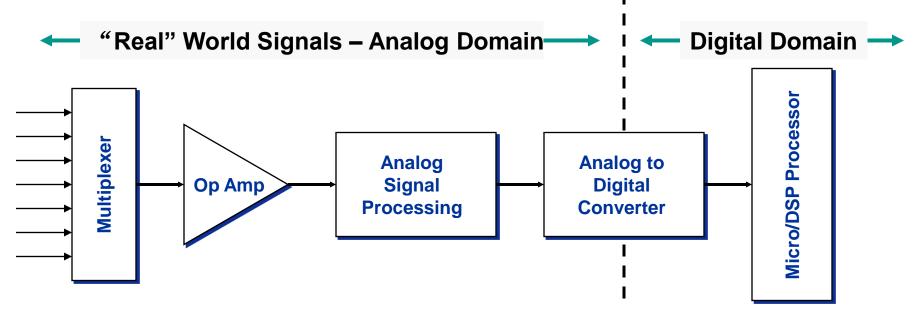


The World Leader in High Performance Signal Processing Solutions

Amplifiers

Op Amps & Specialty Amps Applications & Specifications



Agenda: Operational Amplifiers

- Applications for op-amps
- Architectures
- Choosing an op amp for your application
 - Specifications for DC performance
 - Specifications for AC performance
 - Specifications that affect DC & AC performance
- Other types of amplifiers
 - Instrumentation Amps
 - Log Amps
 - Variable Gain Amps
 - Difference Amps
 - Differential Amps

Amplifiers Are Used For...

- Amplification of AC and/or DC Signals
- Buffering (High Input & Low Output Impedance)
 - Amplifiers often used to drive ADCs
- Driving Signals
- Gain & Level Shifting
- Filters

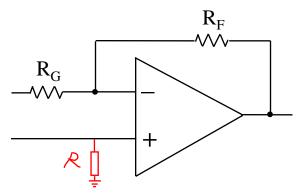
ALSO

- Current-to-Voltage or Voltage-tocurrent Conversion
- Mathematical Operations:
 - Summing or Subtracting 2 or More Signals
 - Integration or Differentiation

Basic Architectures

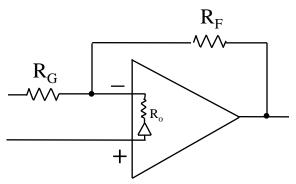
- Voltage Feedback
 - Text Book Op Amp

Current Feedback


- Also called Transimpedance Amps
- Typically Higher Speeds than Voltage Feedback

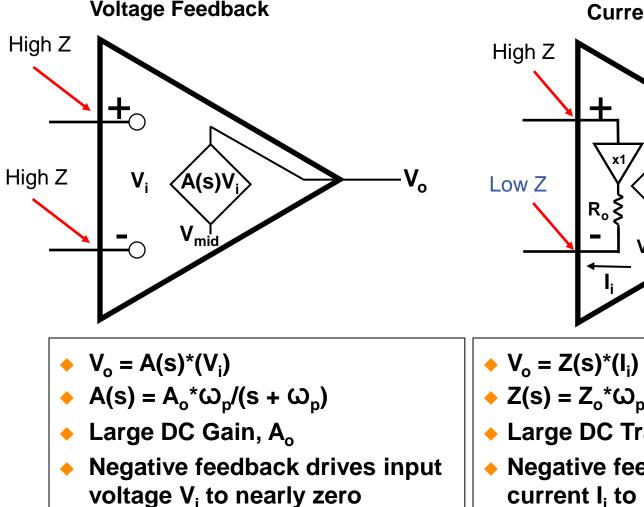
 Both Types of Architectures Respond to Input Signals by Forcing the + and - Inputs To the Same Voltage

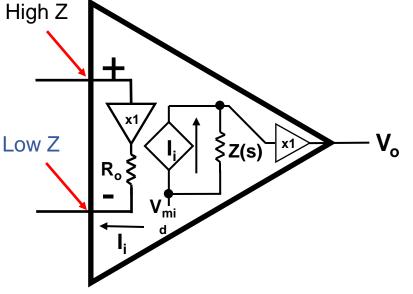
Voltage Feedback Vs Current Feedback


Voltage Feedback

- Responds to an Error <u>Voltage</u> between the Inputs
- Balanced, High Impedance on + and - Inputs
- Constant Gain Bandwidth
 Product
 - Can reduce Johnson noise with low R values
 - G = 2, BW = 100 MHz
 - G=20, BW = 10 MHz

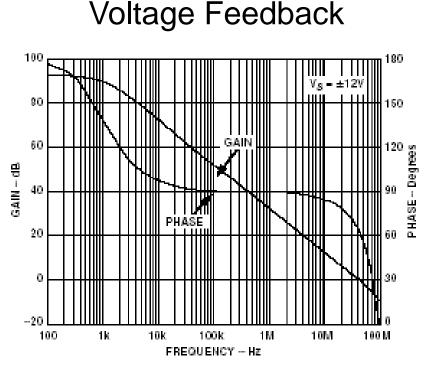
5

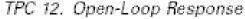

Current Feedback


- Responds to a <u>Current</u>
 Error on an Input
- High + Input and Low - Input Impedances
- Bandwidth Set by Feedback Resistor
 - Increasing R_F reduces BW
 - Decreasing R_F reduces stability

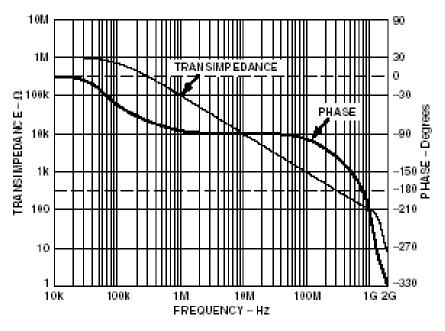
High-Level Block Diagrams Voltage Feedback and Current Feedback Comparison

Current Feedback



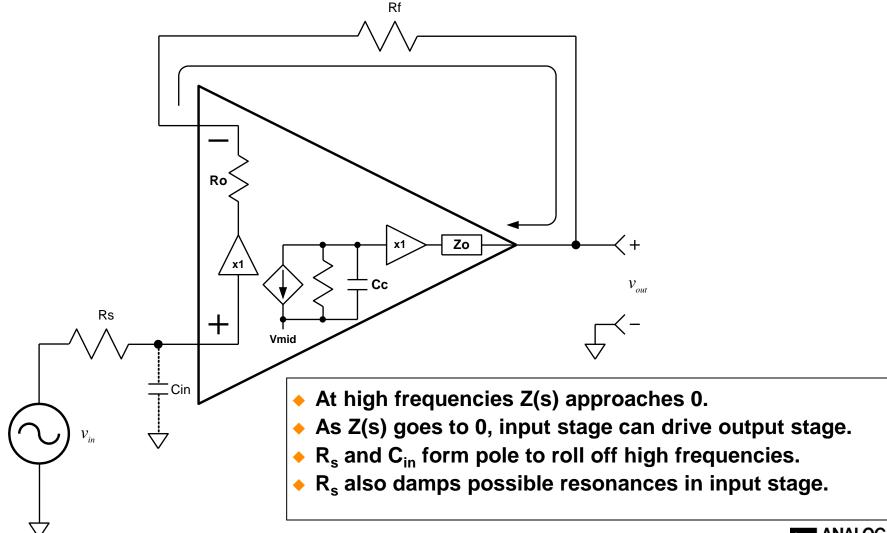

- $Z(s) = Z_o^* \omega_p / (s + \omega_p)$
- Large DC Transimpedance, Z_o

Negative feedback drives input current l_i to nearly zero



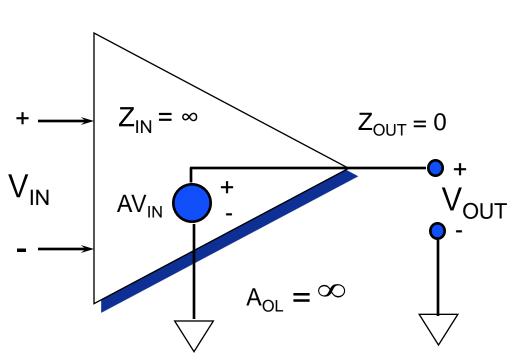
Voltage Feedback and Current Feedback Open-Loop Characteristics

Current Feedback


TPC 10. Transimpedance and Phase vs. Frequency

Series Resistance on (+) Input

Some CFB Amplifiers Require a Resistor In Series With the (+) Input.



