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AN4044
Application note

Using floating-point unit (FPU) with
 STM32F405/07xx and STM32F415/417xx microcontrollers

Introduction
This application note explains how to use floating-point units (FPU) with STM32F405/07xx 
and STM32F415/417xx microcontrollers and provides a short overview of:

■ Floating-point arithmetic

■ STM32F405/07xx and STM32F415/417xx family floating-point unit

An application example is given at the end of this application note.

Table 1 lists the microcontrollers and development tools concerned by this application note.

         

Table 1. Applicable products and tools

Type Applicable products

Microcontrollers
STM32F405/07xx and STM32F415/417xx high-performance MCUs with 
DSP and FPU instructions 

Development tools STM3240G-EVAL evaluation board

www.st.com

http://www.st.com
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1 Floating-point arithmetic

Floating-point numbers are used to represent non-integer numbers. They are composed of 
3 fields:

● the sign

● the exponent

● the mantissa

Such a representation allows a very wide range of number coding, making floating-point 
numbers the best way to deal with real numbers. Floating-point calculations can be 
accelerated using a Floating-point unit (FPU) integrated in the processor.

1.1 Fixed-point or floating-point
One alternative to floating-point is fixed-point, where the exponent field is fixed. But if fixed-
point is giving better calculation speed on FPUless processors, the range of numbers and 
their dynamic is low. As a consequence, a developer using the fixed-point technique will 
have to check carefully any scaling/saturation issues in its algorithm.

         

The C language offers the float and the double types for floating-point operations. At a 
higher level, modelization tools, such as matlab or scilab, are generating C code mainly 
using float or double. No floating-point support means modifying the generated code to 
adapt it to fixed-point. And all the fixed-point operations have to be handcoded by the 
programmer.

         

When used natively in code, floating-point operations will decrease the development time of 
a project. It is the most efficient way to implement any mathematical algorithm.

Table 2. Integer numbers dynamic

Coding Dynamic

Int8 48 dB

Int16 96 dB

Int32 192 dB

Int64 385 dB

Table 3. Floating-point numbers dynamic

Coding Dynamic

half precision 180 dB

single precision 1529 dB

double precision 12318 dB
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1.2 Floating-point unit (FPU)
Floating-point calculations require a lot of resources, as for any operation between two 
numbers. For example, we need to:

● align the two numbers (have them with the same exponent)

● perform the operation

● round out the result

● code the result

On an FPUless processor, all these operations are done by software through the C compiler 
library and are not visible to the programmer; but the performances are very low.

On a processor having an FPU, all of the operations are entirely done by hardware in a 
single cycle, for most of the instructions. The C compiler does not use its own floating-point 
library but directly generates FPU native instructions. 

When implementing a mathematical algorithm on a microprocessor having an FPU, the 
programmer does not have to choose between performance and development time. The 
FPU brings reliability allowing to use directly any generated code through a high level tool, 
such as matlab or scilab, with the highest level of performance.
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2 IEEE standard for floating-point arithmetic (IEEE 754)

The usage of the floating-point arithmetic has always been a need in computer science 
since the early ages. At the end of the 30’s, when Konrad Zuse developed his Z series in 
Germany, floating-points were already in. But the complexity of implementing a hardware 
support for the floating-point arithmetic has discarded its usage for decades.

In the mid 50’s, IBM, with its 704, introduced the FPU in mainframes; and in the 70’s, various 
platforms were supporting floating-point operations but with their own coding techniques. 
The unification took place in 1985 when the IEEE published the standard 754 to define a 
common approach for floating-point arithmetic support.

2.1 Overview
The various types of floating-point implementations over the years led the IEEE to 
standardize the following elements:

● number formats

● arithmetic operations

● number conversions

● special values coding

● 4 rounding modes

● 5 exceptions and their handling

2.2 Number formats
All values are composed of three fields:

● Sign: s

● Biased exponent:

– sum of the exponent = e

– constant value = bias

● Fraction (or mantissa): f

The values can be coded on various lengths:

● 16-bit: half precision format

● 32-bit: single precision format

● 64-bit: double precision format
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Figure 1. IEEE.754 single and double precision floating-point coding

Five different classes of numbers have been defined by the IEEE:

● Normalized numbers

● Denormalized numbers

● Zeros

● Infinites

● NaN (Not-a-Number)

The different classes of numbers are identified by particular values of those fields.

