 Active low signal names use _b

Whereasignal usesactivelow polarity, it must usethe suffix _b.

reason: Meaningful, consistent namesaid in understanding the design.
example: enabl e _data b, reset b

(M) moToroLA Version 2.0 10 DEC 1999 7-11

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

RULE 7.3.16 Clock signal names use _clk

Signalsthat are used for clocking that do not havetheword clock or clk aready intheir names must use the suffix _clk.
reason: Meaningful, consistent namesaid in understanding the design.

example: fifo transmit _clk

exception: Signalswhose names obvioudly indicate clocks (i.e., system_clock or clk32m).

RULE 7.3.17 Unconnected output signals use _nc

Unused modul e outputs must use asignal name with the suffix _nc (nc: not connected).

reason: When warnings about unconnected signal s appear, if the nameendsin _nc, itisobvousthat thesignal is
known to be unconnected and not an error.

RULE 7.3.18 Signal bundling

Unrelated signals must not be bundled into buses.

reason: Eases understanding of the module.

GUIDELINE 7.3.19 Three-state signal names use _z
Itisrecommended that Tri-state signalsusethe suffix _z.

reason: Meaningful, consistent names aid in understanding the design.
example: ramdatal z

GUIDELINE 7.3.20 State machine sighal names use _next
Itisrecommended that state machine next state signals use the suffix _next.
reason: Meaningful, consistent names aid in understanding the design.
example: transmt_next

GUIDELINE 7.3.21 Test mode signal names use _test
Itisrecommended that test mode signals usethe suffix _test.

reason: Meaningful, consistent names aid in understanding the design.
example: paral l el clk test

GUIDELINE 7.3.22 Scan enable signal names use _se
Itisrecommended that scan enable signalsusethe suffix _se.
reason: Meaningful, consistent namesaid in understanding the design.

GUIDELINE 7.3.23 Analog signal names use _ana

Itisrecommended that anal og signal s use the suffix _ana.

reason: Aidsin understanding the design when anal og signals are differentiated. Especially useful whenusinga
graphical viewer.

GUIDELINE 7.3.24 Multiple suffix signal name priority

For signalsthat may contain multiple suffixes, thefollowing priority, from highest to lowest, isrecommended:
1 b

2. 7z
3. ck
4. next

The highest priority suffix isrecommended to bethelast suffix tothesignal.
example: ramdatal z b, receive clk b

7-12 Version 2.0 10 DEC 1999 (M) moToroLa

Semiconductor Reuse Standard

GUIDELINE 7.3.25 Parameterized variable names use PP

Itisrecommended that parameterized variablesusethe suffix _PP. Thisisapplicableto parametersthat may changefrom
one design to the next, as opposed to enumerated parameters. This enablesthe user to easily determinewhich signalsare
parameterized.

reason: Meaningful, consistent names aid in understanding the design.
example; NUM COLUWNS_PP.

GUIDELINE 7.3.26 Signal name lengths less than 28 characters

Itisrecommended that signal name length not exceed 28 characters. Shorter namesincreasereadability. The 28 characters
doesnot include the hierarchy.

reason: Longer name lengths may cause conflictswith tools.

GUIDELINE 7.3.27 Avoid abbreviations except for commonly known acronyms

Itisrecommended that abbreviations, especially abbreviationswith only oneletter, be avoided unlessit isacommonly
known acronym.

reason: Use of meaningful names.

exception: Generally known abbreviations or acronyms, like RAM, and loop counters. Loop counters may be named
withasingleletter likel or N, becausethey represent anindex. Some back end tools concatenate all
hierarchy namesand put alimit on thetotal namelength. In that case abbreviations might be required for
hierarchy names. The abbreviations must be explained in acomment.

GUIDELINE 7.3.28 Document abbreviations and additional naming conventions

It isrecommended that any abbreviations used in the modul e be documented. Any naming conventions used in the module
that arein addition to the conventions required or recommended in the SRS should be documented.

reason: What may be an obvious abbreviation to the original designer could be obscure when the moduleisreused.

GUIDELINE 7.3.29 Consistent names throughout the hierarchy

Itisrecommended that signal or design unit names remain the same throughout the hierarchy of the entire | P. Names
associated with multipleinstances are recommended to have the nameindexed by an integer.

reason: Improvesreadability, removes confusion, avoids buffer insertion during synthesis.

GUIDELINE 7.3.30 Verilog names are equivalent to documentation names

All signalsand blocksinthe Verilog RTL that are referenced in the documentation are recommended to maintain the same
name asin the documentation.

reason: Simplifiesunderstanding of an HDL model.

7.4 Comments

Comments are required to describe the functionality of adesign unit. In particular, comments must supply
context information that is not seen locally.

7.4.1 File Headers

Figure 7-1 shows the standard file headers to be used for Verilog files. Thistemplate format assures
consistency.

RULE 7.4.1 Each file must contain a file header

Every file must contain aheader asshowninFigure 7-1. All fieldsmust beincluded, evenif the dataisN/A.
reason: Provides astandard means of supplying pertinent design information.

(M) moToroLA Version 2.0 10 DEC 1999 7-13

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

RULE 7.4.2 Include file name
The header must include the name of thefile.
reason: Providesan easy way to determinewhat afile contains.

RULE 7.4.3 Include file construct type

The header must includethe highest level construct contained inthefile.
reason: Provides an easy way to determinewhat afile contains.
example: nodul e, macronodul e

RULE 7.4.4 Include point of contact information
Every file header must include the originating department, author, and author’ semail address.
reason: Required for inquiries beyond the scope of the documentation for the design.

RULE 7.4.5 Include arelease history

Header must include rel ease history only for the I P changes checked into the Repository. Thisinformationisuseful tothe
integrator. Local rel ease history should not beincluded in the header.

reason: Required to track the revision history of the design.

AR o o B R e e
/1 Copyright (c) 1999, Mdtorol a.

/1 Mdtorola Confidential Proprietary

e e e
/'l FILE NAME :

/1 TYPE : TYPE can be nodul e, macronodul e

/| DEPARTMENT :

/1 AUTHOR :

/1 AUTHOR' S EMAIL :

e e e
/! Rel ease history

/1 VERSI ON Dat e AUTHOR DESCRI PTI ON

// 1.0 6 Cct 98 nane

e e e
/1 KEYWORDS . General file searching keywords, |eave blank if none.

e e e
/1 PURPCSE : Short description of functionality

R R e
/| PARAMETERS

/1 PARAM NAME RANGE : DESCRI PTI ON : DEFAULT : VA UNITS

/1 e.g. DATA WDTH PP [32, 16] . width of the data : 32 :

e e e

/| REUSE | SSUES

/1 Reset Strategy
/1 Cl ock Domai ns

/1 Critical Timng
/1 Test Features

/1 Asynchronous |/ F
/1 Scan Met hodol ogy

I/ I nstantiations
I/ O her :
R 1 B R e e TR

Figure 7-1 Verilog File Header

7-14 Version 2.0 10 DEC 1999 @ MOTOROLA

Semiconductor Reuse Standard

RULE 7.4.6 Include a keyword section

The header must contain a section of the searching keywords. Thisstring may contain afew word synopsis of themodule's
functionality, or list systemsand busesthat the modul e was designed to work with.

reason: Keywords provide aquick searching mechanism and aid the I Pintegrator in the appropriate sel ection of
blocks. If there are no keywords, the entry should beleft blank.

example: addr ess decoder, col dfire, sbus

RULE 7.4.7 Include a purpose section

The header must contain a purpose section describing the modules functionality. The purpose must describe what the unit
providesand not how.

reason: Aidsunderstanding of module functionality.

