
Summary The Board Support Package (BSP) is the lowest layer of software modules used to access
processor specific functions. The standalone BSP is used when an application accesses
board/processor features directly and is below the operating system layer.

This document contains the following sections.

• “MicroBlaze BSP”

• “PowerPC BSP”

• “Program Profiling”

• “Configuring the Standalone BSP”

MicroBlaze BSP When your system contains a MicroBlaze™ processor and no operating system, the Library
Generator automatically builds the standalone BSP in the project library libxil.a.

Function Summary

The following table contains a list of all MicroBlaze BSP functions.

EDK 9.1i January 8, 2007

Standalone Board Support Package
R

Table 1: Function Summary

Functions

void microblaze_enable_interrupts(void)

void microblaze_disable_interrupts(void)

void microblaze_register_handler (XInterruptHandler Handler, void
*DataPtr)

void microblaze_disable_exceptions(void)

void microblaze_enable_exceptions(void)

void microblaze_register_exception_handler (Xuint8 ExceptionId,
XExceptionHandler Handler, void *DataPtr)

void microblaze_enable_icache(void)

void microblaze_disable_icache(void)

void microblaze_init_icache_range (int cache_addr, int cache_size)

void microblaze_enable_dcache(void)

void microblaze_disable_dcache(void)

void microblaze_init_dcache_range (int cache_addr, int cache_size)
EDK 9.1i January 8, 2007 www.xilinx.com 1

© 2007 Xilinx, Inc. All Rights Reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property
of their respective owners.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com

MicroBlaze BSP
R

Interrupt Handling

The following functions help manage interrupt handling on MicroBlaze devices. You must
include the header file mb_interface.h in your source code to use these functions.

void microblaze_enable_interrupts(void)

This function enables interrupts on the MicroBlaze. When the MicroBlaze starts up, interrupts
are disabled. Interrupts must be explicitly turned on using this function.

void microblaze_disable_interrupts(void)

This function disables interrupts on the MicroBlaze. This function can be called when entering
a critical section of code where a context switch is undesirable.

void microblaze_register_handler
(XInterruptHandler Handler, void *DataPtr)

This function allows you to register the interrupt handler for the MicroBlaze processor. This
handler is invoked in turn, by the first level interrupt handler that is present in the BSP. The first
level interrupt handler takes care of saving and restoring registers, as necessary for interrupt
handling and hence the function that you register with this handler can concentrate on the other
aspects of interrupt handling, without concern about saving registers.

Exception Handling

This section describes the exception handling functionality available on the MicroBlaze
processor.

Note: This feature and hence the corresponding interfaces are not available on versions of MicroBlaze
older than v3.00.a.

The handlers for the various exceptions can be specified in the parameter
microblaze_exception_vectors in the Xilinx® Platform Studio (XPS) software platform
settings. In the field corresponding to the exception type, specify the name of the routine that
you wish to handle a particular exception. You can pass in callback parameters (can only be
literal C constants) in the second field.

The following functions help manage exceptions on MicroBlaze. You must include the header
file mb_interface.h in your source code to use these functions.

void microblaze_disable_exceptions(void)

Disable hardware exceptions from the MicroBlaze processor. This routine clears the
appropriate “exceptions enable” bit in the model-specific register (MSR) of the processor.

void microblaze_enable_exceptions(void)

Enable hardware exceptions from the MicroBlaze processor. This routine sets the appropriate
“exceptions enable” bit in the MSR of the processor.
2 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

MicroBlaze BSP
R

void microblaze_register_exception_handler
(Xuint8 ExceptionId, XExceptionHandler Handler,
void *DataPtr)

Register a handler for the specified exception type. Handler is the function that handles the
specified exception. DataPtr is a callback data value that is passed to the exception handler
at run-time. By default the exception ID of the corresponding exception is passed to the
handler. The valid exception IDs, which are defined in microblaze_exceptions_i.h, are
described in the following table.

By default, the BSP provides empty handlers for all the exceptions except the unaligned
exceptions. A default, fast unaligned access exception handler is provided for by the BSP. An
unaligned exception can be handled by making the corresponding aligned access on or to the
appropriate bytes in memory. User software is not required to be aware of the unaligned access
at all and it is invisibly handled by the default handler. However, software that involves a
significant amount of unaligned accesses will see its effects at run-time. This is because the
software exception handler takes longer to satisfy the unaligned access request as compared
to a purely aligned one. Therefore, in some cases, user software might want to use the
provision for unaligned exceptions, just to trap the exception and be aware of software causing
the exception. In this case, you should specify your own exception handler for unaligned
exceptions.