2.2.1 Normalized numbers

A normalized number is a “standard” floating-point number. Its value is given by the above 
formula:

Normalized Number = (-1)s . (1 + Σfi.2
-i) . 2e-bias (with i > 0)

The bias is a fixed value defined for each format (8-bit, 16-bit, 32-bit and 64-bit).

         

Example: single-precision coding of -7

● Sign bit = 1

● 7 = 1.75 x 4 = (1 + 1/2 + 1/4) x 4 = (1 + 1/2 + 1/4) x 22

● Exponent = 2 + bias = 2 + 127 = 129 = 0b10000001

● Mantissa = 2-1 + 2-2 = 0b11000000000000000000000

● Binary value = 0b 1 10000001 11000000000000000000000

● Hexadecimal value = 0xC0E00000

e(7..0)s f(1..23)

s e(10..0) f(1..52)

8-bit

31

1-bit

0

23-bit

64 0

1-bit 11-bit 52-bit

Single precision format

Double precision format

Table 4. Normalized numbers range

Mode Exponent Exp. Bias Exp. Range Mantissa Min. value Max. Value

Half 5-bit 15 -14, +15 10-bit 6,10.10-5 65504

Single 8-bit 127 -126,+127 23-bit 1,18. 10-38 3,40.1038

Double 11-bit 1023 -1022,+1023 52-bit 2,23.10-308 1,8.10308
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2.2.2 Denormalized numbers

A denormalized number is used to represent values which are too small to be normalized 
(when the exponent is equal to 0). Its value is given by the formula:

Denormalized number = (-1)s . (Σfi.2
-i) . 2-bias (with i > 0)

         

2.2.3 Zeros

A Zero value is signed to indicate the saturation (positive or negative). Both exponent and 
fraction are null.

2.2.4 Infinites

An Infinite value is signed to indicate +oo or -oo. Infinite values are resulting of an overflow 
or a division by 0. The exponent is set to its maximum value, whereas the mantissa is null.

2.2.5 NaN (Not-a-Number)

A NaN is used for an undefined result of an operation, for example 0/0 or the square root of 
a negative number. The exponent is set to its maximum value, whereas the mantissa is not 
null. The MSB of the mantissa indicates if it is a Quiet NaN (which can be propagated 
through the next operations) or a Signaling NaN (which generates an error).

2.2.6 Summary
         

Table 5. Denormalized numbers range

Mode Min value

Half 5,96.10-8

Single 1,4.10-45

Double 4,94.10-324

Table 6. Value range for IEEE.754 number formats

Sign Exponent Fraction Number

0 0 0 +0

1 0 0 -0

0 Max 0 +oo

1 Max 0 -oo

[0, 1] Max !=0 & MSB=1 QNaN

[0, 1] Max !=0 & MSB=0 SNaN

[0, 1] 0 !=0 Denormalized Number

[0, 1] [1, Max-1] [0, Max] Normalized Number
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2.3 Rounding modes
Four main rounding modes are defined:

● Round to nearest

● Direct rounding toward +oo

● Direct rounding toward -oo

● Direct rounding toward 0

Round to nearest is the default rounding mode (the most commonly used). If the two nearest 
are equally near, the selected one is the one with the LSB equal to 0.

The rounding mode is very important as it changes the result of an arithmetic operation. It 
can be changed through the FPU configuration register.