RULE 7.4.8 Include a parameter description

Headers must contain information describing the parameters being used in the construct. The default value must belisted.
For Verilog-AM Sfiles, the units of the parameter must also belisted.

reason: Aidsunderstanding of HDL code.

RULE 7.4.9 Document the reset strategy

Thereset strategy must be documented, including whether the reset is synchronous or asynchronous, internal or external
power-on reset, hard versus soft reset, and whether the moduleisindividually resettable for debug purposes.

reason: Improvesreadability of the code, and highlightstest and synthesis stepsthat must be taken.

RULE 7.4.10 Document the clock domains

The number of clock domains and clocking strategies must be documented.

reason: Documenting internally generated clocks, or divided down clocks all ows better understanding of the code and
clocking schemes.

RULE 7.4.11 Document the critical timing

Critical timing including external timing relationships must be documented.

reason: The setup-hold and output timing rel ationships highlight the test and synthesis stepsthat must be taken.

RULE 7.4.12 Test features

Any specific test featuresthat are added to the code to speed up testing must be documented.
reason: Improvestheability to understand and test the code once the block isintegrated.
example: paral I el cl ocking

RULE 7.4.13 Detail asynchronous interfaces

The asynchronousinterfaces must be described including the timing rel ati onships and frequency.

reason: Aidsunderstanding of the design, and hel psdetermineif additional synchronization stages are needed for a
retargeted application.

RULE 7.4.14 Scan methodology

Notation must be used to indicate what scan styleisused.

reason: Aidsintegration of the design.

example: Mux-D or LSSD

RULE 7.4.15 Document instantiations

Cdll and construct instantiations must be listed (see RULE 7.4.27).
reason: Indicates areas that must be addressed for technology retarget, and ai ds understanding of the design hierarchy.

(M) moToroLA Version 2.0 10 DEC 1999 7-15

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

RULE 7.4.16 Use file header boundary tags (+FHDR & -FHDR)
The +FHDR/-FHDR tags must be used to define the boundary of the header information.
reason: Easy way toidentify the header. Indicatesthat the header isafile header.

GUIDELINE 7.4.17 Other header documentation

Itisrecommended that header include additional pertinent information that isuseful to theintegrator or that makes code
more understandable.

reason: Aidsinunderstanding thedesign

7.4.2 Additional Construct Headers

Each additional construct within files will also be documented with the following header. The format of
the header must match the figure to ensure the ability to parse the header with a software tool. The
capitalized keywords in the headers may be used as search points for types of information. This template
format assuresconsistency. Figure 7-2 containsthe header for Verilog functions, user-defined primitives,
and tasks.

A D S B e
/] NAME :

/1 TYPE :TYPE can be func, task, primtive

e i i
/1 PURPOSE . Short description of functionality

R R R LR
/1 1 NSTANTI ATES . Leave blank if none.

I e e
/| PARAMETERS

I PARAM NAME RANGE : DESCRI PTI ON : DEFAULT : VA UNITS

/!l e.g. DATA WDTH PP [32,16] : width of the data : 32 :

I e e R
/1 O her . Leave blank if none.

N s D S R R L T R R R

Figure 7-2 Verilog Functions, User-defined Primitives and Tasks Header

RULE 7.4.18 Additional constructs in file use a header

All of theadditional constructsused in afilemust be documented with aheader asillustrated (seeFigure 7-2). All fields
must beincluded, evenif the dataisN/A.

reason: Provides astandard means of supplying pertinent design information.

RULE 7.4.19 Include construct name
The header must include the name of the additional construct.
reason: Providesan easy way to determinewhat afile contains.

RULE 7.4.20 Include construct type
Header must includethe construct type.
reason: Provides an easy way to determinewhat afile contains.

7-16 Version 2.0 10 DEC 1999 (M) moToroLa

Semiconductor Reuse Standard

RULE 7.4.21 Include a purpose section

Header must contain a purpose section describing the construct functionality. The purpose must describe what the unit
providesand not how.

reason: Aidsunderstanding of construct functionality.

RULE 7.4.22 Include an instantiation list

Headers must contain information detailing what constructs areinstantiated withinit. Thisincludes modules, tasks, primi-
tives, and functions.

reason: Aidsunderstanding of HDL code dependencies, and achieves compl eteness.

RULE 7.4.23 Include a parameter description

Headers must contain information describing the parameters being used in the construct. The default value must belisted.
For Verilog-AM Sfiles, the units of the parameter must also belisted.

reason: Aidsunderstanding of HDL code.

RULE 7.4.24 Construct header boundary tags (+HDR & -HDR)
The +HDR/-HDR tags must be used to define the boundary of the header information.
reason: Easy way toidentify the header. Indicatesthat the header isaconstruct header.

GUIDELINE 7.4.25 Other header documentation

Itisrecommended that header include additional pertinent information that isuseful to theintegrator or that makes code
more understandable.

reason: Aidsinunderstanding thedesign

7.4.3 Other Comments

RULE 7.4.26 Section comments
Each functional section of the code must be preceded by comments describing the code’ sintent and function.
reason: Aidsunderstanding of the code.

RULE 7.4.27 Cell instantiation

A comment must be used to explain the functionality of any instantiated cellsand why thiscell isinstantiated and not
synthesized. Thesecellscanbefrom alibrary, not modeledin an HDL languagelike Verilog, cellswith hidden function-
ality, or custom implemented cells. For custom instantiation, indicate if the custom codeis synthesizable. See RULE
7.4.15and GUIDELINE 7.10.29.

reason: Instantiated cellslimit the technological portability of adesign. These cellscan aso havetheir functionality
hidden. Improvesthe ability to understand the code.

exception: Not applicableto non-synthesizable blocks (e.g., Bus Functional Models, BusMonitorsor Analog Behavioral
Models) unlessthey areintended to be synthesized for emulation.

RULE 7.4.28 Document unusual or non-obvious implementations

Unusual or non-obviousimplementations must be explained and their limitati ons documented with acomment.

reason: Improvesreadability of the code. Purpose and implications of unusual or non-obviousimplementationswill,
ingeneral require an explanation.

RULE 7.4.29 List compiler directives

Compiler directives such as ' ifdef must belisted and their usage described.

reason: Improves understanding and portability of the code.

GUIDELINE 7.4.30 Comment end statements

(M) moToroLA Version 2.0 10 DEC 1999 7-17

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

Itisrecommended that every end have acomment telling what construct it ends.
reason: Improvesreadability. Easier toidentify the bounds of aconstruct.

GUIDELINE 7.4.31 Use comments liberally

Itisrecommended that comments be used liberally throughout the code to describe functionality, design process, and
specia handling.

reason: Improves understanding of the code.

GUIDELINE 7.4.32 ‘else, ‘ifdef should be commented

The opening ‘ifdef declaration should have acomment including the name of the defined item.

7-18 Version 2.0 10 DEC 1999 (M) moToroLa

Semiconductor Reuse Standard

7.5 Code Style

Figure 7-3 isan example of good Verilog code format.