8

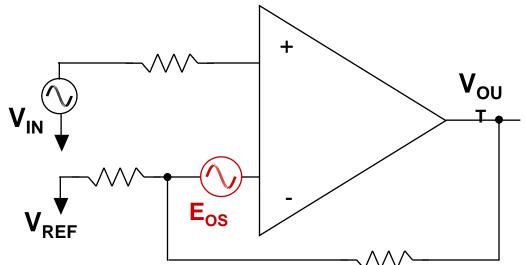
Choosing the Right Op Amp

- Zero output impedance
- Infinite bandwidth
- Infinite open loop gain

No DC Errors

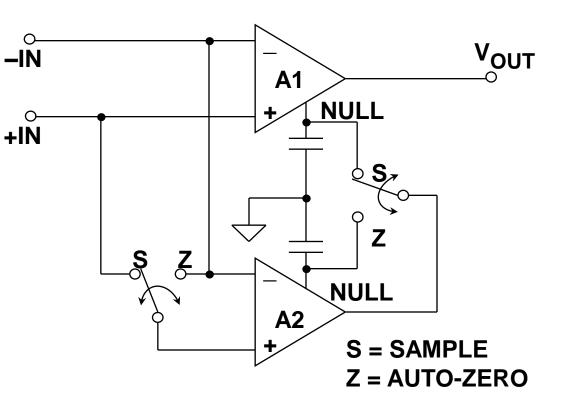
Sources of Error in Op Amps

- DC or Low Frequency Performance affected by:
 - Offset Voltage
 - Input Bias Current
 - Thermal Drift
 - 1/f noise


AC Performance affected by.⁼

- BW (Bandwidth)
- Slew Rate
- Gain Error
- Settling Time
- Noise
- Distortion
- Additional Specifications
 - CMRR (Common Mode Rejection Ratio)
 - PSRR (Power Supply Rejection Ratio)
 - Input Common Mode Range
 - Low Power and Rail to Rail Operation

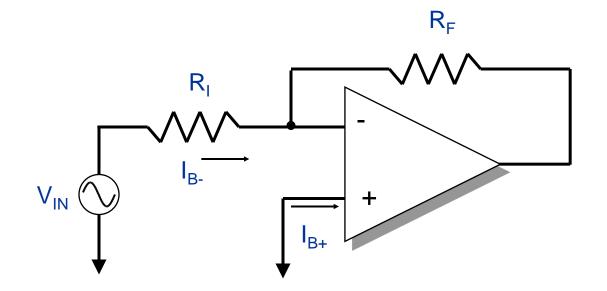
- Adds a small voltage to the input
- V_{OUT} = Gain(V_{IN} + E_{OS})
- High Gain or High E_{os} increases effect on output.



- Offset Voltage due to differences in input transistors
- E_{os} can be positive or negative
- How to measure it:
 - Configure amplifier for very high gain (G>100)
 - Ground both inputs
 - Measure output voltage
 - E_{os} = V_{out}/Gain

Op Amp Specifications Offset Voltage: Reducing the Error

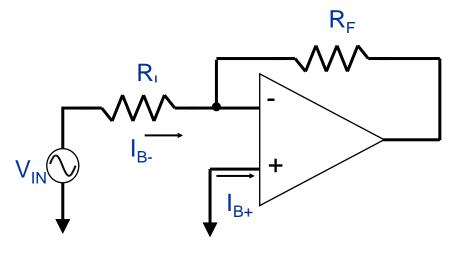
- System calibration can compensate for initial offset voltage
- Offset voltage changes with temperature and time
- Auto-Zero Op Amps:
 - Second op amp (A2) corrects offset error of first op amp (A1)
 - Eliminates change over time and temperature!
 - Also reduces 1/f (low frequency) noise
 - Used in the same way as other op amps
 - See AD8552 data sheet for complete theory =



Op Amp Specifications Input Bias Current and Offset Current IB V_{OUT} V_{IN} I_{OS} IB

- Offset error is a function of I_B, I_{OS}, and the resistors connected around the amplifier
- I_B is the main source of error
 - I_B is usually > 10 x I_{OS}
- Low I_B op amps can use large resistors without causing dramatic errors

The Effects of Input Bias Current


 $V_{OUT} = -(V_{IN}/R_I \pm I_{B-}) \times R_F$

The bias current will introduce an error term depending on the values of the bias current and the source resistance

Op Amp Specifications Bias Current: Reducing the Error

- CMOS and JFET input stages have the lowest I_B
 - Down to 10pA or less
 - For example: AD8605, AD8033
 - I_B of FET input op amps varies with temperature
- Input bias canceled op amps also have very low I_B
 - Most are < 10nA</p>
 - For example: OP27

 $V_{OUT} = -(V_{IN}/R_{I} \pm I_{B}) \times R_{F}$

The bias current will introduce an error term depending on the values of the bias current and the source resistance

Op Amp Specifications Temperature Drift

- How a parameter changes with Temperature
- Common drift specifications are V_{os}, Gain, I_B
- Every product has different drift behavior
 - Auto-zero and Gain Programmable Amplifiers typically have the lowest drift
- Example of Temperature Drift graphs:

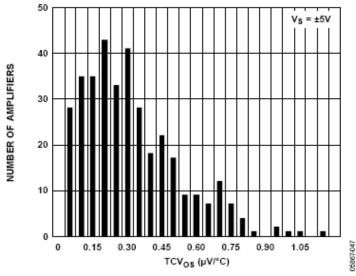
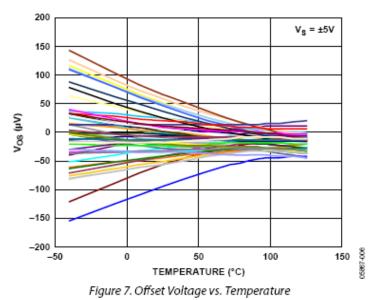



Figure 4. Number of Amplifiers vs. TCVos

Temperature Drift: Converting to resolution or % error

Example application:

- Measuring 0-100 mV output from a sensor
- Operating from -10° C to 50° C
- Offset voltage change is 1.5µV/° C
- Initial calibration performed at 25° C

Calculate difference in offset voltage due to temperature

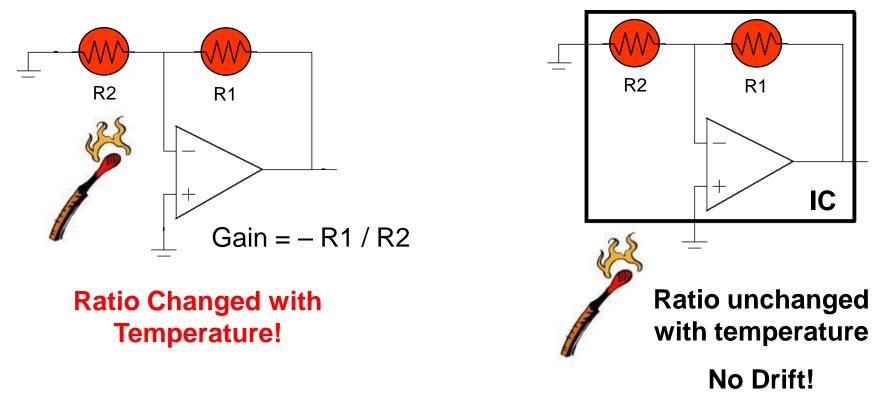
- 25° C (-10° C) = 35° C (The larger temperature change)
- (1.5μV/° C)*(35° C) = 52.5μV

Convert the difference in offset voltage to resolution

- Full scale signal is 100mV
- 52.5µV / 100mV = 0.000526 (or 0.0526%, or 526 ppm)
- How many bits is that?

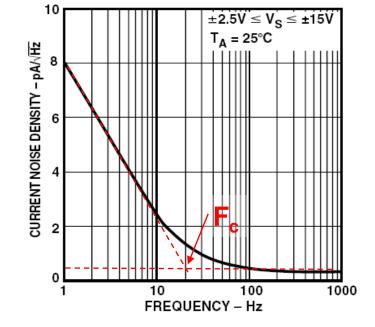
$$2^{\times} = 1/(0.000526)$$

$$2^{\times} = 1901$$


 $Log_2 (1901) = x$ If your calculator does not have a log base 2 function ... $Log_{10}(1901)/Log_{10}(2) = x$

x = 10.89, or almost 11 bits of resolution are possible with this amount of temperature drift

Op Amp Specifications Temperature Drift: Reducing the Error


- Auto-zero and Gain Programmable Amplifiers typically have the lowest drift
- Integrating gain resistors reduces temperature drift errors

Op Amp Specifications Low Frequency Noise

- At low frequencies voltage & current noise density rise.
- 1/f noise has a corner frequency: F_c
- Voltage noise frequently specified as peak value for 0.1 – 10Hz
- To calculate RMS noise in 1/f region from F_L to F_H (where K = noise at 1 Hz): K•√In(F_H/F_L)
- Multiply RMS by 6.6 to estimate peak-to-peak value

TPC 29. Current Noise Density vs. Frequency

Op Amp Specifications

Finding the best choice for low frequency applications

- ADI's parametric search lets you search for op amps that meet the specs you need for:
 - Offset Voltage
 - Bias Current
 - Offset Voltage Drift
 - Low Frequency Current Noise
 - Low Frequency Voltage Noise
 - Input Capacitance
 - Input Impedance
 - Operating Temperature Range
 - And more ...

Ampentiers Power Handgemann Processor OSP	
arch - Microsoft Internet Explorer provided by Analog Devices Inc.	

Parametric Search - Microsoft Internet Explorer provided by Analog Devices Inc.		_	٦ (X
<u>Fi</u> le <u>E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp				1
🕞 Back 🔹 🔊 🖹 📓 🏠 🔎 Search 👷 Favorites 🥝 🔗 + 🌺 🔟 + 🛄 🎇				
Address 🕘 http://www.analog.com/dynamic/parametric/scResultsDisplay.asp?SearchType=PSS&ProductLine=OPA&la=en	💌 🄁 Go 🛛 L	Links »	• 🖈	
Google 💽 🗸 🔽 Go 🖗 🚳 🚰 👻 🔓 Bookmarks 🔻 PageRank 👻 📮 Pop-ups okay 🛛 🏘 Check 💌 🔨 AutoLink 💌 🔚 AutoFill 🍙 Send to 🗸 🖉		🔘 Se	ettings -	Ŧ
🗟 Contact ADI 🔰 📥 Print this Page				^

Parametric Search - Operational Amplifiers

If desired, amplifiers can be selected for further evaluation by selecting the "Add Part(s) to Amplifier Parametric Evaluation Tool", selecting the checkbox next to the desired part(s), then clicking the "Add to Tool" button at the bottom of the page.