2.4 Arithmetic operations
The IEEE.754 standard defines 6 arithmetic operations:

● Add

● Subtract

● Multiply

● Divide

● Remainder

● Square root

2.5 Number conversions
The IEEE standard also defines some format conversion operations and comparison:

● Floating-point and integer conversion

● Round floating-point to integer value

● Binary-Decimal

● Comparison

2.6 Exception and exception handling
5 exceptions are supported:

● Invalid operation: the result of the operation is a NaN

● Division by zero

● Overflow: the result of the operation is +/-oo or +/-Max depending on the rounding 
mode

● Underflow: the result of the operation is a denormalized number 

● Inexact result: caused by rounding
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An exception can be managed in two ways:

● A trap can be generated. The trap handler returns a value to be used instead of an 
exceptional result.

● An interrupt can be generated. The interrupt handler cannot return a value to be used 
instead of an exceptional result.

2.7 Summary
The IEEE.754 standard defines how floating-point numbers are coded and processed.

An FPU implemented in hardware accelerates IEEE 754 floating point calculations. Thus, it 
can implement the whole IEEE standard or a subset. The associated software library 
manages the unaccelerated features.

For a “basic” usage, floating-point handling is transparent to the user, as if using float in C 
code. For more advanced applications, an exception can be managed through traps or 
interrupts.
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3 STM32F4 floating-point unit (FPU)

The CortexTMM4 FPU is an implementation of the ARMTM FPv4-SP single-precision FPU.

It has its own 32-bit single precision register set (S0-S31) to handle operands and result. 
These registers can be viewed as 16 double-word registers (D0-15) for load/store 
operations.

A Status & Configuration Register stores the FPU configuration (rounding mode and special 
configuration), the condition code bits (negative, zero, carry and overflow) and the exception 
flags.

Some of the IEEE.754 operations are not supported by hardware and are done by software:

● Remainder

● Round floating-point to integer-value floating-point number

● Binary-to-decimal and decimal-to-binary conversions

● Direct comparison of single-precision and double-precision values

The exceptions are handled through interrupts (traps are not supported).

3.1 Special operating modes
The CortexTMM4 FPU is fully compliant with IEEE.754 specifications. However, some non-
standard operating modes can be activated:

● Alternative Half-precision format (AHP control bit)

– Specific 16-bit mode with no exponent value and no denormalized number support.
Alternative Half-precision = (-1)s . (1 + Σfi.2-i) . 216

● Flush-to-zero mode (FZ control bit)

– All the denormalized numbers are treated as zeros. A flag is associated to input 
and output flush.

● Default NaN mode (DN control bit)

– Any operation with a NaN as an input, or which generates a NaN, returns the 
default NaN (Quiet NaN).

3.2 Floating-point status and control register (FPSCR)
The FPSCR stores the status (condition bit and exception flags) and the configuration 
(rounding modes and alternative modes) of the FPU.

As a consequence, this register may be saved in the stack when the context is changing.

FPSCR is accessed with dedicated instructions:

● Read: VMRS Rx, FPSCR

● Write: VMSR FPSCR, Rx
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Table 7. FPSCR register

3.2.1 Code condition bits: N, Z, C, V

They are set after a comparison operation.

3.2.2 Mode bits: AHP, DN, FZ, RM

They are configuring the alternative modes (AHP, DN, FZ) and the rounding mode (RM).

3.2.3 Exception flags

They are raised when an exception occurs in case of:

● Flush to zero (IDC)

● Inexact result (IXC)

● Underflow (UFC)

● Overflow (OFC)

● Division by zero (DZC)

● Invalid operation (IOC)

Note: The exception flags are not reset by the next instruction.

3.3 Exception management
Exceptions cannot be trapped. They are managed through the interrupt controller.

5 exception flags (IDC, UFC, OFC, DZC, IOC) are ORed and connected to the interrupt 
controller. There is no individual mask and the enable/disable of the FPU interrupt is done at 
the interrupt controller level.

The IXC flag is not connected to the interrupt controller and cannot generate an interrupt as 
its occurrence is very high. If needed, it must be managed by polling.

When the FPU is enabled, its context can be saved in the CPU stack using one of the three 
methods:

● No floating-point registers saving

● Lazy saving/restoring (only space allocation in the stack)

● Automatic floating-point registers saving/restoring

The stack frame consists of 17 entries:

● FPSCR

● S0 to S15

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

N Z C V
Res.