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

e

Copyright (c) 1999, Mbdtorol a.
Mot orol a Confidential Proprietary

FILE NAME : prescaler.v

TYPE : nodul e

DEPARTMENT : SoCDT foundry, Austin TX
AUTHOR : M ke Kentl ey

AUTHOR S EMAIL : r6476c@nmail . sps. not. com

Rel ease history

VERS| ON Dat e AUTHOR DESCRI PTI ON

1.0 12 Sep tomyk initial version

2.0 Nov 98 nkentl ey Updated for SRS conpatibility

2.1 Ot 99 mark | ancaster C eaned up prescal er bypass.
Added comments in header.

KEYWORDS . clock divider, divide by 16

REUSE | SSUES
Reset Strategy : Asynchronous, active |ow system|evel reset
Cl ock Dommins : systemclock, clock_in
Critical Timng : NA
Test Features : Prescal er is bypassed when scan_node is asserted
Asynchronous |/F : reset_b
Scan Met hodol ogy : Mix-D
Instantiations : NA
O her : uses synthesis directive to infer a mux to
avoi d glitching clock_out and clock_out_b

B

nmodul e prescal er(

cl ock_out, clock_out _b,
clock_in, system cl ock,
scan_node, reset_b

),

out put clock_out; // input clock divided by 16
out put clock_out_b; // input clock divided by 16 and inverted

input clock_in; // 32 Mz clock

i nput systemclock; // system clock

i nput scan_node; // scan node cl ock

i nput reset_b; // active low hard reset, synch w system cl ock

reg [3:0] count; // counter to make clock divider
reg clock out; // input clock divided by 16
reg clock out_b; // input clock divided by 16 and inverted

@ MOTOROLA Version 2.0 10 DEC 1999

7-19

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

/!l 4-bit counter;

if (!reset_b)

// that the nmux will not

/] result

1'b0 : begin

cl ock_out

cl ock_out _b
end // normal
begi n

cl ock_out

cl ock_out _b

1'bl :

endnodul e // prescal er

count [3]
al ways @ posedge clock_in or negedge reset_b)

count <= 4’ b0000; // reset counter
else if (count == 4’'bl1111)
count <= 4’ b0000; // roll the counter over
el se
count <= count + 4'b0001; // increnent counter
/1 Bypass the prescaler during scan testing. |t guarantees

be optim zed away whi ch coul d
inaglitchy test clock.

/1 Al'so make sure that the clock_out and clock _out_b are active
/1 high clocks during scan testing.
/1 connected to clock_out and clock_out_b are all
/1 edge of the systemclock for test purposes.

al ways @ scan_node or systemclock or count)
case (scan_node) //insert appropriate synthesis mux inference
/ldirective here

operation clock assign

end // scan node cl ock assign
endcase // scan_node_cl ock

is the divide by 16

This ensures that flops

on the rising

count [3];
Icount[3];

syst em cl ock;
syst em cl ock;

RULE 7.5.1

Figure 7-3 Verilog Coding Format

Write code in atabular format

Code must bewrittenin atabular manner (i.e., codeitems of the samekind are aligned).

reason:

Improvesreadability. When writing ablock (begin, case, if statementsetc.), it isuseful to completetheframe

first, in particular to put the end of the block down with the correct indentation.

RULE 7.5.2

Use two to four space code indentation

A constant indentation of two to four spaces must be used for code alignment. Do not use tab stops. Use spaces and empty
linesto increase the readability of the code. Thetab key of the text editor may be mapped toinsert spaces.

Improvesreadability. Tab stops must not be used becausethey arerepresented differently from one system to

One Verilog statement per line

Oneline must not contain more than one statement. Do not concatenate multiple semicolon separated V erilog statement on

reason:
another.
RULE 7.5.3
thesameline.
reason:
example: use:
upper _en
| ower _en
do not use;
upper_en
7-20

Improvesreadability. Easier to parse codewith adesign tool.

(p5type && xadrl1[0]);
(p5type && !xadr1[0]);
(p5type && xadr1[0]);

| ower_en = (p5Stype && !xadrl[0]);

Version 2.0 10 DEC 1999 @ MOTOROLA

Semiconductor Reuse Standard

exception: Commentsare alowed onthe samelineasaVerilog statement.

RULE 7.5.4 Use one line comments

Oneline comments (//) must be used. Do not use multi-line (/*...*/) comments.
reason: Improvesreadability and improves code parsing.

RULE 7.5.5 Explicitly indicate port type
Explicit port typing indication must be used. One port per line must be declared.
reason: Improvesreadability and understanding of the code, aswell as parsing the code with scripts.

example: use:
i nput a;
i nput b;
do not use:
i nput a, b;
i nput a,
b;
GUIDELINE 7.5.6 Keep line length less than 80
Itisrecommended that line length does not exceed 80 characters.
reason: Improvesreadability, and avoidsinadvertent line wraps.

GUIDELINE 7.5.7 Port declaration order
Itisrecommended that ports be declared inthe same order asinthe port list.
reason: Improvesreadability

GUIDELINE 7.5.8 Comment port listings
Itisrecommended that a descriptive comment follow each port listing, preferably onthe sameline.
reason: Improvesreadability.

7.6 Module Partitioning & Reusability

RULE 7.6.1 Powered down signals

Aninput pinthat isdriven from asource whose power supply can be powered down must either belogically gatedtoit’'s
inactivelevel, using anand gate or anor gate or handled by thelibrary. Theinput must be controlled so that when the source
signal’ s power supply is powered down theinput isin aknown state.

reason: Avoid propagating unknownsinto the block when the signal sourceispowered down.

RULE 7.6.2 No accesses to variable/signals outside the scope of a module

Procedures, tasks, and functions must not modify signalsor variables not passed as parametersinto themodule. Verilog
users must not use ahierarchical signal referenceto read or modify asignal.

reason: Increases readability, and eases debugging. Improves adaptability and reuse of sub-blocks of the design.
exception: Non-circuit purposes, for example behavioral modeling and testbenches.

RULE 7.6.3 ‘include statements are not allowed

‘include statements must not be used.

reason: Ease portability by avoiding explicit path names.

exception: Model wrappers around memory structures. Not applicable to non-synthesizabl e blocks (e.g., Bus Functional

Models, Bus Monitorsor Analog Behavioral Models) unlessthey areintended to be synthesized for
emulation. Not applicableto the Verilog-AM Sdisciplines.h and constants.h files. See RULE 7.6.4.

(M) moToroLA Version 2.0 10 DEC 1999 7-21

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

RULE 7.6.4 Standard discipline and constants files are to be used in Verilog-AMS files
Standard Verilog-AM S header filesmust be used. Thesefilesaredefinedin A.1 Example Header Files.
reason: Consistent definitions of natures and disciplines eases portability.

RULE 7.6.5 Simulation tasks are not allowed

No waves, checkers, force statements or other simulation rel ated tasks are allowed inthe HDL.
reason: Eases understanding and portability.

RULE 7.6.6 Mask plug usage
Mask plugs must be placed outside of the topmost module.
reason: Re-synthesiswill not be required for base changes.

GUIDELINE 7.6.7 Partition clocks into separate block

If you must use agated clock, internally generated clocks, or use both edges of aclock, the clock generation circuitry must
be kept in aseparate module at thetop level of thelP moduleor at the samelogical level inthe hierarchy astheblock to
which the clocksapply.

reason: Easestest strategy generation, and limits exceptionsto the coding standardsto asmall module. It also
improvesthe portability of the codeto adifferent end use clocking scheme.

exception: Not applicableto non-synthesizable blocks (e.g., Bus Functional Models, Bus Monitorsor Analog Behavioral
Models) unlessthey areintended to be synthesized for emulation.
GUIDELINE 7.6.8 Partition clock domains

Itisrecommended that separate clock domains be partitioned into separate blocks, asshownin Figure 7-4. The synchroni-
zationlogic between the two domainsis recommended to al so be partitioned into a separate block.

reason: Easessynthesis. Avoidsover-constraining one clock domain.
fast slow
clock |—3 «—»| clock
logic logic

Figure 7-4 Clock Domain Partitioning

GUIDELINE 7.6.9 Minimize interface signals
Itisrecommended that the design be partitioned in away to minimize theinterface signals.
reason: Reducesthe size of aninterface boundary.