Search Res	et Table	Add Part(s) to	Amplifier Parametric E	valuation To	ol				
Include parameter:					V				✓
Priority:									
Part#	Vos	lb	V Noise Density	Vcc-Vee	lq per Amplifier	Amplifiers Per Package	Package	US Price 1000- 4999	Vos TC
Query Parameter:	=< 5 V 💌	=< 🛛 🗛 🔽	=< nV/rtHz 🗸	= V	=< best 🗛 💌	~	~	= < \$ US	=< µV/degC 🗸
Sort Parameter:	$\mathbf{\nabla} \mathbf{A}$	$\mathbf{\nabla}\mathbf{A}$	$\mathbf{\nabla}\mathbf{A}$	$\nabla \Delta$	$\mathbf{\nabla}\mathbf{A}$			$\nabla \Delta$	$\mathbf{\nabla}\mathbf{A}$
AD8538	5µV	15pA	50nV/rtHz	2.7V-5.5V	180µA	1	SOIC, SOT	\$0.89	30nV/degC
AD8554	1µV	10pA	42nV/rtHz	2.7V-5.5V	975µA	4	SOIC, SOP	\$3.02	40nV/degC
AD8574	1µV	10pA	51nV/rtHz	2.7V-6V	975µA	4	SOIC, SOP	\$3.05	50nV/degC
AD8552	1µV	10pA	42nV/rtHz	2.7V-5.5V	975µA	2	SOIC, SOP	\$1.71	40nV/degC
AD8572	1µV	10pA	51nV/rtHz	2.7V-6V	975µA	2	SOIC, SOP	\$1.60	50nV/degC
AD8551	1µV	10pA	42nV/rtHz	2.7V-6V	975µA	1	SOIC, SOP	\$1.08	40nV/degC
AD8571	1µV	10pA	51nV/rtHz	2.7V-6V	975µA	1	SOIC, SOP	\$1.00	50nV/degC
AD8628	1µV	30pA	22nV/rtHz	2.7V-6V	1.1mA	1	SOIC, SOT	\$0.95	2nV/degC
AD8629	1µV	30pA	22nV/rtHz	2.7V-6V	1.1mA	2	SOIC, SOP	\$1.45	2nV/degC
AD8630	1µV	30pA	22nV/rtHz	2.7V-6V	1.1mA	4	SOP	\$2.70	2nV/degC
Search Dea	at Tabla								

Reset Table Search

Hide Additional Searchable Parameters

Add Searchable Parameters Not Currently Displayed Above

📃 Small Signal Bandwidth

ど Done

Slew Rate

Total Harmonic Dist.

🧐 Local intranet ANALOG DEVICES

۹

~

AC Performance Specifications

- Bandwidth
- Slew Rate
- Settling Time
- Phase Margin
- Noise
- Distortion

Op Amp Specifications Gain-bandwidth Product

 The usable bandwidth of an amplifier depends on the gain for which it is configured

- Gain * Bandwidth = GBW product
- For example:
 - An amplifier has a 1MHz GBW product
 - It only has a bandwidth of 10kHz in a gain of 100 configuration

* Note: This is not true for current feedback amplifiers

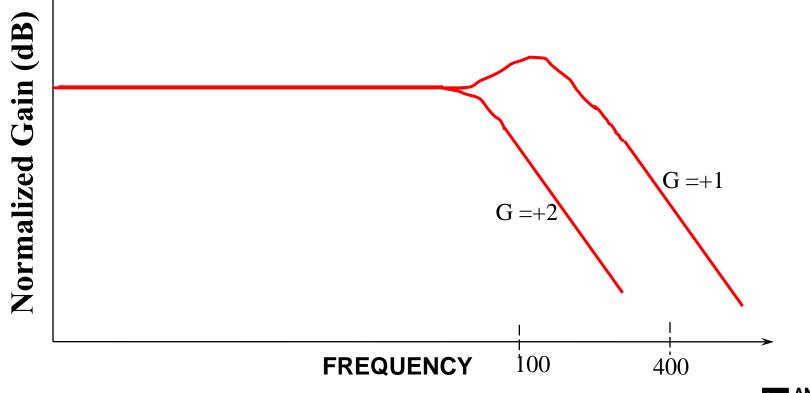
3 Ways to Specify Bandwidth

-3dB bandwidth

- Usually most favorable conditions
- Small signal 0.2Vp-p or less not slew limited
- Can include some artificial bandwidth due to excessive peaking
 - Gain of 2 bandwidth is less open for interpretation

-0.1dB flatness

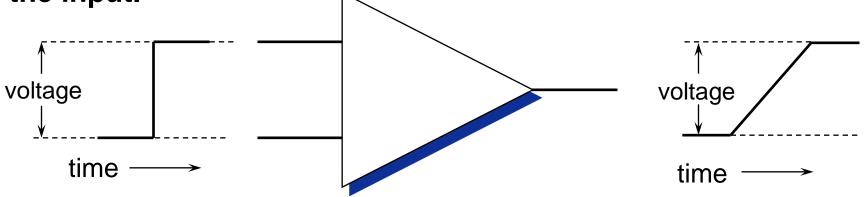
- Gain flatness over frequency
- Critical in video applications
- Full-power bandwidth
 - Large signal; should be at least 2Vp-p
 - May be Slew Rate limited
 - Full-power BW says nothing about distortion

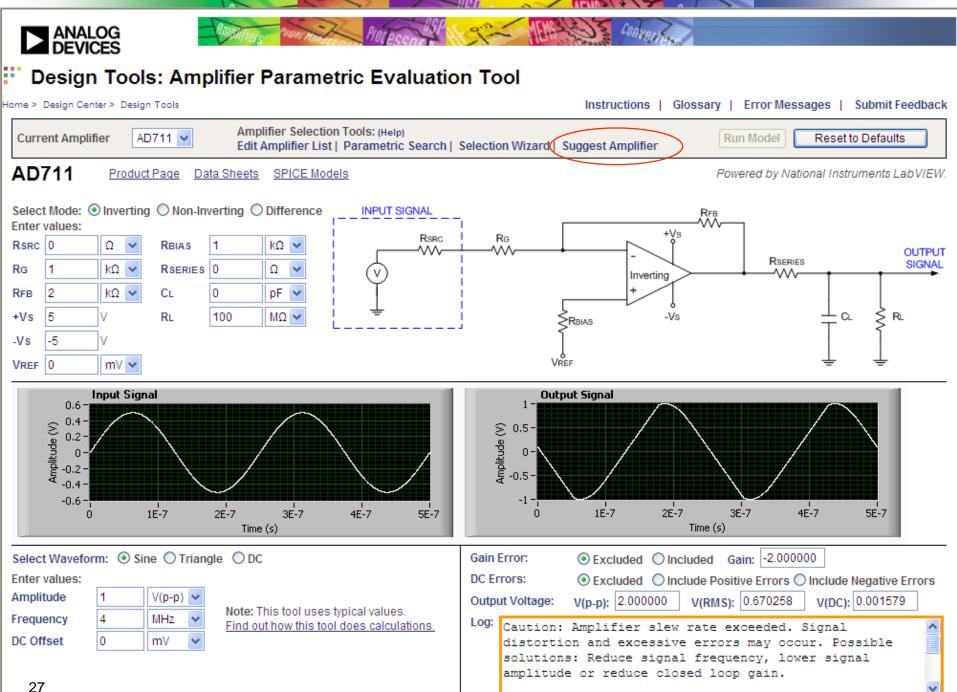


It is difficult to determine high-gain bandwidth from the front page!

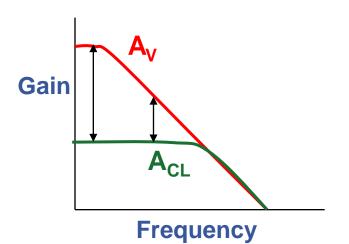
Peaking pulls the gain plot out in frequency

Gain of +2 less than 1/2 Bandwidth of gain of +1 bandwidth

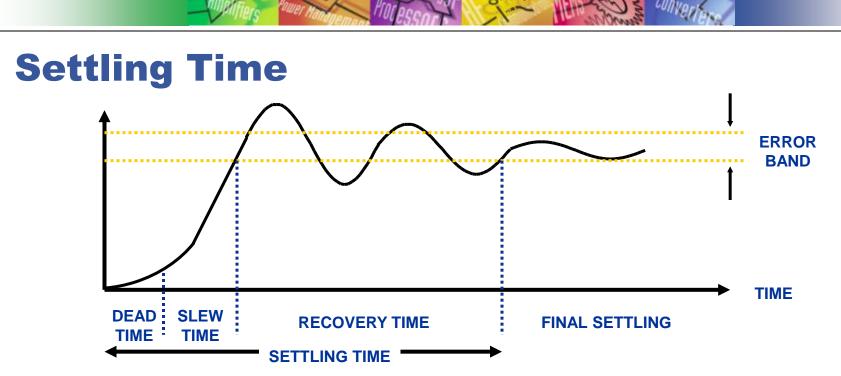

Gain bandwidth not constant



Slew Rate is the maximum rate of change at an amplifier's output in response to a step change at the input.


