
Wireless Firmware Upgrades for the
MSP430 Using a SPI Connected SoC

Kris Dickie – B.Tech
Clarius Mobile Health
kris.dickie@clarius.me

I. Introduction

The MSP430 is low-power microcontroller
designed and produced by Texas Instruments, and
come in a variety of models. The purpose of this
technical paper is to explain how to perform a
firmware upgrade over an external peripheral bus
without relying on the MSP's on-board Bootloader
(BSL). There may be many reasons to not use the
BSL to perform a firmware upgrade, however the
design referenced in this paper was put into place
without addressing connected BSL pins for the
sake of both simplicity and complacency. It is
assumed that the reader has a good understanding
of the MSP430 architecture, as concepts of ports,
interrupts, and command execution are not
explained in any great detail. It is also worth noting
that all code was written in C/C++ and does not
rely on assembly instructions. The program
described also allocates no heap and makes static
instantiations of C++ objects.

II. System Design

The electronics designed include a MSP430-
5438A, a relatively flexible MSP model with a
large address space and a variety of peripherals that
can be addressed. It's primary purpose is to monitor
activity over a UART bus connected to a Bluetooth
Low Energy controller and respond to commands;
one of which is to boot up a higher power-
consumption ARM-based SoC, which is then used
for other purposes such as enabling an 802.11ac
wireless connection for high speed transmissions
of compressed image data. The MSP controls the
power pins to the SoC, and also shares a 3-wire
SPI bus and two general purpose pins which are
used for interrupts, one for interrupting the MSP
from the SoC, and vice-versa. The interrupts are

crucial to the design, as a SPI slave has no good
mechanism to signal the master when it has data
ready since it cannot control the clock. In this
design, the SoC is the SPI master, and the MSP is
the SPI slave. A different peripheral bus could be
used as the communications port, such as I2C or
UART, however SPI was chosen for it's relative
simplicity.

Throughout the lifetime of the operation of the
device, software and firmware updates may come
through the high-speed wireless connection, both
for updating the SoC and the MSP. Since the
design uses a battery, the device includes warning
systems as to notify the user when a crucial
segment of the software/firmware update is taking
place as to ensure the battery is not removed and
thereby 'bricking' the device.

Figure 1. System Diagram

III. SPI Setup

As mentioned, the MSP is a SPI slave, and
therefore cannot control the clock, and must send
notifications through a separate GPIO pin to
interrupt the SoC. Acting as a SPI slave on the
MSP comes with some interesting nuances, that are

Version 1.0 - March 2016

mailto:kris.dickie@clarius.me

weakly documented in the TI User Guide's, but are
crucial for robust operation. A SPI bus must only
be setup on the MSP, when acting as a slave, once
the clock is enabled by the SPI master, in this case
once the SoC has powered up and setup it's
peripherals. The MSP handles this by using the
interrupt mentioned previously on one of the free
pins, as a trigger that the SoC is alive, and it can
now setup the SPI pins. An alternative that was
tested on a development board is to also route the
SPI clock to an interrupt pin, however this
potentially wastes a pin and unnecessarily
complicates routing. It's important to mention that
on the MSP430-5438A, only Ports 1 and 2 can be
used as general purpose interrupt receivers. To wait
for a SPI interrupt on the peripheral would result in
a chicken and egg scenario, and thus the above
solution works quite elegantly.

Example:

bool spiReady = false;

#pragma vector=PORT1_VECTOR
void onPort1Interrupt()
{
 switch (P1IV)
 {
 // ex. schematic uses port 1.2 for
 // interrupt from SoC
 case P1IV_P1IFG2:
 if (!spiReady)
 {
 setupSpi();
 spiReady = true;
 }
 else
 handleInterrupt();
 break;
 }
}

// ex. schematic uses UCA2 for SPI
void setupSpi()
{
 // enable peripheral
 P9SEL |= (BIT0 | BIT3 | BIT | BIT5);
 // reset
 UCA2CTL1 |= UCSWRST;
 // CS, high polarity, MSB
 UCA2CTL0 |= (UCSYNC | UCMODE_2 |
 UCCKPL | UCMSB);
 // finish

 UCA2CTL1 &= ~UCSWRST;
 // enable rx interrupt
 UCA2IE |= UCRXIE;
}

The spiReady flag used in the above example
should be reset when the MSP powers down the
SoC, as to ensure the first interrupt always triggers
a SPI bus configuration.