GUIDELINE 7.6.10 Match physical and logical boundaries

Itisrecommended that the design be partitioned such that the modul e boundaries match the physical boundaries. Refer to
Physical Standards section.

reason: Improves adaptability to different applications. Simplifies understanding and debugging.
GUIDELINE 7.6.11 Register all module outputs
Itisrecommended that all modul e outputs be registered.

reason:; Simplifiesthetiming interfaceto other modul es and the synthesis process.

exception: Not applicableto non-synthesizable modules (e.g., Bus Functional Models, BusMonitorsor Analog
Behavioral Models) unlessthey areintended to be synthesized for emulation.

GUIDELINE 7.6.12 Partition application specific code from general

7-22 Version 2.0 10 DEC 1999 (M) moToroLa

Semiconductor Reuse Standard

Itisrecommended that the application specific (e.g, businterface) parts of the code be partitioned from the more general
portion of the code.

reason: Improves Adaptability to different applications.

GUIDELINE 7.6.13 Partition speed critical logic
Itisrecommended that speed critical logic be partitioned into its own block.
reason: Avoids synthesi s problems and eases constraints and scripting.

exception: Not applicableto non-synthesizable blocks (e.g., Bus Functional Models, Bus Monitorsor Analog Behavioral
Models) unlessthey areintended to be synthesized for emulation.

GUIDELINE 7.6.14 Partition random logic
Itisrecommended that random logi ¢ be partitioned from data path logic.
reason: Avoids synthesi s problems and eases constraints and scripting.

exception: Not applicableto non-synthesizable blocks (e.g., Bus Functional Models, Bus Monitorsor Analog Behavioral
Models) unlessthey areintended to be synthesized for emulation.

GUIDELINE 7.6.15 Partition asynchronous logic
Itisrecommended that asynchronous | ogic be partitioned from synchronouslogic.

reason: Avoids synthesis problems and eases constraints and scripting.

exception: Not applicableto non-synthesizable blocks (e.g., Bus Functional Models, Bus Monitorsor Analog Behavioral
Models) unlessthey areintended to be synthesized for emulation.

asynchronous synchronization synchronous
logic logic logic

Figure 7-5 Partition Asynchronous Logic

GUIDELINE 7.6.16 Partition state machines

Itisrecommended that the FSM s be coded into their own block. Separate the state machine codeinto two processes, onefor
the combinational logic and onefor the sequential logic.

reason: Avoids synthesi s problems and eases constraints and scripting.
GUIDELINE 7.6.17 Do not mix structural and behavioral RTL code within a construct

Itisrecommended that the model partitioning isolate the structural code from the behavioral RTL code. Each construct
must be either purely structural or purely behavioral RTL. Structural codeisaline of code containing only connectivity
information.

reason: This canresult in synthesis problems and limitations.

GUIDELINE 7.6.18 Partition BIST
Itisrecommended that any BIST logic be coded into its own block.
reason: Eases understanding, portability, and constraints.

7.7 Modeling Complex Behavior

RULE 7.7.1 Global distribution nets

(M) moToroLA Version 2.0 10 DEC 1999 7-23

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

Buffering all global distribution nets on the chip (e.g., clock or scan_enable) must be based on net load and placement. Do
not hard code buffer treesinthe RTL.

reason: Buffering global netswithout considering net load and placement (i.e., based solely on connectivity informa-
tion) may result in serioustiming problems.

exception: Not applicableto non-synthesizable blocks (e.g., Bus Functional Models, Bus Monitorsor Analog Behavioral
Models) unlessthey areintended to be synthesized for emulation. Not applicabl eto logic whose timing and/or
sizing specification constrai nts cannot be met with synthesis.

RULE 7.7.2 Synchronize asynchronous interface signals

If clocksareavailable, asynchronousinterface signals must be synchronized as near to the interface boundary aspossible.
Synchronization must be performed to avoi d metastability (e.g., use doubleregistering).

reason: Tolimit asynchronous signal sto aminimum (Asynchronous design practiceis not yet adequately supported
by design tools.). Doubl e registering avoids metastability hazards.

note: Pay particular attention to the interface where thereisafrequency difference. For example, alower frequency
clock domain cannot guaranteeto receive asignal of single period width from a higher frequency clock
domain. The higher frequency domain must supply signalswith thefollowing minimum active period:
tactive = tow * tsetup * thoia» Where:
toctive IS the minimum active period of ainterfacing signal
tyow iStheclock period of thereceiving clock domain that hasthelow frequency
tsetup ISthe setup time of thereceiving D-type flip-flop
thoig 1Sthehold timeof thereceiving D-typeflip-flop
tactive Must take into account the different propagation delay pathsfor theinterfacing signal. In addition skew
must be a so taken into consideration.
From probability theory, the mean time between the failure (MTBF) of the output to be resolved within some
timeisgivenby
MTBF = (1 ffy) e *-(t/1,)
where:
1, = thetime constant of resolution of thelatch
f. =thefrequency of the clock
fq=thefrequency of thedata
t; = thetime after the changein the clock by which the latch output must be resol ved

exception: Not applicableto non-synthesizable blocks (e.g., Bus Functional Models, Bus Monitorsor Analog Behavioral
Models) unlessthey areintended to be synthesized for emulation.
RULE 7.7.3 Use technology independent code for non-inferred blocks

A model of an instantiated non-inferred block (i.e., custom, not intended to be synthesized) must be written in atechnology
independent coding style.

reason: Allowseasy retargetability to anew processtechnol ogy or hardware emulation box.

RULE 7.7.4 Gated clock enables

If gated clocks are used there cannot be any glitches during the clocking time.

reason: Although gated clocks reduce power consumption, glitching can occur on the clocks dueto the clock enable
signal setup/hold to the active edge of the clock, causing faulty operation. Refer to GUIDELINE 7.6.7 and
RULE 10.7.29.

exception: Asynchronousinterfaces, but the timing must be strictly defined.

GUIDELINE 7.7.5 Document gated clock usage
Itisrecommended that gated clock usage be documented in the code.
reason: Easesunderstanding of the HDL .

GUIDELINE 7.7.6 Asynchronous inputs to aregister clock

7-24 Version 2.0 10 DEC 1999 @ MOTOROLA

Semiconductor Reuse Standard

Connecting asynchronousinputsto aregister clock should be avoided.

reason: To avoid metastability problems on the data being registered.
exception: Anasynchronous clock may be used to latch the asynchronous datainto a holding register whiletheclock is
being synchronized.

GUIDELINE 7.7.7 Reset all storage elements

Itisrecommended that all storage elementsin acontrol path beinitialized, asappropriate.

reason: For storage elementsthat are not reset, simulation results may be simulator dependent (Different simulators
assume different initial values, (i.e.,“0” or “X").