Note: Because of the way the first level handler stores volatile and temporary registers on the stack, by
the time your custom unaligned access handler is invoked, critical information is not directly available to
the handler. Therefore, it is not recommended to specify your own recovering (perform alignment and
return) handler for unaligned exceptions. Rather, you should use a custom handler, just to trap the faulting
access (for example, by setting a breakpoint or printing a message in your handler). Similarly, your custom
handlers for the other exceptions must be aware of the fact that the first level exception handler would
have saved some state on the stack, before invoking your handler.

Table 2: Valid Exception IDs

Exception ID Value Description

XEXC_ID_UNALIGNED_ACCESS 1 Unaligned access exceptions

XEXC_ID_IOPB_EXCEPTION 2 Exception due to a timeout from the IOPB
bus

XEXC_ID_ILLEGAL_OPCODE 3 Exception due to an attempt to execute an
illegal opcode

XEXC_ID_DOPB_EXCEPTION 4 Exception due to a timeout on the DOPB bus

XEXC_ID_DIV_BY_ZERO 5 Divide by zero exceptions from the hardware
divide

XEXC_ID_FPU 6 Exceptions from the floating point unit on
MicroBlaze.

Note: This exception is valid only on v4.00.a and
newer versions of MicroBlaze.
EDK 9.1i January 8, 2007 www.xilinx.com 3

http://www.xilinx.com

MicroBlaze BSP
R

Note: A Handler for unaligned exception (XEXC_ID_UNALIGNED_ACCESS) cannot be
specified/changed dynamically at run-time by using the microblaze_register_exception_handler function if
the software platform was built with the default handler for unaligned exceptions. This is an enforced
limitation. The microblaze_register_exception_handler function silently performs a “nop” when invoked
within XEXC_ID_UNALIGNED_ACCESS as the ExceptionId. If you do need to specify a custom handler
for unaligned exceptions, you must set a handler value for the “microblaze_exception_handlers”
parameter in the Standalone BSP software settings. Thus, when the software platform is built with a
custom handler specified for unaligned exceptions, then the microblaze_register_exception_handler
function is fully functional for XEXC_ID_UNALIGNED_ACCESS.

The other exceptions are very useful in conjunction with an OS of some kind. For example, on
a divide by zero, the operating system (OS) might determine the process that caused the
exception and then terminate it. The same applies for the other exceptions.

Nested exceptions are allowed by MicroBlaze. The exception handler, in its prologue, re-
enables exceptions. Thus, exceptions within exception handlers are allowed and handled.

The parameter predecode_fpu_exceptions when set to true, causes the low-level exception
handler to decode the faulting floating point instruction, figure out the operand registers and
store their values into two global variables. You can register a handler for floating point
exceptions and retrieve the values of the operands from the global variables. You can use the
microblaze_getfpex_operand_a() and microblaze_getfpex_operand_b() macros.

Note: These macros return the operand values of the last floating point (FP) exception. If there are
nested exceptions, you cannot retrieve the values of outer exceptions. An FP instruction might have one
of the source registers being the same as the destination operand. In this case, the faulting instruction
overwrites the input operand value and it is again irrecoverable.

Instruction Cache Handling

The following functions help manage instruction caches on MicroBlaze. You must include the
header file mb_interface.h in your source code to use these functions.

Note: These functions work correctly only when the parameters that determine the caching system are
configured appropriately in the MicroBlaze Microprocessor Hardware Specification (MHS) hardware
block. Refer to the MicroBlaze Reference Guide for information on how to configure these cache
parameters.

void microblaze_enable_icache(void)

This function enables the instruction cache on MicroBlaze. When MicroBlaze starts up, the
instruction cache is disabled. The ICache must be explicitly turned on using this function.

void microblaze_disable_icache(void)

This function disables the instruction cache on MicroBlaze.

void microblaze_init_icache_range (int
cache_addr, int cache_size)

The icache can be invalidating using the function microblaze_init_icache_range. This
function can be used for invalidating the entire icache or only a part of it. The parameter
cache_addr indicates the beginning of the cache location, which is to be invalidating. The
cache_size represents the number of bytes from cache_addr, which needs to be
invalidating.
4 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

MicroBlaze BSP
R

For example, microblaze_init_icache_range (0x00000300, 0x100) invalidates the
instruction cache region between 0x300 to 0x3ff (0x100 bytes of cache memory is cleared
starting from 0x300).

Data Cache Handling

The following functions help manage data caches on MicroBlaze. You must include the header
file mb_interface.h in your source code to use these functions.