IV. SPI Communications

The implemented design makes use of numerous
types of commands and data exchanges between
the MSP and the SoC; thus a simple protocol was
developed using a packet based system, where a
packet consists of a single header byte, a command
byte, a command info byte, a data byte, and two
size bytes. The packet can then be followed by an
arbitrary payload with a size as described in the
header. The details of the protocol commands do
not need to be described, but the background is
important since this packet format is used when
sending firmware upgrade data to the MSP.

// header for spi packets
typedef struct _spiCommHeader
{
 uint8_t tag_;
 uint8_t command_;
 uint8_t info_;
 uint8_t data_;
 uint16_t payloadSize_;

} spiCommHeader;

The MSP is burned in through a FET interface and
upon successful bootup, the firmware hash is
programmed into the MSP info flash memory via
the SoC. During normal operation the MSP and
SoC will communicate to operate the device, and
when there is a software upgrade the embedded
firmware hash in the upgrade package is compared
to the hash stored on the MSP's info flash. If they
do not match, the SoC can notify the user if they
would like to perform an upgrade, and also check
that battery levels are sufficient to sustain device
power for the period of the upgrade.

Version 1.0 - March 2016

V. The Upgrade Process

Once an upgrade has been confirmed by the user,
many preparations happen on the device to ensure
that both the SoC and MSP do not get interrupted.
Wireless communication is shut down, including
WiFi on the SoC and Bluetooth on the MSP; this is
done by manually powering down the components
through the respective software interfaces.

V.a. Parsing the Firmware Update

The firmware file comes in the form of a TI-TXT
file, which is a hex-encoded text file that specifies
base addresses for various streams of hex bytes.
The format is very simple to parse and the SoC
runs through the file, building up a stream of bytes
with base address information that will be sent to
the MSP.

To ensure that the MSP is fully erased, spaces
between base addresses are padded with 0xFF,
which is the byte value read back when a flash
bank has been erased. Without doing this, stray
instructions may still exist in flash, and although
theoretically should never get executed, the
precaution of mimicing the FET upgrade is taken.

A pseudo-code example for parsing the file looks
similar to the following:

data = readTiTxt(filename)
while (readLine(data))
{
 if (find('@'))
 {
 addr = getStartAddr();
 if (bytesExist)
 padUntilNewAddr(0xFF);
 }
 else if (find('q'))
 padUntilEndOfFlashMem(0xFF);
 else
 addBytesReadFromLine();
}

A version without padding was also created, so that
different 'blocks' were generated at various base
addresses, however to get the full erase of the

instruction flash, only a single block will be
created with the code above, at a base address of
5C00H (where the MSP430-5438A instruction
flash starts).

V.b. Setup to Execute from RAM

One of the more complicated, and definitely the
most important piece of manually upgrading the
MSP firmware is to execute instructions, and deal
with interrupts, from RAM, as all of the instruction
flash will eventually be erased and overwritten.

A custom linker file should be created for the MSP
project so that the memory configuration can be
split between general purpose execution and
firmware upgrade execution. The project described
allocates 1KB (400H bytes) of space in instruction
flash starting at 5C00H, with a corresponding
RAM space starting at 1C00H

An example linker excerpt is shown below:

MEMORY
{
 RAMSWU : origin = 0x1C00, length = 0x0400
 RAM : origin = 0x2000, length = 0x3C00
 FLASHSWU : origin = 0x5C00, length = 0x0400
 FLASH : origin = 0x6000, length = 0x9F80
 FLASH2 : origin = 0x10000,length = 0x35C0
}

SECTIONS
{
 .bss : {} > RAM
 .data : {} > RAM
 .TI.noinit : {} > RAM
 .sysmem : {} > RAM
 .stack : {} > RAM (HIGH)

 .flashswu : load = FLASHSWU, run = RAMSWU
 .ramswu : load = FLASHSWU

 .text : {}>> FLASH2 | FLASH
 .text:_isr : {} > FLASH
 .cinit : {} > FLASH
 .const : {} > FLASH | FLASH2
}

The RAMSWU and FLASHSWU sections are the
address spaces that are used for exclusively for
placing and executing instructions for performing
firmware updates. It is important to note that the
FLASHSWU section has a special run =
RAMSWU indication, which forces all instructions

Version 1.0 - March 2016

located within that section to run out of the RAM
space that was allocated.

In the MSP program, some initial setup needs to be
written to properly move instructions around, the
first of which is to create a definition for the
interrupt vector table. In our example, only two
interrupts are used:

1. The SPI interrupt on USCI A2
2. The general purpose interrupt on Port 2

A structure similar to below should be setup so that
pointers to functions can be setup.

