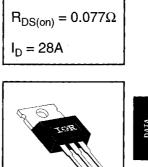
International

HEXFET[®] Power MOSFET

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- 175°C Operating Temperature
- Fast Switching
- · Ease of Paralleling
- Simple Drive Requirements


Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

PD-9.373H

IRF540

TO-220AB

 $V_{DSS} = 100V$

D

Absolute Maximum Ratings

	Parameter	Max.	Units	
lo @ Tc = 25°C	Continuous Drain Current, VGS @ 10 V	28		
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, VGS @ 10 V	,		
IDM	Pulsed Drain Current ①			
P _D @ T _C = 25°C	Power Dissipation	150	W	
	Linear Derating Factor	1.0	W/ºC	
V _{GS}	Gate-to-Source Voltage	±20	V	
E _{AS}	Single Pulse Avalanche Energy ②	230	mJ	
I _{AR}	Avalanche Current ①	28	A	
E _{AR}	Repetitive Avalanche Energy ①	15	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.5	V/ns	
TJ	Operating Junction and	-55 to +175		
TSTG	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1 N•m)		

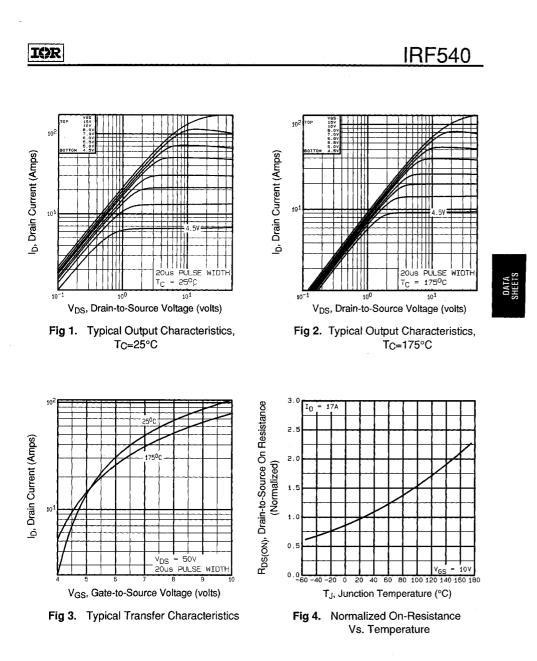
Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
Rejc	Junction-to-Case	-	—	1.0	
Recs	Case-to-Sink, Flat, Greased Surface		0.50	-	°C/W
Reja	Junction-to-Ambient		_	62	- ·

IRF540

IQ R

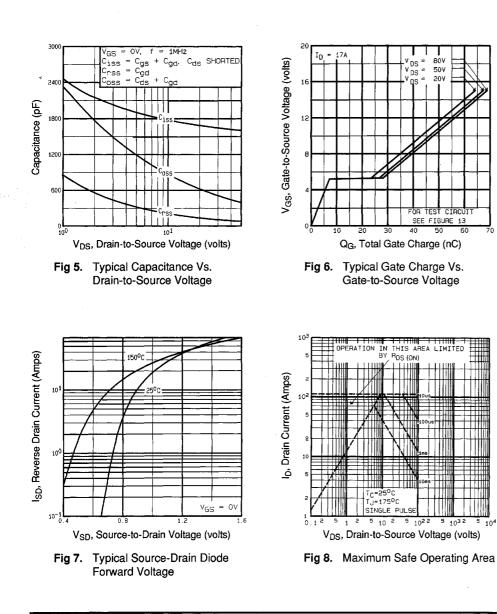
Electrical Characteristics @ T_J = 25°C (unless otherwise specified)