GUIDELINE 7.7.8 Use synchronous design practices

It isrecommended to follow synchronous design practice whenever possible. Asynchronousdesign circuitry should only be
used when unavoidable.

reason: Designtoolsdo not adequately support the devel opment of asynchronousdesigns. Reliabletiming verifica-
tion, including the detection of glitchesand hazards, will in general require extensive simulation with SPICE,
which isexpensive and time consuming.

exception: Not applicableto non-synthesizable blocks (e.g., Bus Functional Models, BusMonitorsor Analog Behavioral
Models) unlessthey areintended to be synthesized for emulation.

GUIDELINE 7.7.9 Document SR Latch Usage

Itisrecommended that SR latch usage be documented in the code.

reason: Ease understanding of the HDL .

7.8 General Coding Techniques

RULE 7.8.1 Expression in condition must be a 1-bit value.

Theconditioninani f, or orawhi | e statement must be an expression that resultsin al-bit value.

reason: Makesthe code easier to read.

example: A signal calledbus is activeisset to 1 whenever bus, amulti-bit value, hasavalue other than 0.

a)if (bus) bus_is_active = 1;

Inthisexamplebus isamulti-bit value.

b)if (bus > 0) bus_is_active = 1;

Herethe condition resultsin a1-bit expression, whichisintuitively easier to read.
RULE 7.8.2 Do not assign signals to x
Signals must not be assigned to x. Known legal signal valuesmust beassignedto all signals.
reason: Avoidsx propagation through thecircuitry.

RULE 7.8.3 Do not infer latches in functions
Latchesmust not beinferred in any function call
reason: Functions always synthesi ze to combinational logic.

GUIDELINE 7.8.4 Operand sizes should match
The operands of an operation are not recommended to differ insize.

reason: With different operand sizesthe operand is not explicitly defined, but depends on how Verilog resolvesthe
sizedifferences. Verilog allowsthissinceit isnot ahighly typed language.

examplee wire [63: 0] sone_signal;

(M) moToroLA Version 2.0 10 DEC 1999 7-25

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

some_si gnal <= 1;
Toolsinterpret the 1 asa32 hit integer value. Dueto thisfact the bits 63 to 32 are not affected by thisassign-
ment.

GUIDELINE 7.8.5 Use parentheses in complex equations

Itisrecommended that parentheses be used to force the order of operations.

reason: L arge equationswithout parentheses depend on the order preference of the language to determinethe func-
tionality of the equations. Parentheses explicitly order the operations of the equations, clearly conveysthe
functionality, and implies structurefor synthesis.

7.9 Standards for Structured Test Techniques

These coding standards are intended to obtain the maximum amount of test coverage. More complete
guidelines on implementing scan and “ scan friendly” circuitry are detailed in the SCAN Design Standards.

RULE 7.9.1 Use additional logic for scanning three-state devices

Additional logic must be used to prevent signal contention. All multi-sourced signal s/buses must be driven one-hot mutu-
ally-exclusive during the launch and capture test sequence.

reason: To prevent propagation of x’ sand scan vector mismatches.
example; 1-hot driver three-state device enables during scan shift

RULE 7.9.2 Allow PLL bypass

ATPG tools must have clock control from aninput pin. If aPLL isused for on-chip clock generation, then the means of
by-passing or disabling the PLL must be documented.

reason: ThePLL bypass makestesting and debug easier, and facilitatesthe use of hardware modelers.

RULE 7.9.3 Scan support logic for gated clocks
Gated clocks usage must be accompanied by scan support logic.
reason: Toavoid ATPG lossof fault control.

RULE 7.9.4 Externally control asynchronous reset of storage elements

Asynchronousresetsfor initialization or power-up may only be used when they are controlled viaaprimary input in test
mode. The asynchronousresets must be synchronously rel eased after aninternal clock edge or the reset must be reclocked
inthe moduleto avoid reset recovery problems. Refer to Section 10 Design-for-Test.

reason: Scan chains can be generated for storage elementsonly if thereset issynchronous or if an asynchronous reset
iscontrolled viaaprimary input.
GUIDELINE 7.9.5 Segregate opposing phase clocks

L ogic which uses both the positive and the negative edges of the clock isrecommended to have segregated clocks (i.e., each
clock isaseparate input to the bl ock).

reason: Eases scan insertion.

RULE 7.9.6 Scan Support Logic for Latches

If latches are connected to the clock, they must be transparent during scan.

reason: Toavoid fault coverageloss dueto the latches blocking up-stream and down-stream logic.
example: Refer to Figure 7-6 for atwo-phase implementation

7-26 Version 2.0 10 DEC 1999 (M) moToroLa

Semiconductor Reuse Standard

scan_modeij > EN Q
clk

Figure 7-6 Scan Support for Mixed Latch/Flip-Flop Designs

RULE 7.9.7 Master/slave latch clocking

If master/dlave latchesareinferred in the code, clocks of agiven phase must drivethe corresponding stage of thelatch. No
phase of the clock can update both master and slave latches during test mode.

reason: Test toolsdo not understand timing and loss of coveragewill occur.

GUIDELINE 7.9.8 Synchronously reset storage elements
It isrecommended that synchronous resets be used wherever possible.
reason: Eases scan chain insertion and test.

7.10 General Standards for Synthesis

This section describes the language independent standards which are applicable to the Verilog. There has
been a special effort to make as many of the standards as language and tool independent as possible. The
synthesis tool specific coding guidelines should also be referenced in addition to the standards specified
in this and other sections. It should be noted that the following standards are not applicable to
non-synthesizable blocks (e.g., Bus Functional Models, Bus Monitors, data path modules, Analog
Behavioral Models, test benches, or behaviora modules) unless they are intended to be synthesized for
emulation.

RULE 7.10.1 Complete always sensitivity list

All alwaysblocksinferring combinational logic or alatch must have asensitivity list. The sensitivity list must contain all

input signals.

reason: Synthesiswill create astructure that depends on all valuesread regardless of the sensitivity list, which can
lead to potential mismatches between behavioral and gate-level smulation.

RULE 7.10.2 One clock per always block

Only oneclock per Verilog always block must be used in asynchronous process.

reason: Thisisrequired to restrict each processto asingletype of memory-element inference.

RULE 7.10.3 Wait statements and # delay statements are not allowed.

Wait statements, both explicit and implicit, must not be used in the design.

reason:; Thewait statement and the# delay are generally not supported by the RTL to gatelevel synthesisprocess.
These constructs should be avoided to enabl e effective synthesis.

RULE 7.10.4 Specify combinational expressions completely

Conditional expressions must be specified completely (i.e., assign avalueto avariableor signal under al conditions).

reason: Synthesistoolsinfer memory elementsif acombinational expression isnot completely specified.

example; Memory elementsare not inferred due to acompletely specified case statement.

(M) moToroLA Version 2.0 10 DEC 1999 7-27

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

al ways @ si gnal _nanes)
case (signal _nanes)
3’ b000,

3’ b001 : output = 4’ b0000;
3’ b010 : output = 4'bl010;
3’ b011,
3’ b100,
3'b101 : output = 4'b0101;
3’ b110,
3’ bl111 : output = 4’ b0001;
endcase

example: Thefollowingi f statement infersamemory element becausethereisnoel se clause.
al ways @ signal)

begin

if (signal = 1"hl)
out put = 4’ b0;
end

RULE 7.10.5 No di sabl e in looping constructs

Theuseof thedi sabl e command inlooping constructsis prohibited.

reason: Itisgood programming styleto have defined endsfor loops and to prohibit jumpsto the next loop iteration.
exception: Allowed in testbench constructs.