// isr function pointer variable type
typedef uint16_t* isr_type_t;

// interrupt vector table data type
typedef struct _isrVect
{
 isr_type_t reserved[41];

 isr_type_t io_p2;

 isr_type_t usci_a2_rx_tx;

 isr_type_t reset;

} isrVect;

Some static variables can be setup and initialized
when the MSP boots up, or addresses can be hard-
coded, for readability, excerpts from the actual
source code are found below:

// define important addresses / sizes
#define FLASHSWU 0x5C00
#define RAMSWU 0x1C00
#define TOP_OF_RAM 0x5BFF
#define SWU_SIZE 0x0400

// start address of interrupt vector
// table in RAM
#define IV_START_ADDR /
 (TOP_OF_RAM + 1 – sizeof(isrVect))

isrVect* iv = (isrVect*)(IV_START_ADDR);
uintptr_t flashSwu = FLASHSWU;
uintptr_t ramSwu = RAMSWU;

Casting of functions can be interesting when trying
to assign a function pointer to the interrupt vector

table, so a special type definition was created.

typedef void (*ivFn)();

When ready to move the flash instructions into
RAM for execution, a simple memory copy will
do.

uint8_t* ram = (uint8_t*)ramSwu;
uint8_t* flashmem = (uint8_t*)flashSwu;
memcpy(ram, flashmem, SWU_SIZE);

To move the interrupt vector table into RAM
requires some special casting as mentioned above
since we are using a large code model (20 bit
pointers), and the ISR vector must be 16 bit
pointers. Note that once this happens, there is no
turning back, and ALL interrupts will be handled
through the newly loaded interrupt vector table!

// handler for spi bus interrupts
ivFn fn1 = onSpiData;
void* ptr = *(void**)(&fn1);
iv->usci_a2_rx_tx =
 (uint16_t*)(*(uint16_t*)(&ptr));

// handler for gp interrupts
ivFn fn2 = onP2Interrupt;
ptr = *(void**)(&fn2);
iv->io_p2 =
 (uint16_t*)(*(uint16_t*)(&ptr));

// move!
SYSCTL |= SYSRIVECT;

That's it. Now everything is ready to execute in
RAM; the next tricky part is to ensure that ALL
execution and variable access happens within
RAM and not in the now very volatile flash that
will be overwritten during the firmware update.

V.c. Writing Functions to Execute in RAM

Once the interrupt vector table and the appropriate
instructions have been loaded into RAM, it will be
important to ensure that ONLY these loaded
instructions execute and that ALL data access
happens within RAM.

The typical functions that are required to to execute

Version 1.0 - March 2016

during the firmware update include:
• The SPI interrupt handler
• The general purpose interrupt handler
• Parsing functions when receiving data from

the SPI bus
• Functions to write to the instruction flash

memory
• A no operation handler

The simple way to put a function into the proper
flash/RAM space is to put the following pragma
command directly before the implementation of the
function:

#pragma CODE_SECTION(".flashswu")

This ensures that the instructions are in the
FLASHSWU section, and that they get copied into
RAM when the memcpy() command is executed as
shown in the previous section. Note this works for
Code Composer Studio (CCS), but IAR has a
different syntax for moving code into specific
sections.

A no-operation (nop) handler is important since
most programs will enter a low power mode, and
have a main loop which becomes idle at some
point. An interrupt will then wake up the MSP and
the main loop can then then process interrupt data.
Since the general purpose execution must cease to
exist, running a nop loop is the safest way to
ensure nothing gets executed outside of RAM, for
example:

#pragma CODE_SECTION(".flashswu")
// loops continuously while executing
// in ram
void nop()
{
 while (1)
 __no_operation();
}

For C++ classes, it may be cumbersome to
constantly ensure that functions are placed into
RAM through pragmas, so one simple method to
ensure execution from RAM is to create inline
functions, assuming that they are not inherently

large. This can be useful to run a simple function to
toggle an LED for sample.

V.d. Data Access From RAM

As mentioned in the previous sections, it is
imperative that all data access, whether constant or
variable is done on variables that exist in RAM or
on the stack. When writing C code, it is pretty
common that most global variables automatically
become static, and are therefore automatically
assigned to RAM, however with C++, class
members for example may be assigned to flash. It
is important to look at the mapping file generated
after compilation to try to understand where
various variables and functions have been assigned
to.