Slew Rate is expressed in V/ μ s When driving larger signals, slew rate limits bandwidth F_{MAX} = (Slew Rate)/2 π Vpk

Bandwidth Requirements Slew Rate & Loop Gain Error


- When driving larger signals, slew rate limits bandwidth
- F_{MAX} = (Slew Rate)/2πVpk
- Rule of Thumb: Select amp with much higher BW than you think you need
 - Make sure slew rate can support this
- Why?
- Loop Gain Error:
 - A_{CL}not perfectly flat until it crosses A_V
 - Error in $A_{CL} = 1/(1+A_V/A_{CL})$
 - As A_{CL} gets closer to A_V , gain error rises

ANALOG **Design Tools: Amplifier Parametric Evaluation Tool** Instructions | Glossary | Error Messages | Submit Feedback Home > Design Center > Design Tools Amplifier Selection Tools: (Help) **Current Amplifier** Run Model Reset to Defaults AD711 🗸 Edit Amplifier List | Parametric Search | Selection Wizard | Suggest Amplifier AD711 Product Page Data Sheets SPICE Models Powered by National Instruments LabVIEW. Select Mode: Inverting Non-Inverting Difference Rfb VVV INPUT SIGNAL Enter values: +Vs RSRC Rg RsRc 0 Ω ¥ RBIAS 1 kΩ 🗸 $\sim \sim$ \sim OUTPUT RSERIES SIGNAL kΩ 🗸 RSERIES 0 Ω 1 × RG ~~~~ Inverting 2 kΩ 🗸 CL 0 pF 🗸 Rfb 5 MΩ 🗸 -Vs CL. ≶ R∟ +Vs RL 100 RBIAS -5 -Vs VREF VREF 0 mV 🗸 Input Signal Output Signal 1 -0.6-0.4-Amplitude (V) Amplitude (V) 0.5 -0.2-0. 0 -0.2 --0.5--0.4 -0.6--1 -2E-7 4E-7 8E-7 2E-7 6E-7 4E-7 6E-7 8E-7 1E-6 0 1E-6 0 Time (s) Time (s)

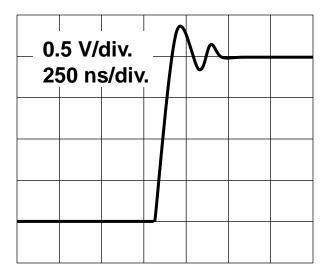
Select Wavefo	rm: 💿 🤉	Sine 🔿	Triang	e ODC	Gain	Error:	Excluded Olincluded Gain: -2.000000
Enter values:					DC E	rrors:	● Excluded ○ Include Positive Errors ○ Include Negative Errors
Amplitude	1	V(p-p) 🗸	Notes This to show a furical values	Outp	ut Voltage:	V(p-p); 2.000000 V(RMS); 0.707107 V(DC); 0.000000
Frequency	2	MHz	*	Note: This tool uses typical values. Find out how this tool does calculations.	Log:	Note: Ty	pical Gain Error Exceeds 1%. Due to the
DC Offset	0	m٧	*				r's frequency dependant open loop gain, along
						with the	selected closed loop gain and frequency, the
						calculat	ed typical output error exceeds 1%. Possible 👘
29						solution	s: Lower signal frequency or reduce closed 🛛 💉

Settling time depends on:

- The output <u>step voltage</u>, and
- The settle to percentage of final value
 - Output settles to 0.1%? 0.01%?
 - 0.1% accuracy is around 10 bits

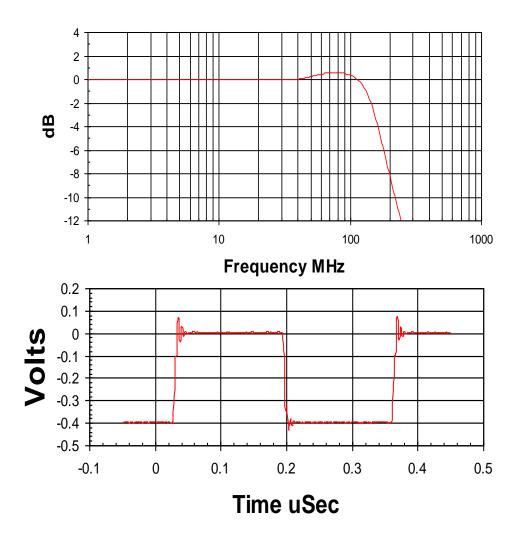
Estimate settling time to N bits of accuracy:

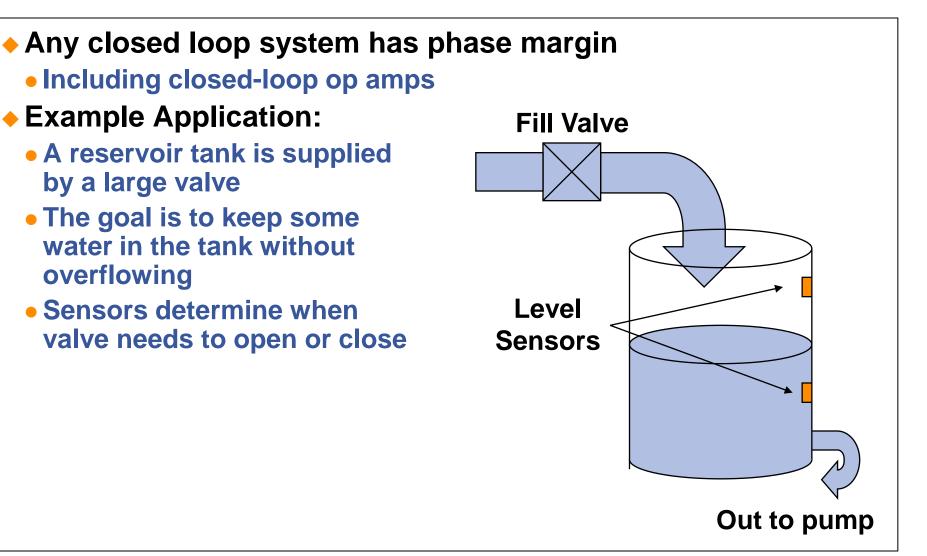
 $t_{s} = 0.11(1+N)/f_{-3dB}^{**}$ AD8091 GBW product = 110MHz, @ G=25 BW =4.4MHz $t_{s} = 0.11(1+14)/4.4MHz = .375\mu s$


** valid if output amplitude rolls off @20dB/decade for at least 1 decade beyond f_3db

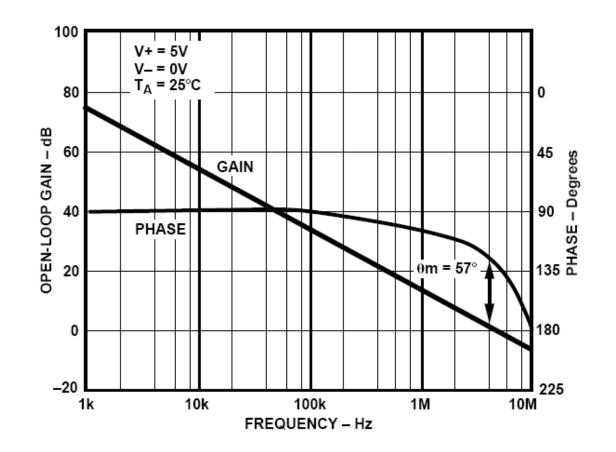
Settling Time Graphs

ELECTRICAL CHARA	CTERIS	TICS	$(V_{S} = \pm 5.0V, T_{A} = +25^{\circ}C)$	unless otherv	vise noted)

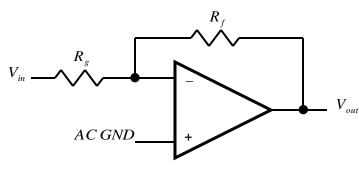

Parameter	Symbol	Conditions	Min	Тур	Max	Units
DYNAMIC PERFORMANCE						
Slew Rate	SR	$-4V < V_{OUT} < 4V, R_L = 10k\Omega$		13		V/µs
Gain Bandwidth Product	GBP			15		MHz
Phase Margin	Øo			64		degrees
Settling Time	tS	To 0.1%, $A_V = -1$, $V_O = 2V$ Step		475		ns

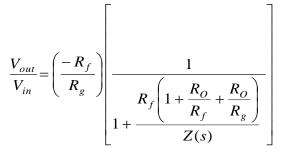

Why Phase Margin is Important

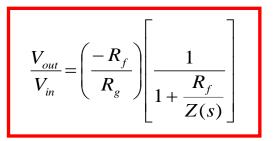
Peaking in the
 Frequency Domain
 causes Ringing in
 the Time Domain As
 a result of Low Phase
 Margin


Phase Margin

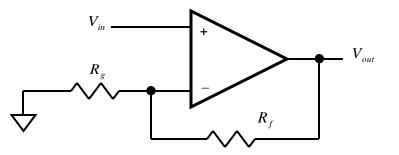
Relation Between Open Loop Gain and Phase

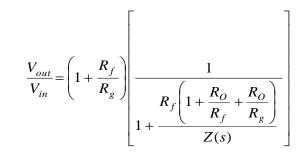

- Phase Margin Phase Remaining before the Phase Delay through the Amp Reaches 180 degrees
 - Margin of Less than 30 degrees can be a Problem