AHP DN FZ RM
Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
IDC

Reserved
IXC UFC OFC DZC IOC

rw rw rw rw rw
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3.4 Programmers model
When the MCU is coming out of reset, the FPU has to be enabled specifying the access 
level of the code using the FPU (denied, privilege or full) in the Coprocessor Access Control 
Register (CPACR).

The FPSCR can be configured to define alternative modes or the rounding mode.

The FPU also has 5 system registers:

● FPCCR (FP Context Control Register) to indicate the context when the FP stack frame 
has been allocated, together with the context preservation setting.

● FPCAR (FP Context Address Register) to point to the stack location reserved for S0.

● FPDSCR (FP Default Status Control Register) where the default values for the 
Alternative half-precision mode, the Default NaN mode, the Flush-to-zero mode and 
the Rounding mode are stored.

● MVFR0 & MVFR1 (Media and VFP Feature Registers 0 and 1) where the supported 
features of the FPU are detailed.

3.5 FPU instructions
The FPU supports instructions for arithmetic operation, compare, convert and load/store.

3.5.1 FPU arithmetic instructions

The FPU offers arithmetic instructions for:

● Absolute value (1 cycle)

● Negate of a float or of multiple floats (1 cycle)

● Addition (1 cycle)

● Subtraction (1 cycle)

● Multiply, multiply accumulate/subtract, multiply accumulate/subtract then negate (3 
cycles)

● Divide (14 cycles)

● Square root (14 cycles)

All the MAC operations can be standard or fused (rounding done at the end of the MAC for a 
better accuracy).

3.5.2 FPU compare & convert instructions

The FPU has compare instructions (1 cycle) and a convert instruction (1 cycle).

Conversion can be done between integer, fixed point, half precision and float.

3.5.3 FPU load/store instructions

The FPU follows the standard load/store architecture:

● Load and store on multiple doubles, multiple floats, single double or single float

● Move from/to core register, immediate of float or double

● Move from/to control/status register

● Pop and push double or float from/to the stack
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4 Application example

The example given with this application note is showing the benefit brought by the STM32F4 
FPU.

4.1 Julia set
The target is to compute a simple mathematical fractal: the Julia set.

The generation algorithm for such a mathematical object is quite simple: for each point of 
the complex plan, we are evaluating the divergence speed of a define sequence. The Julia 
set equation for the sequence is:

zn+1 = zn
2 + c

For each x + i.y point of the complex plan, we compute the sequence with c = cx + i.cy:

xn+1 + i.yn+1 = xn
2 - yn

2 + 2.i.xn.yn + cx + i.cy

xn+1 = xn
2 - yn

2 + cx and yn+1 = 2.xn.yn + cy

As soon as the resulting complex value is going out of a given circle (number’s magnitude 
greater than the circle radius), the sequence is diverging, and the number of iterations done 
to reach this limit is associated to the point. This value is translated into a color, to show 
graphically the divergence speed of the points of the complex plan.

After a given number of iterations, if the resulting complex value remains in the circle, the 
calculation stops, considering the sequence is not diverging:
void GenerateJulia_fpu(uint16_t size_x, uint16_t size_y, uint16_t 
offset_x, uint16_t offset_y, uint16_t zoom, uint8_t * buffer)
{
      float       tmp1, tmp2;
      float       num_real, num_img;
      float       radius;

      uint8_t           i;
      uint16_t        x,y;
      
      for (y=0; y<size_y; y++)
      {
            for (x=0; x<size_x; x++)
            {
                  num_real = y - offset_y;
                  num_real = num_real / zoom;
                  num_img = x - offset_x;
                  num_img = num_img / zoom;
                  i=0;
                  radius = 0;
            while ((i<ITERATION-1) && (radius < 4))
                  {
                        tmp1 = num_real * num_real;
                        tmp2 = num_img * num_img;
                        num_img = 2*num_real*num_img + IMG_CONSTANT;



Application example AN4044

16/21 Doc ID 022737 Rev 1

                        num_real = tmp1 - tmp2 + REAL_CONSTANT;
                        radius = tmp1 + tmp2;
                        i++;
                  }
                  /* Store the value in the buffer */
                  buffer[x+y*size_x] = i; 
            }
    }
}

Such an algorithm is very efficient to show the benefits of the FPU: no code modification is 
needed, the FPU just needs to be activated or not during the compilation phase.