For C++ classes, ensuring that variables exist in
RAM can be simply done by using the static
keyword.

V.e. Firmware Data Exchange

Once the bytes have been loaded into SoC memory
after parsing the TI-TXT file, they are then sent
over the SPI bus to the MSP in 512 byte chunks.
512 bytes was chosen because segment erases,
which are the smallest flash erases that can take
place, are also aligned at 512 bytes.

The SoC will send setup information first, which
describes the base address the set of bytes should
be written to, and how many bytes will be written.
After the setup information, actual instruction data
will be sent.

On the MSP side, the SPI interrupt vector that is
newly loaded into RAM will occur once the SoC
writes it's commands, and parsing will occur, for
example:

Version 1.0 - March 2016

#pragma CODE_SECTION(".flashswu")
__interrupt void onSpiData()
{
 switch(__even_in_range(UCA2IV, 4))
 {
 // rx data
 case 2:
 parse(UCA2RXBUF);
 break;
 }
}

The parsing function will handle setup of data,
actual instruction data, and a reboot command that
is sent by the SoC once all instruction data has
been sent.

#pragma CODE_SECTION(".flashswu")
void parse(uint8_t b)
{
 if (parseByte(b))
 {
 uint8_t cmd = parsedCommand();
 switch (cmd)
 {
 // sent by SoC to complete
 // software update
 case swuReboot:
 PMMCTL0 = PMMPW | PMMSWBOR;
 break;
 // sent by SoC to setup
 // address, size, etc.
 case swuSetup:
 setupWrite();
 notifySoC();
 break;
 // new instruction data sent
 // by SoC (512 bytes)
 case swuData:
 writeData();
 notifySoC();
 break;
 }
 }
}

The code to write to flash is relatively simple and
for the firmware update, the function analyzes the
data sent to see if it is padded for an erase, and then
skips the write to save on write time.

#pragma CODE_SECTION(".flashswu")
void writeToFlash(uint32_t addr,
 const uint8_t* data, uint32_t sz)
{

 uint32_t i;
 bool blank = true;

 __disable_interrupt();
 // erase segment
 FCTL3 = FWKEY;
 FCTL1 = FWKEY + ERASE;
 __data20_write_char(addr, 0);
 while (FCTL3 & BUSY);

 // check if the block is blank
 // if so, then skip the write,
 // and just be happy with the erase
 for (i = 0; i < sz; i++)
 {
 if (data[i] != 0xFF)
 {
 blank = false;
 break;
 }
 }
 if (blank)
 {
 FCTL3 = FWKEY + LOCK;
 __enable_interrupt();
 return;
 }

 // enable write
 FCTL1 = FWKEY + WRT;

 // write data
 for (i = 0; i < sz; i++)
 {
 __data20_write_char(addr + i,
 data[i]);
 while(!(FCTL3 & WAIT));
 }

 // disable wrt
 FCTL1 = FWKEY;
 while (FCTL3 & BUSY);
 // set lock bit
 FCTL3 = FWKEY + LOCK;
 __enable_interrupt();
}

It's also worth mentioning that since we have a 20-
bit address space in the MSP430-5438A, the
__data20_writeXXX functions are used as opposed
to a simple address assignment. This ensure that
any instruction outside of the 16-bit address space
will actually get written.

Version 1.0 - March 2016

VI. Conclusion

The MSP430 is a flexible low-power MCU that
can perform very well in conjunction with a higher
power SoC to operate a complex device. Since
today's developed devices are often out of date
tomorrow, it is important that over-the-wire or
wireless (think IoT) updates can happen without
JTAG or FET connections that require custom
servicing of the device itself. If MSP430
upgradeability becomes an afterthought in the
design process, all is not lost, as long as a bus
exists that allows for two-way communications.

As shown, the MSP430 can be re-programmed to
force execution out of RAM to completely
overwrite it's instruction flash with relative
simplicity and ease.

The author intends to create a GitHub repository
with various code examples that were briefly
shown here. A subsequent version of this paper will
be published with any updates and a repository
link.

About the Author

Kris studied Computer Systems at the British
Columbia Institute of Technology, and has since
been working in the medical device industry for
over 16 years, helping to design and implement
real-time imaging devices using a variety of
platforms and technologies, which include:
Microsoft Windows, Embedded Linux (ARM
based), TI C6X DSPs, TI MSP430, ADI Blackfin
SoC, and Xilinx FGPAs.

Version 1.0 - March 2016