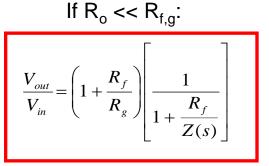



Standard Current Feedback Amplifier Configurations

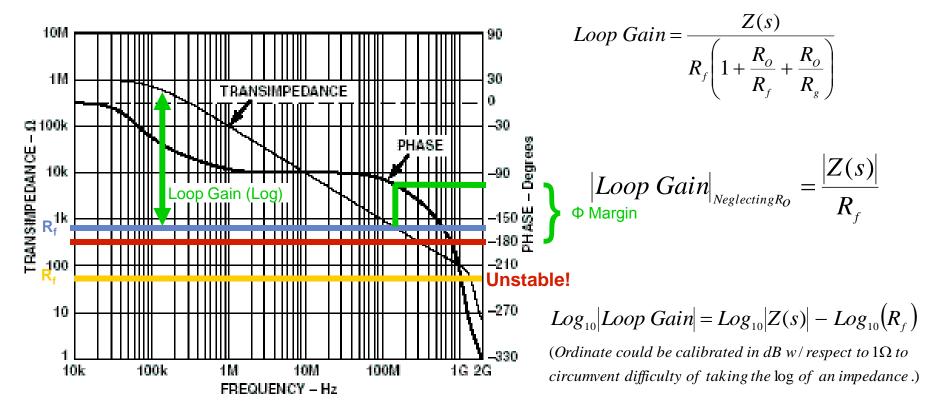
Inverting Amplifier

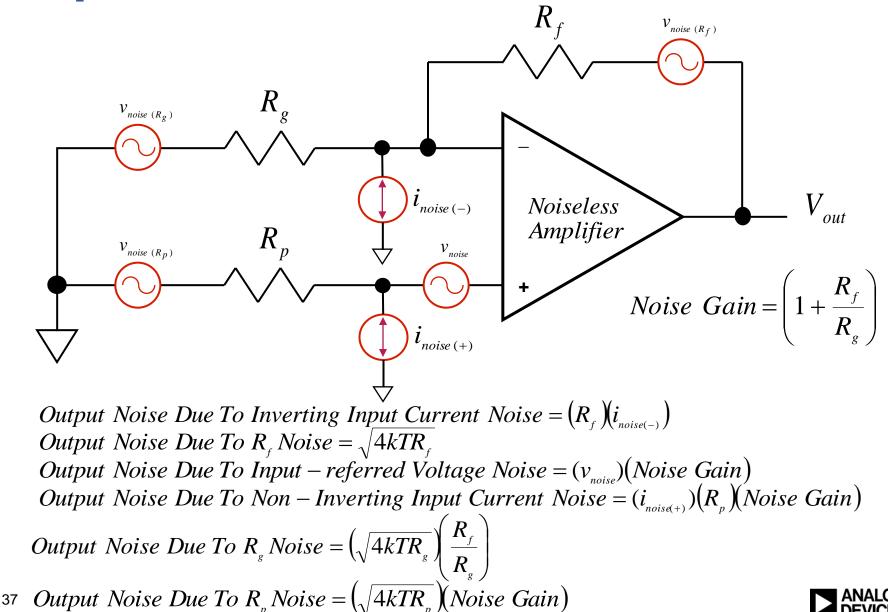





If $R_o \ll R_{f,g}$:

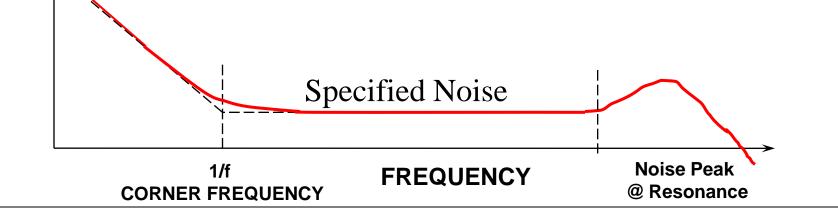
Non-Inverting Amplifier




Current CFB Amplifier Stability Analysis Case In Point – AD8007

TPC 10. Transimpedance and Phase vs. Frequency

Amplifier Noise Sources

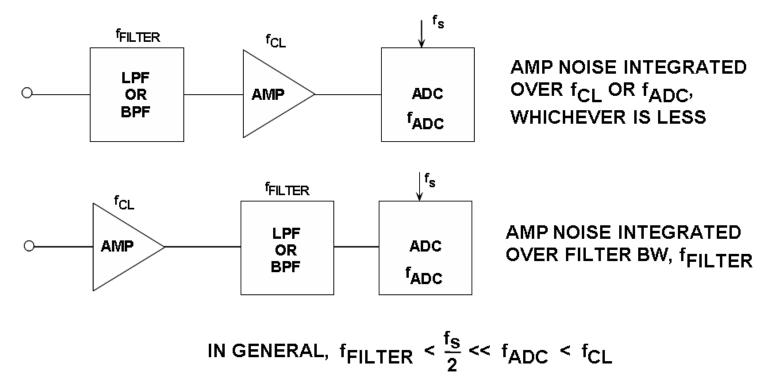


High Frequency Noise

- Low Noise Amplifiers Are Characterized By...
 - Low Voltage Noise Densities, $e_n : < 10 \text{ nV} / \sqrt{Hz}$
 - Low Current Noise Densities, $i_n : < 10$ fA / \sqrt{Hz}
- Noise is usually specified in some frequency band
 - e.g. 100 Hz to 10MHz

Noise can peak near resonances

 Total noise may be higher than can be determined from simple calculations



Noise Combining sources

• Uncorrelated noise sources combine root-sum-square:

• Total Noise = $\sqrt{(E_N^2 + I_{N-}^2 + N_{RF}^2 + N_{RI}^2)}$

Reducing effect of amplifier noise:

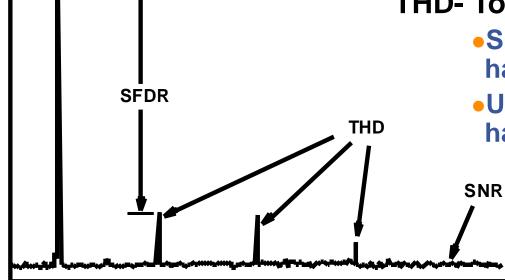
Distortion

 Changes in the output wave form relative to the input wave form

• For pure sine wave in the output will have some energy at multiple of the input frequency - harmonics

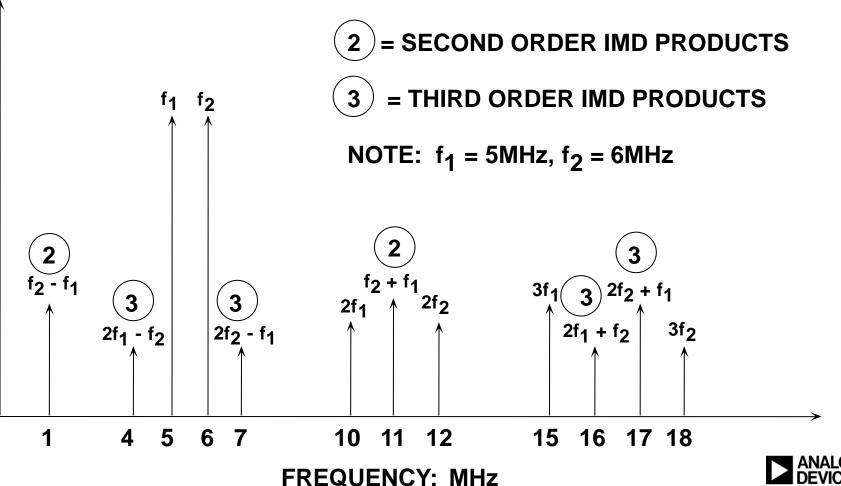
SFDR - used for communications and other systems

Spurious-free Dynamic Range in dB



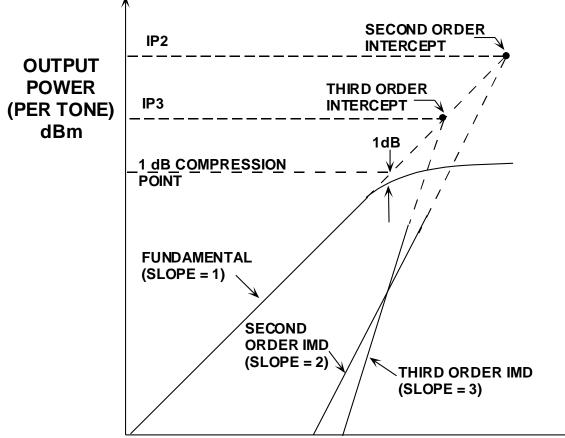
THD- Total Harmonic Distortion

- Sum of all distortions at all harmonics
- Usually 2nd and 3rd harmonics contribute the most



Frequency

IMD and IP3


IMD (Intermodulation Distortion [dB])

 Output Signal Energy Resulting from 2 Signal Frequencies (f1 and f2) that are Close together When Applied at the Input

INTERCEPT POINTS AND 1dB COMPRESSION POINT

IP3 (Third order intercept) characterizes third order IMD

- Amplitude of Third Order IMD increases 3dB for every 1dB increase in amplitude of fundamental
- IP3 is where IMD product amplitude equals the fundamental amplitude
- IP3, IP3, and 1dB compression point depend on frequency