RULE 7.10.6 Do not use the initial statement

Reset functionality along with signal and variableinitialization must be modeled explicitly. Do not usetheinitial construct.

reason: The synthesized gate-level netlist will not usetheinitialization construct which will result in simulation
mismatches between the behavioral and gate-level models.

exception: Allowed in testbench constructs.

RULE 7.10.7 Expressions are not allowed in port connections
Expressions must not be used in port connections.

reason: May result in gluelogic between blocks. Easesunderstanding of the HDL .
exception: Busconcatenations are allowed.

RULE 7.10.8 Verilog primitives are prohibited
Verilog primitive must not be used.
exception: Easesunderstanding of theHDL.

RULE 7.10.9 Use non-blocking assignments (<=) in edge-sensitive constructs

Non-blocking assignments (<=) must be used in edge-sensitive sequential blocks. Blocking assignments (=) are not
allowed.

reason: Use of blocking assignmentsin edge-sensitive sequential code can result in mismatches between pre and
post-synthesissimulations.

example: Edge-sensitive code written with non-blocking assignments:
al ways @ posedge cl k) begin
regb <= rega;
rega <= data;
end
example: Codethat may result in pre and post-synthesi s simulation mismatches:
al ways @ posedge cl k) begin
rega = data;
regh = rega;

7-28 Version 2.0 10 DEC 1999 (M) moToroLa

Semiconductor Reuse Standard

end
In pre-synthesis simulation datarunsthrough to regb at each posedge clock. Thiswill synthesizeto ashift
register, where datawill not run through to regb on the same posedge of the clock.
RULE 7.10.10 Declare all internal wires in one section

Theinternal wire declaration must follow the port 1/0O decl arations at the top of the module.
reason: Easesunderstanding of code.

RULE 7.10.11 Internal wires must be declared
All internal wires must be declared instead of implied.
reason: Although Verilog can handleimplied wires, all internal wires must be declared to avoid confusion.

RULE 7.10.12 Use explicit port references in module instantiation

Modules must be instantiated with explicit port referencesinstead of by port position. Expressionsin port connectionsare
not allowed.

reason: Moduleinstantiation will explicitly show port connections, and will not result in extralogic at theinstanti-
ating level which improvesreadability and adaptability.
example: bl ock bl ock_1 (.signal _a(signal_a),
.signal _b(signal _b));
RULE 7.10.13 Drive all unused module inputs
All unused modul einstanceinputs must be actively driven by some other signal or by afixedlogicOor 1.
reason: All portsappear in the moduleinstantiation. None are hidden or forgotten.

RULE 7.10.14 Connect unused module outputs
All unused modul e instance outputs must be connected (see RULE 7.3.17).
reason: Warnings about unconnected ports or missing portsin theinstance statement are eliminated.

RULE 7.10.15 Use of casex is not allowed
case or casez must beused for all case statements.

reason: Casex treatsthe X and Z states as don’ t caresin synthesis, which can result in different simulation behavior
pre- and post-synthesis. The X state must be generated and handled in such away to determineif thetruedon’t
care conditionswill affect the operation of thedesign, rather than cover up aproblem.

RULE 7.10.16 ‘define usage
If &' define statement is used within amodul e, the macro name must be undefined using ‘ undef in the samemodule.

exception: Sincethe ' defines have no scope, they must remain associated with theintended code. Mai ntai ning the name
association and defining the macro in the source code eases reuse.

RULE 7.10.17 Do not use nested ‘ifdefs
exception: Nested ‘ifdef declarations must not be used.

GUIDELINE 7.10.18 Use parameters for state encodings
Itisrecommended that enumerated parameters be used to encode the different states of astate machine.

reason: This easesretargeting to different state machineimplementations, for exampl e changing from an encoded
1-hot styleto gray code.

example:
parameter [1:0] // synthesis enumstate_info
RESET_STATE = 2’ b00,
TX_STATE = 2’ b01,
RX_STATE = 2’ b10,
| LLEGAL_STATE = 2’ b11;

(M) moToroLA Version 2.0 10 DEC 1999 7-29

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

GUIDELINE 7.10.19 Use acycle wide enable signal for signals with multicycle paths

Itisrecommended that asignal propagated through amulticycle path be qualified by aone clock cyclewideenable signal at
thereceiving register.

reason: Failureto do sowill result in potential metastability problemsat the output of thereceiving register.
note: Using multicycle paths has severeimplications on test and their usage must be carefully eval uated and
completely documented.

GUIDELINE 7.10.20 Model three-state devices explicitly

Itisrecommended that three-state devices be modeled explicitly with z assignments and multiple concurrent assignments.
All select combinationsfor three-state devices are recommended to be defined with mutually exclusivelogic.

reason: Multiple concurrent assignments and assignment of value zresultsin theinference of three-state buffers. No
bus contention must be ensured. Three-state devices may cause test problems (see Section 10
Design-for-Test).

GUIDELINE 7.10.21 Top level glue logic is not allowed

Itisrecommended that gates not beinstantiated or inferred at thetop level of the design hierarchy.

reason: Synthesisresultsare limited because thetop level logic cannot be combined for optimization.

GUIDELINE 7.10.22 Avoid ports of type inout

Itisrecommended to use ports of typeinput or output. Ports of type inout (bidirectional) should be avoided.

reason: Bidirectional implementations may cause contention problems. Avoiding bidirectional salso eases synthesis
and test insertion.

GUIDELINE 7.10.23 Preserve relationships between constants

If aconstant isdependent on the value of another constant, it isrecommended the dependency be shown in the definition.
Wherea' define macro definesan arithmetic or logical expression, it should be enclosed in parentheses.

reason: Increased adaptability, as code changes required for adaptati on are reduced.
example: preferred: * defi ne DATA_ WORD 8
“define DATA LONG (4 * * DATA_WORD)
versus. ‘ defi ne DATA WORD 8
‘ define DATA_LONG 32
GUIDELINE 7.10.24 Wires must have descriptive contents
Itisrecommended that a descriptive comment follow each wire declaration (preferably onthe sameline).
reason: Improvesreadability.

GUIDELINE 7.10.25 Blocking assignment usage

In purelatch designs, blocking assignments may be used. It isrecommended that combinational logic use blocking assign-
ments.

reason: Blocking assignmentstypically simulate faster than non-blocking. However, to avoi d dependencieson
execution order, care must be taken when inferring latches.

exception: Latchesin mixed latch/FF designs should be written with non-blocking assignments.

GUIDELINE 7.10.26 Default case assignments in case statements
Itisrecommended that default case assignments be used for al combinational logic case statement descriptions.

reason: It may be possibl e to decode unexpected combinations of the case selects, resulting in pre- and post-synthesis
simulation mismatches.
note: Additional logic may beinferred using the default case.