	Parameter	Min.	Typ.	Max.	Units	Test Conditions	
V(BR)DSS	Drain-to-Source Breakdown Voltage	100	-		V	V _{GS} =0V, I _D = 250µA	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.13	_	V/ºC	Reference to 25°C, ID= 1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance	—		0.077	Ω	V _{GS} =10V, I _D =17A ④	
V _{GS(th)}	Gate Threshold Voltage	2.0	—	4.0	V	V _{DS} =V _{GS} , I _D = 250μA	
g _{fs}	Forward Transconductance	8.7	—	—	S	V _{DS} =50V, I _D =17A ④	
IDSS	Drain-to-Source Leakage Current	—	-	25	μA	V _{DS} =100V, V _{GS} =0V	
		-		250		V _{DS} =80V, V _{GS} =0V, T _J =150°C	
IGSS	Gate-to-Source Forward Leakage	—	—	100	nA	V _{GS} =20V	
1922	Gate-to-Source Reverse Leakage	-	-	-100	DA	V _{GS} =-20V	
Qg	Total Gate Charge			72		ID=17A	
Q _{gs}	Gate-to-Source Charge			11	nC	V _{DS} =80V	
Q _{gd}	Gate-to-Drain ("Miller") Charge	_	-	32		V _{GS} =10V See Fig. 6 and 13 @	
t _{d(on)}	Turn-On Delay Time		11	-		V _{DD} =50V	
tr	Rise Time		44		ns	I _D =17A	
t _{d(off)}	Turn-Off Delay Time	-	53	—	115	R _G =9.1Ω	
ti	Fail Time	_	43	—		$R_D=2.9\Omega$ See Figure 10 @	
Ĺ _D	Internal Drain Inductance	_	4.5		nH	Between lead, 6 mm (0.25in.)	
Ls	Internal Source Inductance	—	7.5	—	111	from package and center of die contact	
Ciss	Input Capacitance		1700	_		V _{GS} =0V	
Coss	Output Capacitance	_	560	_	рF	V _{DS} =25V	
Crss	Reverse Transfer Capacitance	_	120		.	f=1.0MHz See Figure 5	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
ls	Continuous Source Current (Body Diode)	-	-	28		MOSFET symbol showing the	
ISM	Pulsed Source Current (Body Diode) ①		_	110	A	integral reverse p-n junction diode.	
V _{SD}	Diode Forward Voltage			2.5	V	TJ=25°C, Is=28A, VGS=0V ④	
t _{rr}	Reverse Recovery Time	—	180	360	ns	T_=25°C, IF=17A	
Qrr	Reverse Recovery Charge	-	1.3	2.8	μC	di/dt=100A/μs ④	
ton	Forward Turn-On Time	Intrinsio	Intrinsic turn-on time is neglegible (turn-on is dominated by $L_{S}+L_{D}$)				

Notes:


- ① Repetitive rating; pulse width limited by max. junction temperature (See Figure 11)
- (\strut) Isd≤28A, di/dt≤170A/µs, Vdd≤V(BR)dss, TJ≤175°C
- ② V_{DD}=25V, starting T_J=25°C, L=440µH R_G=25Ω, I_{AS}=28A (See Figure 12)
- ④ Pulse width \leq 300 $\mu s;$ duty cycle $\leq\!\!2\%.$

IRF540

IØR

5 104

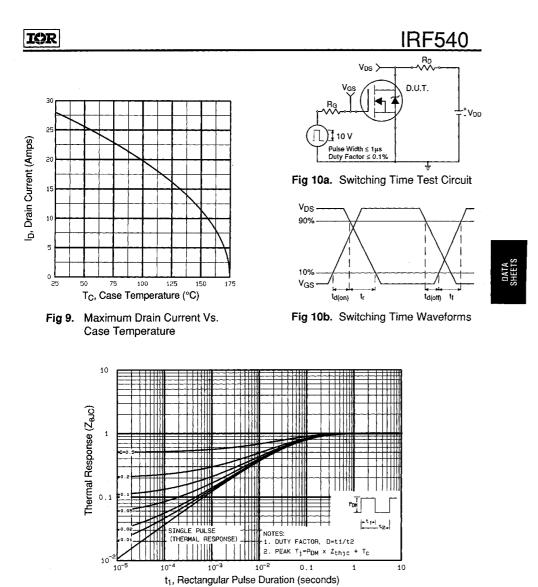
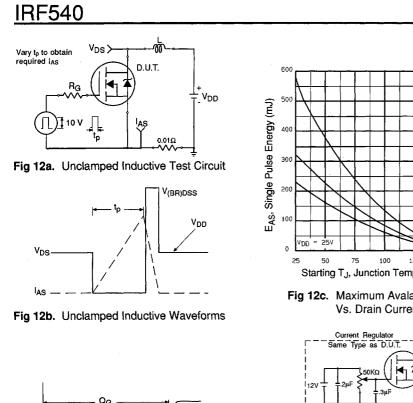
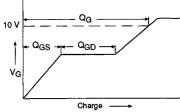




Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

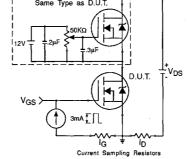


Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

International

Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1505

Appendix B: Package Outline Mechanical Drawing - See page 1509

Appendix C: Part Marking Information - See page 1516

Appendix E: Optional Leadforms - See page 1525

I\$R

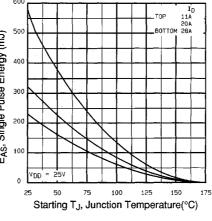


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

This datasheet has been downloaded from:

www.EEworld.com.cn

Free Download Daily Updated Database 100% Free Datasheet Search Site 100% Free IC Replacement Search Site Convenient Electronic Dictionary Fast Search System www.EEworld.com.cn

All Datasheets Cannot Be Modified Without Permission

Copyright © Each Manufacturing Company