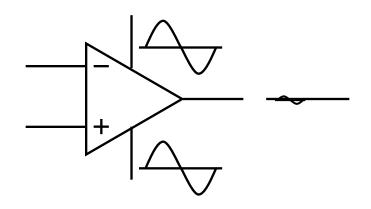
INPUT POWER (PER TONE), dBm

Additional Op Amp Performance Specs

- CMRR
- PSRR
- Crosstalk
- Input Common Mode Range
- Rail-to-Rail Requirements
- Low Power Applications

Common Mode Rejection Ratio (CMRR)

Adm is the differential mode gain, which ideally is infinite
 Acm is the common mode gain, which ideally is zero


$$CMRR = 20\log \left| \frac{Adm}{Acm} \right|$$

CMRR is important in non-inverting, difference or instrumentation amplifiers

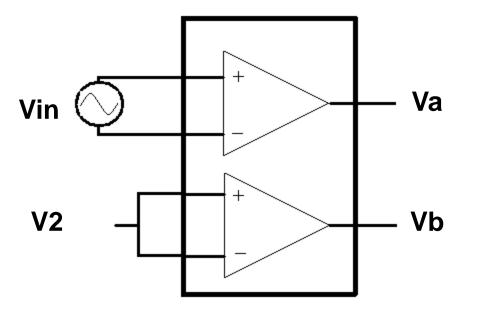
Inverting amplifier configurations are not (there is no common mode voltage)

Power Supply Rejection Ratio (PSRR)

The power supply pins of an amplifier are signal inputs (i.e. supply voltages). The ability of the amplifier to reject noise and unwanted signals present on the power supply line is important!

$$PSRR = 20\log \left| \frac{\Delta Vio}{\Delta Vs} \right|$$

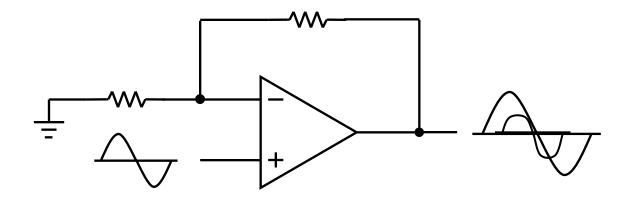
Where


 \Box ΔVio is the change at the output, referred back to the input \Box ΔVs is the increment of the supply voltage change

Crosstalk

- Specification for multichannel devices
- Measure of how much "information" from a channel is seen in another channel
- Normally specified when gain and configuration on each channel is equal
 - Otherwise Crosstalk may be different

Typically specified in dB



How much of the output Va do you see on output Vb?

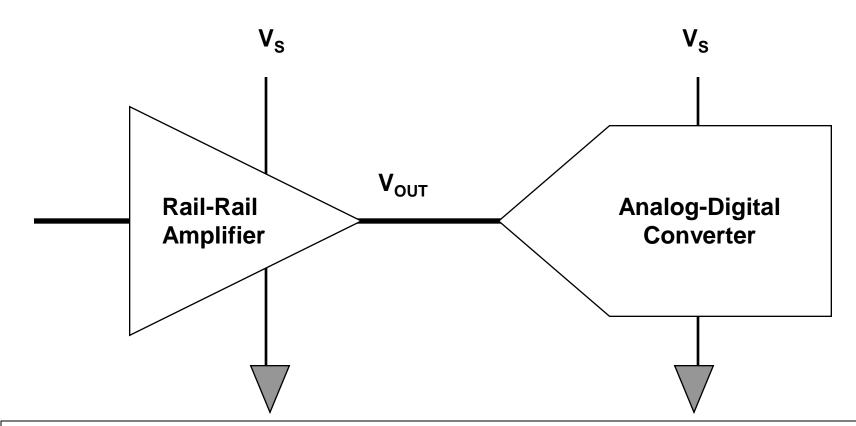
Also, how much of input Vin is seen on output Vb?

Input Common Mode Voltage Range

Input Common Mode Voltage Range is the maximum range the input can swing and still operate in the specified limits of the amplifier.

Exceeding the Input Common Mode Voltage Range can cause the amplifier to distort the input signal or even damage the amplifier!

Rail to Rail Amplifiers What is a Rail-Rail Amplifier?



True Rail-Rail Op Amp

 True Rail-Rail Op Amps Can Swing to Within a Few mV of Their Power Supply Rails, Either on the Input, the Output or Both

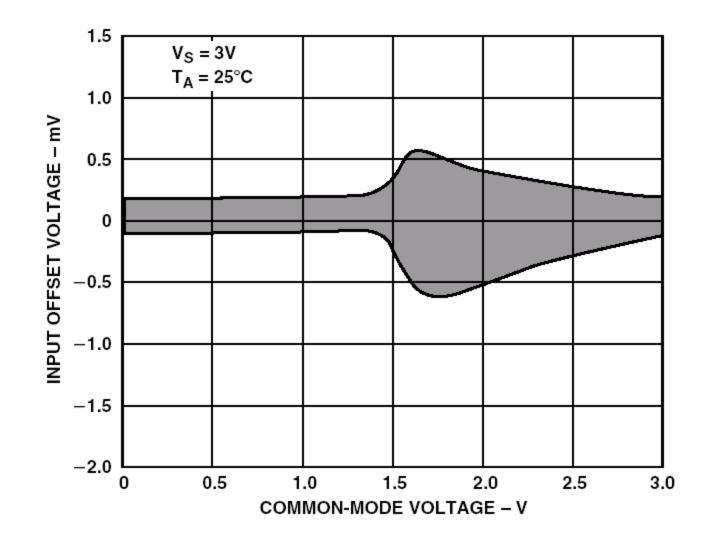
Why Use a Rail-to-Rail Amplifier?

- Rail-to-rail amplifiers maximize signal swing between the supply voltages
- Many high speed A-D converters operate from single +3V to +5V supply

When is Rail-to-Rail Input Needed?

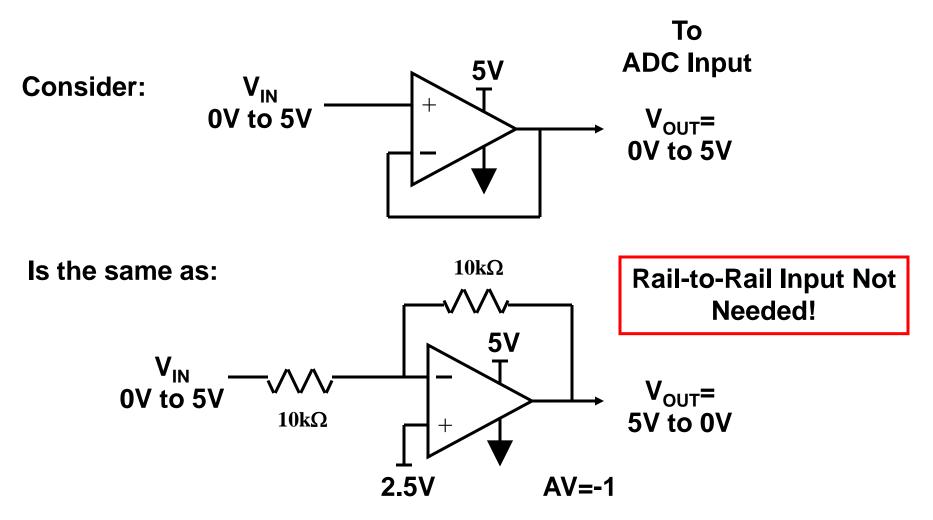
 Unity-gain buffer applications that require the maximum input signal range

- Example: A unity-gain buffer driving a +3V ADC
- Applications where the input common-mode range is near the voltage supply
 - Example: High-side current monitor amplifier

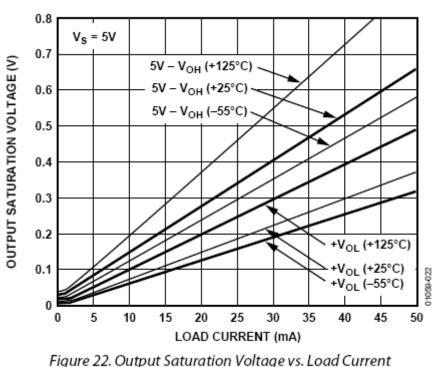

Rail-to-Rail Input Issues

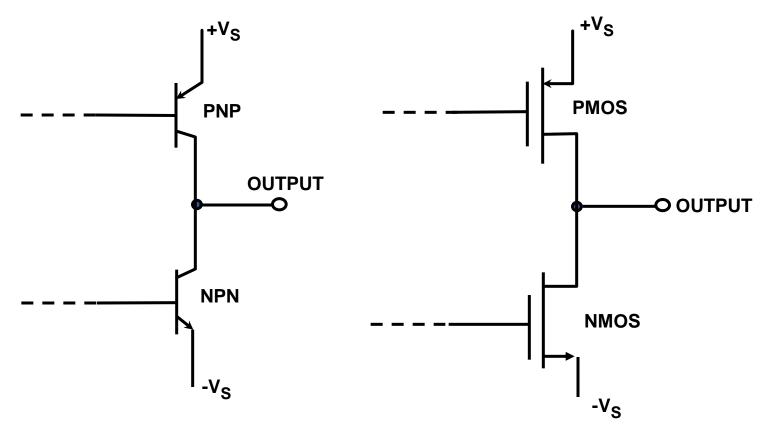
Offset voltage will vary over the input common-mode range

- Could result in low CMRR at certain V_{CM}
- Possible increase in cross-over distortion
- In bipolar input stage: Input bias current will switch direction!
 - At high V_{CM}, bias current flows into the inputs
 - At low V_{CM}, bias current flows out of the inputs
- Tip: Use an input bias correction resistor to minimize output error



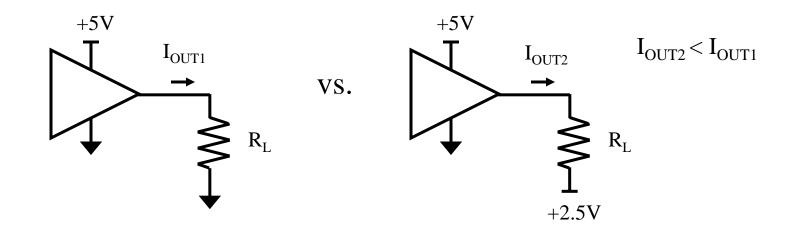
Offset Voltage May Change Significantly Across V_{CM} Range of R-R Input!