7-30 Version 2.0 10 DEC 1999 (M) moToroLa

Semiconductor Reuse Standard

example: Thebusisassignedtoanillegal valueif acase select combination whichisnot explicitly decoded is selected,
e.g. 3 b000.
casez (sbus_sel [2:0])
3’ b100: sbus_dat a[31: 0]
3' b?1?: sbus_dat a[31: 0] 32’ b1;
3’ b?01: shus_dat a[31: 0] data_rd[31:0];
defaul t: sbus_data[31: 0] = 32’ hdead;
endcase

i n_bus[31:0];

GUIDELINE 7.10.27 Use of the full_case synthesis directive

Itisrecommended that the full_case synthesisdirectiveonly be used in case statements describing astate machine where
the case sel ects consist only of the state vector.

reason: Thefull_casedirectiveinformsthe synthesistool that the assignmentsto the unused casesare don’t cares.
Thismay result in pre- and post-synthesis simulation mismatches.

example: Theenableinput may be optimized away:
case {(en, a)} // synthesis full _case directive

3’ b1_00: y[a] = 1" b1,
3'b1_01: y[a] = 1" b1,
3'b1_10: y[a] = 1" bl;
3'b1_11: y[a] = 1" bl;

endcase

example: Statemachine:
case (cur_state) // synthesis full _case directive
idle: if (frame) nxt_state = busy;
busy : begin
if (!frame & !'irdy) nxt_state =idle;
if ((frame & hit & & !ternminate)
|] (frane & hit & & ternminate && ready)
|] (irdy & hit & !terminate)
|] (irdy & hit & term nate & ready)) nxt_state <= xdat a;
if ((frame & hit & & termnate && !ready)
|| (irdy & hit & term nate & !ready)) nxt_state <= backoff;
end
xdata : begin
if (frame & stop && 'trdy) nxt_state <= backoff;
if ((!'frame & trdy) || (!'frane & stop)) nxt_state <= turna;

end
backoff : if (!frane) nxt_state <= turna;
turna : begin

if (!'frame) nxt_state <=idle;
if (frame & 'hit) nxt_state <= busy;
if ((frane & hit && !'term nate)
|| (frame & hit && term nate && ready)) nxt_state <= xdat a;

if (frame & hit & & term nate && ! ready) nxt_state <= backoff;
end

//synthesis translate of f directive

defaul t: $display ($time,,” WARNI NG unknown state, \

cur_state=%",cur_state);

//synthesis translate on directive

endcase

GUIDELINE 7.10.28 Embedded synthesis scripts are not allowed

Itisrecommended that embedded synthesis scripts not be used. If embedded scriptsare used, they must be documented as
to purpose and functionality.

(M) moToroLA Version 2.0 10 DEC 1999 7-31

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

reason: L ater reuse of the blocks may have different synthesis goals and embedded scripts may causefuture synthesis
runsto return poor results. In addition, further rel eases of the synthesistool may obsol ete the embedded
commands.

exception: Judicioususe of synthesisdirectives(e.g., translate_off and translate_on). These must be documented inthe
reuseissues section of the header.
GUIDELINE 7.10.29 Instantiate Gates Indirectly

If agate must beinstantiated, atechnology independent gate, or an indirect instantiation in afunction isrecommended to be
used (seeRULE 7.4.27).

reason: Easesreuse and portability acrosslibraries.

7-32 Version 2.0 10 DEC 1999 (M) moToroLa

Semiconductor Reuse Standard

Appendix A

A.1 Example Header Files

L] HFHDR: - - - - - - oo oo
/1 Copyright (c) 1999, Mdtorol a.

/1 Mtorola Confidential Proprietary

N e T T
/1 FILE NAME : disciplines.h

/1l TYPE : verilog-ans discipline include file

/| DEPARTMENT :

/1 AUTHOR :

/] AUTHOR' S EMAIL :
e
/'l Rel ease history

/1 VERSI ON Date AUTHOR DESCRI PTI ON

// 1.1 01/08/98 rice initial version

/1 1.2 01/20/98 aisola pdated abstol in natures for

/1 changes & flux & correct typos
e T TR
/1 KEYWORDS . verilog-ans, discipline
e e
/1 PURPCSE : define veril og-anms disciplines

N e

/| REUSE | SSUES

/1 Reset Strategy
/1 Cl ock Dommi ns

/1 Critical Timng
/1 Test Features

/1 Asynchronous |/F
/1 Scan Met hodol ogy

/1 I nstantiations
/1 O her :
F = FHDR: = - - = o e e e e e e e e e e e e eeeeeeeeaaaaa

“ifdef DI SCIPLINES H

‘el se

“define DI SCIPLINES H 1

/1

/1 Natures and Disciplines

/1

/1

/1 Default absolute tol erances may be overriden by setting the
/1 appropriate _ABSTQL prior to including this file
/1

/'l Electrical

/1 Current in anperes

nat ure Current

units = "A";

access =1;

i dt _nature = Charge;
“i fdef CURRENT_ABSTCL

abst ol = " CURRENT_ABSTOL;
‘el se

abst ol = le-12;
“endif

(M) moToroLA Version 2.0 10 DEC 1999 7-33

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

endnat ur e
/1 Charge in coul onbs
nat ure Charge

units = "coul";
access = Q
ddt _nature = Current;

“ifdef CHARGE ABSTOL

abst ol = " CHARGE_ABSTOL;
‘el se

abst ol = le-16;
“endif
endnat ure

/1 Potential in volts
nat ure Vol t age

units ="V
access =V,
i dt _nature = Fl ux;
“ifdef VOLTAGE_ABSTOL
abst ol = " VOLTAGE_ABSTQ,;
‘el se
abst ol = le-6;
“endif
endnat ure

/1 Flux in Webers
nat ure Fl ux

units = "W";

access = Phi;

ddt _nature = Vol t age;
“ifdef FLUX_ABSTOL

abst ol = "FLUX_ABSTQ;
‘el se

abst ol = le-14;
“endif
endnat ure

/1 Conservative discipline
di scipline electrical
potenti al Vol t age;
fl ow Current;
enddi sci pli ne
/1 Signal flow disciplines
di scipline voltage
potenti al Vol t age;
enddi sci pli ne
di scipline current
potenti al Current;
enddi sci pli ne

/1 Magnetic
/1 Magnetonotive force in Ampere-Turns.
nature Magneto_Motive_Force
units "Afturn";
access MVF;
“ifdef MAGNETO _MOTI VE_FORCE_ABSTOL

abst ol = * MAGNETO_MOTI VE_FORCE_ABSTOL;
‘el se

abst ol = le-12;
“endif
endnat ure

/1 Conservative discipline

7-34 Version 2.0 10 DEC 1999

@ MOTOROLA

Semiconductor Reuse Standard

di scipline magnetic
potenti al Magnet o_Moti ve_Force;
fl ow Fl ux;

enddi sci pli ne

/'l Ther mal
/1 Tenperature in Celsius
nature Tenperature

units ="C';
access = Tenp;
“i fdef TEMPERATURE_ABSTCL
abst ol = " TEMPERATURE_ABSTQOL;
‘el se
abst ol = le-4;
“endif
endnat ure

// Power in Watts
nat ure Power

units = "W;
access = Pw;
“i fdef PONER_ABSTOL
abst ol = " PONER_ABSTQOL;
‘el se
abst ol = le-9;
“endi f
endnat ure

/1 Conservative discipline

di sci pline thernal
potenti al Tenper at ur g;
flow Power ;

enddi sci pl i ne

/! Kinematic
// Position in neters
nat ure Position

units ="ni;
access = Pos;
ddt _nature = Vel ocity;
“ifdef PQGSI TI ON_ABSTCOL
abst ol = " PCSI TI ON_ABSTQL;
‘el se
abst ol = le-6;
“endi f
endnat ure

/1l Velocity in neters per second
nature Vel ocity

units = "ms";
access = Vel ;
ddt _nature = Accel erati on;
idt_nature = Position;
“ifdef VELOCI TY_ABSTCOL
abst ol = "VELOCI TY_ABSTQOL;
‘el se
abst ol = le-6;
“endi f
endnat ure