No additional code is needed to manage the FPU, as it is used in its default mode.

Figure 2. Julia set with value coded on 8 bpp blue (c=0.285+i.0.01)

4.2 Implementation on STM32F4
To have a better rendering on the RGB565 screen of the STM3240G-EVAL evaluation 
board, we are using a special palette to code the color values.

The maximum iteration value is set to 128. As a consequence, the color palette will have 
128 entries. The circle radius is set to 2.

The main routine calls all the initialization functions of the board to set up the display and the 
buttons.

● The WAKUP button switches from automatic mode (continuous zoom in and out) to 
manual mode.

● In manual mode, the KEY button is used to launch another calculation, alternatively 
with and without an FPU, with performance comparison in between.

The whole project is compiled with the FPU enabled, except for GenerateJulia_noFPU.c 
which is compiled forcing the FPU off.
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Figure 3. Julia set with value coded on an RGB565 palette (c=0.285+i.0.01)

4.3 Results
Table 8 shows the time spent for the calculation of the Julia set, for several zooming factors, 
as shown in the demonstration firmware.

         

Table 8. Performance comparison with MDK-ARM version 4.22

Frame Zoom
Duration 
with FPU

Duration 
without FPU

(microlib)
Ratio

Duration 
without FPU

(no microlib)
Ratio

0 120 222 3783 17.04 2597 11.70

1 110 194 3276 16.89 2243 11.56

2 100 167 2794 16.73 1906 11.41

3 150 298 5156 17.30 3558 11.94

4 200 312 5412 17.35 3740 11.99

5 275 296 5124 17.31 3540 11.96

6 350 284 4905 17.27 3389 11.93

7 450 289 4989 17.26 3448 11.93

8 600 273 4705 17.23 3251 11.91

9 800 267 4592 17.20 3173 11.88

10 1000 261 4485 17.18 3100 11.88

11 1200 255 4374 17.15 3023 11.85

12 1500 242 4138 17.10 2860 11.82

13 2000 210 3555 16.93 2455 11.69

14 1500 242 4138 17.10 2860 11.82

15 1200 255 4374 17.15 3023 11.85

16 1000 261 4485 17.18 3100 11.88

17 800 267 4592 17.20 3173 11.88



Application example AN4044

18/21 Doc ID 022737 Rev 1

4.4 Conclusion
The FPU makes this very simple algorithm 11.5 to 17 times faster. No code modification has 
been done, just activating the FPU in the compiler options. 

The STM32F4 FPU allows very fast mathematical computation on float and is a key benefit 
for many applications needing floating-point mathematical handling such as loop control, 
audio processing or audio decoding or digital filtering.

It makes the development faster and safer, from high level design tools to software 
generation.

18 600 273 4705 17.23 3251 11.91

19 450 289 4989 17.26 3448 11.93

20 350 284 4905 17.27 3389 11.93

21 275 296 5123 17.31 3540 11.96

22 200 312 5412 17.35 3740 11.99

23 150 298 5156 17.30 3558 11.94

24 100 167 2794 16.73 1906 11.41

25 110 194 3276 16.89 2243 11.56

Table 8. Performance comparison with MDK-ARM version 4.22 (continued)

Frame Zoom
Duration 
with FPU

Duration 
without FPU

(microlib)
Ratio

Duration 
without FPU

(no microlib)
Ratio
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Table 9. Reference documents

Title Author Editor

The first computers

History and Architectures

Raul Rojas

Ulf Hashagen
MIT Press

IEEE754-2008 Standard IEEE IEEE

ARMv-7M Architecture Reference Manual ARM ARM

RM0090 Reference Manual STMicroelectronics STMicroelectronics
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