Sometimes a Rail-to-Rail Input is NOT Needed!


Rail-to-Rail Output Amplifiers

- Output Saturation Voltage is defined as how close the output can get to a supply rail
- In rail-to-rail output amplifiers, V_{OUT,MAX} will vary with output current and supply voltage
- Higher I_{OUT} means the output voltage cannot get as close to the supply rails
 - Both for sourcing and sinking current

Rail-to-Rail Output Stage


Maximum V_{OUT} limited by saturation voltage

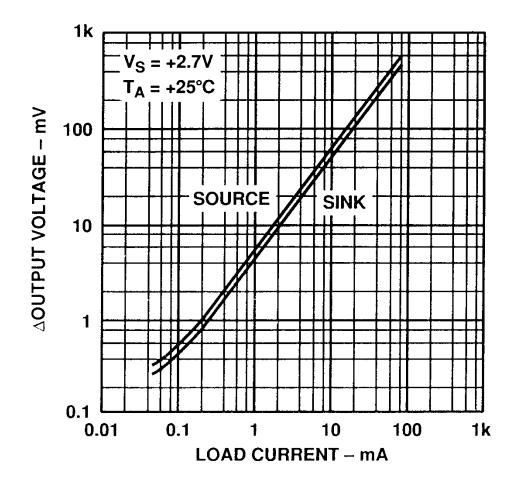
Maximum V_{OUT} limited by FET "on" resistance (10-100 Ω)

Load Resistor Connection

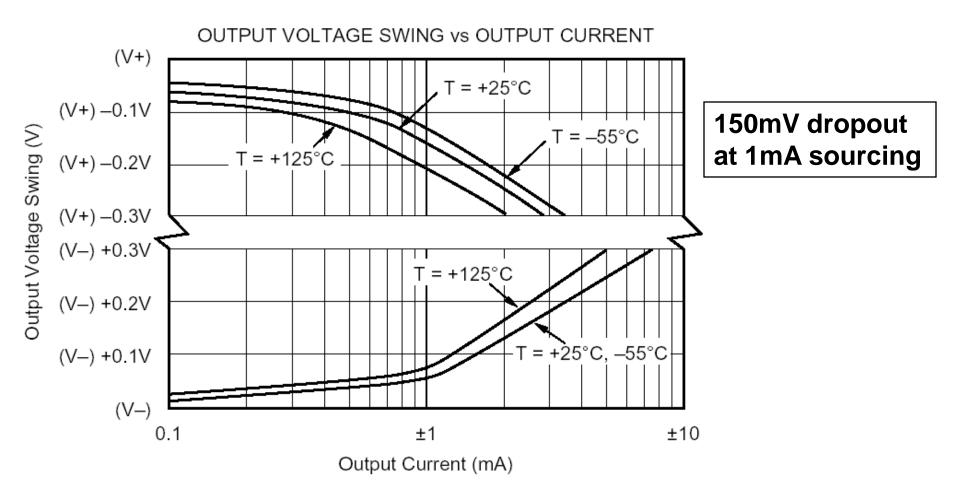
- A resistor tied to half-way between the supplies will pull less current
- This increases the maximum output voltage swing
 - Because the output current is lower than if R_L is tied to ground

Specifying VOUT,MAX

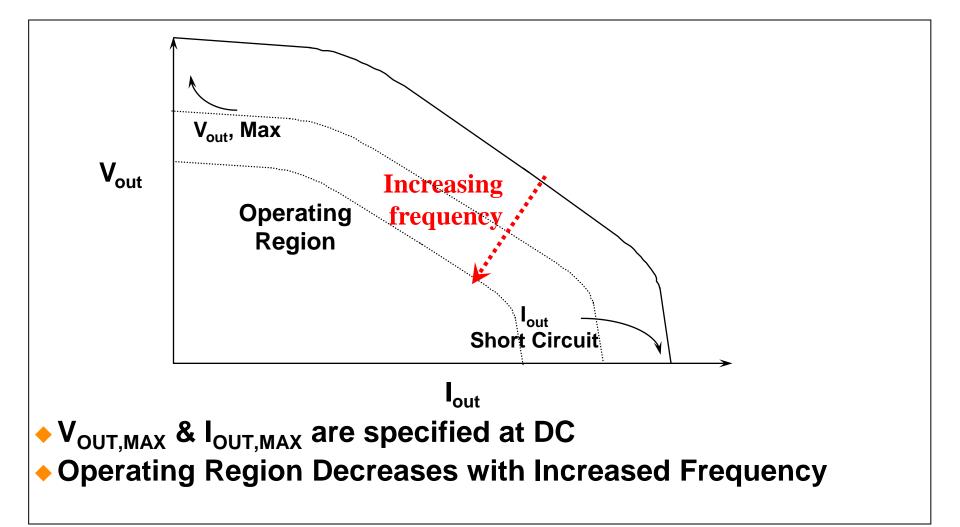
 There are a number of ways to specify a rail-to-rail output stage in a datasheet


Always check for three things:

- What is the supply voltage?
- What is the output current at the V_{OUT} specified?
- Where is the load resistor tied?
 - Ground, V+, ACOM?


Look at a V_{OUT} vs. I_{OUT} Graph

It is the easiest to understand, regardless of where R_L is tied.



Not as Good as Previous R-R Output

V_{OUT} vs. I_{OUT} Can Change With Frequency

Low Power Amplifiers

The gain-bandwidth product and slew rate are proportional to supply current

High speed amplifiers require more supply current

For general purpose amplifiers (<5MHz)

- An amplifier is considered low power if it draws less than 100 μA of supply current

For high speed amplifiers (>100MHz)

- Low power is 4mA or less when enabled
- Power-down can reduce current to 0.3µA max

With some amplifiers, I_{SY} will vary with:

Output voltage

 Higher (or lower) V_{OUT} pulls more current through the output stage – up to 4x!

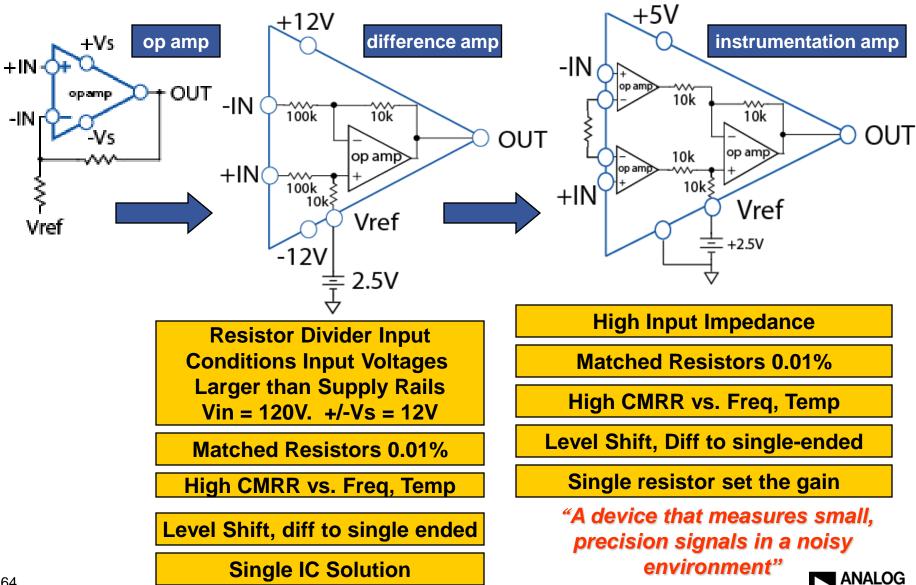
Input common mode voltage

A result of unbalanced rail-to-rail input stages

Low Voltage Op Amps

Many competitors claim their amplifiers work at low voltages

- What is meant by "low voltage"?
- Anything +3.0V or lower, and dropping...
 - Soon it will < +2.7V</p>
- What is meant by "works"?
 - Observe the VDD range in the conditions for the PSRR spec
 - Low VDD voltages may increase the input offset voltage, which is important for low-offset voltage applications
 - Observe the maximum output voltage and output current specs at the lower supply voltage
 - Make sure they are suitable for your application



Other types of Amplifiers

- Difference Amps
- Instrumentation Amps
- Log Amps
- Variable Gain Amps
- Differential Amplifiers