/1l Acceleration in neters per second squared
nature Accel eration
units = "msh2";

(M) moToroLA Version 2.0 10 DEC 1999 7-35

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

access = Acc;
ddt _nature = | npul se;
idt_nature = Velocity;

“i fdef ACCELERATI ON_ABSTOL

abst ol = " ACCELERATI ON_ABSTOL;
‘el se

abst ol = le-6;
“endif
endnat ure

/1 Inpulse in nmeters per second cubed

nature | mpul se

units = "ms"3";
access = | np;
i dt_nature = Accel eration;
“ifdef | MPULSE_ABSTCL
abst ol = "I MPULSE_ABSTOL;
‘el se
abst ol = le-6;
“endif
endnat ure
/! Force in newtons
nature Force
units ="n";
access = F;
“i fdef FORCE_ABSTOL
abst ol = " FORCE_ABSTQOL;
‘el se
abst ol = le-6;
“endif
endnat ure
/1 Conservative disciplines
di scipline kinematic
potenti al Posi ti on;
flow For ce;
enddi sci pli ne
di scipline kinematic_v
potenti al Vel ocity;
flow For ce;
enddi sci pli ne
// Rotational
/1 Angle in radians
nature Angle
units = "rads";
access = Thet a;
ddt _nature = Angul ar_Vel ocity;
“ifdef ANGLE_ABSTOL
abst ol = “ANGLE_ABSTQO;
‘el se
abst ol = le-6;
“endif
endnat ure

/1 Angul ar Velocity in

nat ure Angul ar_Vel ocity

radi ans per second

units = "rads/s";

access = Onega;

ddt _nature = Angul ar _Accel erati on;
idt_nature = Angle;

“ifdef ANGULAR VELOCI TY_ABSTOL

abst ol

= " ANGULAR VELOCI TY_ABSTOL;

7-36 Version 2.0 10 DEC 1999 (M) moToroLa

‘el se
abst ol = le-6;
“endif
endnat ur e
/1 Angul ar acceleration in radians per second squared
nat ure Angul ar _Accel eration

units = "rads/s”"2";
access = Al pha;
i dt _nature = Angul ar_Vel ocity;
“i fdef ANGULAR_ACCELERATI ON_ABSTOL
abst ol = " ANGULAR_ACCELERATI ON_ABSTQOL;
‘el se
abst ol = le-6;
“endi f
endnat ure

/1 Force in newtons
nat ure Angul ar _Force

units ="n/nm;
access = Tau;
“ifdef ANGULAR _FORCE_ABSTOL
abst ol = "~ ANGULAR _FORCE_ABSTOL;
‘el se
abst ol = le-6;
“endif
endnat ure

/1 Conservative disciplines
di scipline rotational
potenti al Angl e;
fl ow Angul ar _For ce;
enddi sci pli ne
di scipline rotational _onmega
potenti al Angul ar _Vel ocity; B
fl ow Angul ar _For ce;
enddi sci pli ne

“endi f

@ MOTOROLA Version 2.0 10 DEC 1999

Semiconductor Reuse Standard

7-37

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED

Semiconductor Reuse Standard

J] DR = - - = m e e e e e e e

/1 Copyright (c) 1999, Mdtorol a.

// Motorola Confidential
[L e

Proprietary

/1 FILE NAME :constants. h
/1 TYPE : veril og-ans constant

/| DEPARTMENT :
/1 AUTHOR :
/] AUTHOR S EMAIL :

[= m e e e e

/1 Rel ease history

// VERSI|I ON Dat e AUTHOR DESCRI PTI ON
// 1.0 01/08/98 rice initial version

e

[= m e e e eeoeoo-

/1 KEYWORDS veril og-ans, constants
/1 PURPCSE : define veril og-ams constants

[= e e e e e e eeoeooo-

/| REUSE | SSUES

/1 Reset Strategy
/1 Cl ock Dommi ns

/1 Critical Timng
/1 Test Features

/1 Asynchronous |/F
/1 Scan Met hodol ogy

/1 I nstantiations
/1 O her

B = o = s

/1 Mat hematical and physical constants

“ifdef CONSTANTS H
‘el se
“define CONSTANTS H 1

/1 M_is a mathnmati cal

“define M E
“define M LORE
“define M _LOGLOE
“define M _LN2
“define M_LN10
“define M _PI
“define M TWO PI
“define MPI_2
“define MPI_4
“define M1 Pl
“define M2 Pl
“define M 2_SQRTPI
“define M_SQRT2
“define M SQRT1_2

/1 P_is a physical const

/1 charge of electron in

“define P_Q

1.

const ant

2.7182818284590452354
1.4426950408889634074
0.43429448190325182765
0. 69314718055994530942
2.30258509299404568402
3. 14159265358979323846
6.
1
0
0
0
1
1
0

28318530717958647652

.57079632679489661923
. 78539816339744830962
. 31830988618379067154
.63661977236758134308
. 12837916709551257390
. 41421356237309504880
. 70710678118654752440

ant

coul onbs
6021918e- 19

/1l speed of light in vacuumin neters/sec

“define P C

7-38

2.

9979245628

Version 2.0 10 DEC 1999

include file

@ MOTOROLA

/1 Boltzmann's constant in joul es/kelvin
“define P_K 1. 3806226e- 23

/1 Planck's constant in joul es*sec
“define P_H 6. 6260755e- 34

/1 permitivity of vacuumin farads/ nmeter
“define P_EPSO 8. 85418792394420013968e- 12

/1 perneability of vacuumin henrys/neter
“define P_U0 (4.0e-7 * "MPI)

// zero celsius in kelvin
“define P_CELSI USO 273. 15

“endif

@ MOTOROLA Version 2.0 10 DEC 1999

Semiconductor Reuse Standard

7-39

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

Semiconductor Reuse Standard

d3d NI .AdOD d3TTOHLINOD. A3ddAVLS NIHM 1Ld3OX3 dITT0HLNODNN FHV SNOISHIN d3LNIdd

@ MOTOROLA

Version 2.0 10 DEC 1999

7-40

Standard End Sheet

@ MOTOROLA

Version 2.0 10 DEC 1999

Semiconductor Reuse Standard

7-41

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

@ MOTOROLA

FINAL PAGE OF
42
PAGES

Version 2.0 10 DEC 1999

Semiconductor Reuse Standard

7-42

d3d NI w.AdOD dIT10d1INOD .. AIdINVLS NTHM Ld3DOX3 dITTIOHLNODNN FHV SNOISHIA d3LNIdd

	Revision History
	Verilog HDL Coding
	Table of Contents
	List of Figures
	Section 7 Verilog HDL Coding
	7.1 Introduction
	7.2 Reference Information
	7.3 Naming Conventions
	7.4 Comments
	Figure 7-1 Verilog File Header
	Figure 7-2 Verilog Functions, User-defined Primitives and Tasks Header

	7.5 Code Style
	Figure 7-3 Verilog Coding Format

	7.6 Module Partitioning & Reusability
	Figure 7-4 Clock Domain Partitioning
	Figure 7-5 Partition Asynchronous Logic

	7.7 Modeling Complex Behavior
	7.8 General Coding Techniques
	7.9 Standards for Structured Test Techniques
	Figure 7-6 Scan Support for Mixed Latch/Flip-Flop Designs

	7.10 General Standards for Synthesis
	Appendix A
	A.1 Example Header Files

	Standard End Sheet