Amplifier Integration

Difference Amplifier Application High Side Current Sensing

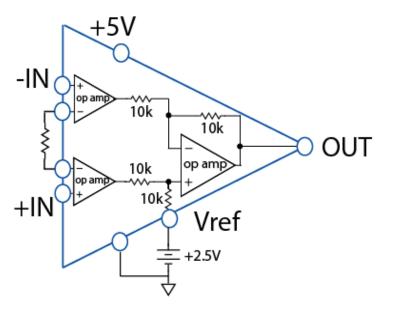

Applications:

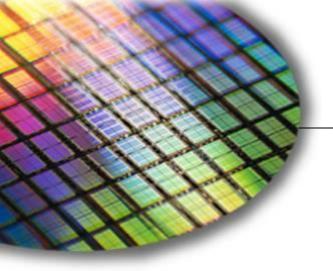
- Linear Solenoid Control (Hydraulics)
- Motor Control
- PLC Front-End

Product Selection

- Low R_{SHUNT} . Iow V_{os} important
- Tolerate & reject high CMV
- Temperature Drift
- Common Mode Voltage Range:

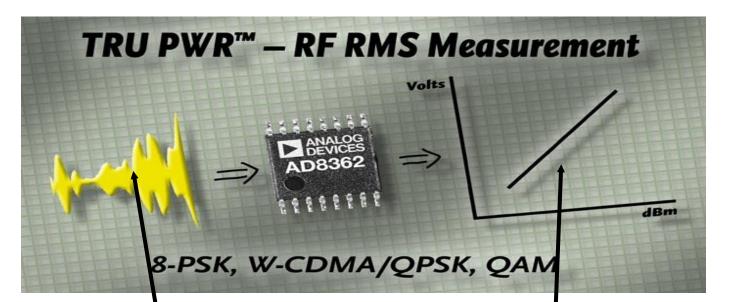
-5 to +68V	±120V	±270V
	AD628 Programmable Gain	AD629 G = 1




Instrumentation Amps Amplification & CMR

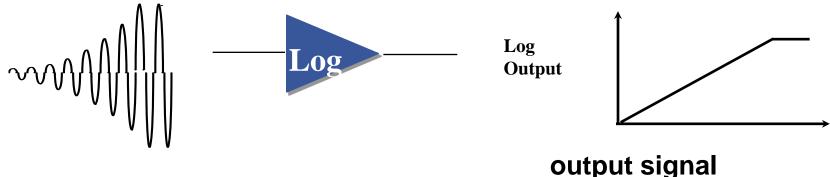
Advantages

- Balanced, high impedance load
- High CMR @ power line freq
 - Rejects common mode noise when a sensor is located remotely from amp.
- Vref enables bipolar output with single supply operation
- Types of In Amps
 - Lowest drift : Chopper Stabilized In-Amps
 - Most flexible: Programmable Gain & Offset



The World Leader in High Performance Signal Processing Solutions

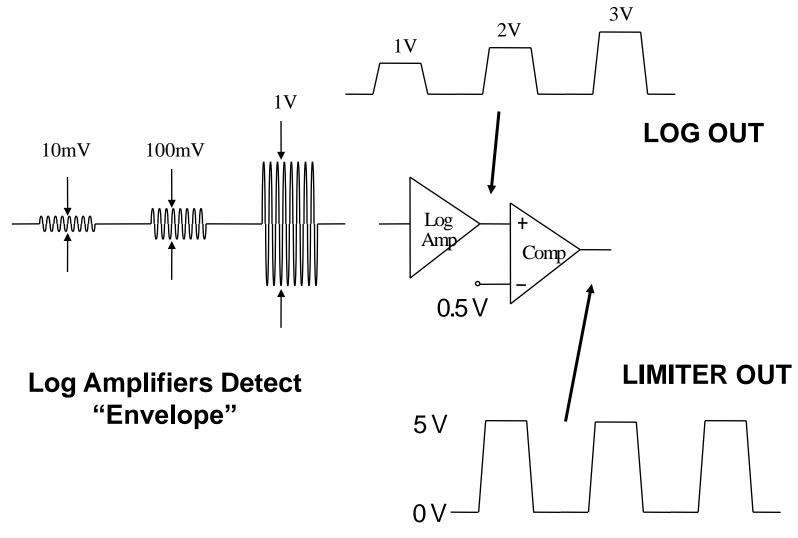
Log Amplifiers and RMS Power Detectors



Flat output despite Varying Crest Factor (Peak to Average Ratio)

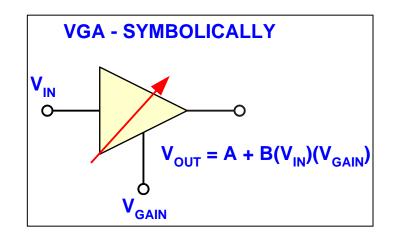
What Does a Log Amp Do?

High Dynamic Range Signal Measurement


Large Dynamic Range RF Signal - Handles nanovolt to volt signal levels!

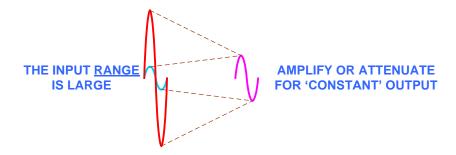
What is it used for?

- To measure/control power in a radio transmitter
- To measure received signal strength (RSSI) in radio receivers

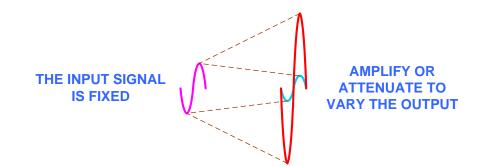

What does a Log Amp Output show?

Variable Gain Amplifier (VGA)

- An amplifier whose gain can be electronically controlled. It is symbolized as an amplifier with an electronic volume control pin V_{GAIN}
- Amplifiers used when the gain of the circuit must change quickly.
 - A separate voltage sets the gain of the amplifier
- Used for:
 - Time Gain Amplification (TGA) as in Ultra sound:
 - Ultrasound and Sonar Imaging
 - High Performance Automatic Gain Control (AGC) Systems



Two Types of VGA Applications


Maintain a Constant output:

As the Input signal level varies, the output level is maintained relatively constant. Example: AGC circuit in a receiver, ultrasound, etc.

The Input Signal Remains Constant:

The input signal level is constant, and it is desired to vary the output. Example: Output level control in a transmitter.

Angentiers Pauer management Processor

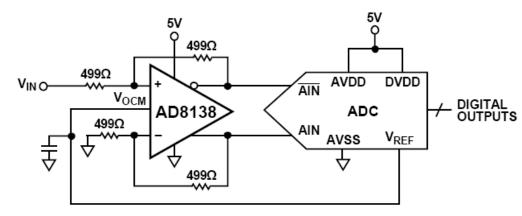
Why are VGAs Used?

 The Function of a VGA is to Extend the Dynamic Range of the System in Which it is Used

Example:

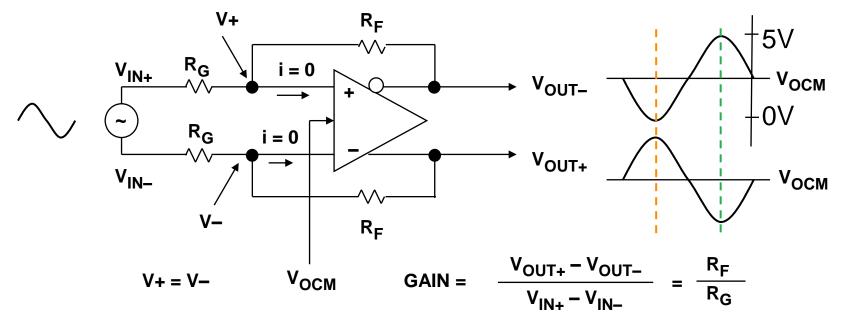
- The dynamic range of a 10-bit converter is 60 dB
- With a 60dB VGA, the total range is extended to 120dB
 - Approximately equivalent to a 20-bit ADC
- This dynamic range is impossible to achieve with a stand-alone ADC at high sampling rates

Key Attributes:


- Linear-in-dB and/or Linear-in-Gain Control Inputs
- Some Include an Integrated Low Noise Amplifier (LNA)
- Low Noise in the Signal Path
- Single Ended or Fully Differential Signal Chain
- Low Power
- Singles, Dual and Quad Channel Versions Available

Differential Amplifiers Performance Advantages

- Rejects ground-based noise – important in single supply systems
- High common-mode noise rejection
- Flexible input commonmode voltage levels


TYPICAL APPLICATION CIRCUIT

- Twice the input signal swing in low voltage, single-supply applications
- Reduced second-order distortion products
- Differential input ADCs require a high performance differential driver

Analyzing Voltage Levels in Differential Amplifiers

- + and input currents are zero
 - + and input voltages are equal
- Output voltages are 180° out of phase and symmetrical about V_{OCM}
 Gain = R_F/R_G

◆
$$V_{OUT+}$$
 - V_{OUT-} = 5V - 0V = 5V
◆ V_{OUT+} - V_{OUT-} = 0V - 5V = -5V
◆ V_{OUT} = ±5V ... 10V swing

Summary

Many specifications will affect how you choose an op amp

- DC performance
- AC performance
- Specialty amplifiers offer improved performance and integration for some applications
 - Difference Amps
 - Instrumentation Amps
 - Log Amps
 - Variable Gain Amps
 - Differential Amps

ADI中国地区技术支持热线: 4006 100 006 ADI中国地区技术支持信箱: <u>china.support@analog.com</u> ADI样片申请网址: <u>http://www.analog.com/zh/sample</u>

MAKEADIFFERENCE