Note: These functions work correctly only when the parameters that determine the caching system are
configured appropriately in the MicroBlaze MHS hardware block. Refer to the MicroBlaze Reference
Guide for information on how to configure these cache parameters.

void microblaze_enable_dcache(void)

This function enables the data cache on MicroBlaze. When MicroBlaze starts up, the data
cache is disabled. The Dcache must be explicitly turned on using this function.

void microblaze_disable_dcache(void)

This function disables the data cache on MicroBlaze.

void microblaze_init_dcache_range (int
cache_addr, int cache_size)

The dcache can be invalidated using the function microblaze_init_dcache_range. This
function can be used for invalidating the entire dcache or only a part of it. The parameter
cache_addr indicate the beginning of the cache location, which is to be invalidated. The
cache_size represents the size from cache_addr, which needs to be invalidated. Both the
cache_addr and the cache_size parameters are aligned to a cache line boundary before
the invalidation starts. Interrupts are disabled while the cache is being invalidated.

For example, microblaze_init_dcache_range (0x00000300, 0x100) invalidates the data
cache region between 0x300 to 0x3ff (0x100 bytes of cache memory is cleared starting from
0x300).

Software Initialization Sequence for Instruction and Data Caches

Typically, before using the cache, your program should do a particular sequence of cache
operations, to ensure that invalid/dirty data in the cache is not being used by the processor.
This would typically happen, during repeated downloads of program(s) and executing them.

The required sequence is the following:

1. The cache should be disabled.

2. The cache should be fully invalidated.

3. The cache should be enabled.
EDK 9.1i January 8, 2007 www.xilinx.com 5

http://www.xilinx.com

MicroBlaze BSP
R

Here is an example snippet that assumes that both I and D caches are present and are 8 kB in
size. The values should be the C_CACHE_BYTE_SIZE and C_DCACHE_BYTE_SIZE
parameters on MicroBlaze.

/* Cache sizes
*
* ICACHE_SIZE should be set to C_CACHE_BYTE_SIZE
* DCACHE_SIZE should be set to C_DCACHE_BYTE_SIZE
*/

#define ICACHE_SIZE 8192
#define DCACHE_SIZE 8192

/* Initialize ICache *//
microblaze_disable_icache ();
microblaze_init_icache_range(0, ICACHE_SIZE);
microblaze_enable_icache ();

/* Initialize DCache */
microblaze_disable_dcache ();
microblaze_init_dcache_range(0, DCACHE_SIZE);
microblaze_enable_dcache ();

Fast Simplex Link Interface Macros

The BSP includes macros to provide convenient access to accelerators connected to the Fast
Simple Link (FSL) Interfaces of MicroBlaze. The macros are listed below. In the macros, val
refers to a variable in your program which can be the source or sink of the FSL operation. You
must include fsl.h in your source files to make these macros available.

getfsl(val, id)

This macro performs a blocking data get function on an input FSL of MicroBlaze; id is the FSL
identifier and can range from 0 to 7. This macro is uninterruptible.

putfsl(val, id)

This macro performs a blocking data put function on an output FSL of MicroBlaze; id is the
FSL identifier and can range from 0 to 7. This macro is uninterruptible.

ngetfsl(val, id)

This macro performs a non-blocking data get function on an input FSL of MicroBlaze; id is the
FSL identifier and can range from 0 to 7.

nputfsl(val, id)

This macro performs a non-blocking data put function on an output FSL of MicroBlaze; id is the
FSL identifier and can range from 0 to 7.
6 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

MicroBlaze BSP
R

cgetfsl(val, id)

This macro performs a blocking control get function on an input FSL of MicroBlaze; id is the
FSL identifier and can range from 0 to 7. This macro is uninterruptible.

cputfsl(val, id)

This macro performs a blocking control put function on an output FSL of MicroBlaze; id is the
FSL identifier and can range from 0 to 7. This macro is uninterruptible.

ncgetfsl(val, id)

This macro performs a non-blocking control get function on an input FSL of MicroBlaze; id is
the FSL identifier and can range from 0 to 7.

ncputfsl(val, id)

This macro performs a non-blocking control put function on an output FSL of MicroBlaze; id is
the FSL identifier and can range from 0 to 7.

getfsl_interruptible(val, id)

This macro performs repeated non-blocking data get operations on an input FSL of MicroBlaze
until valid data is actually fetched; id is the FSL identifier and can range from 0 to 7. Since the
FSL access is non-blocking, interrupts will be serviced by the processor.

putfsl_interruptible(val, id)

This macro performs repeated non-blocking data put operations on an output FSL of
MicroBlaze until valid data is sent out; id is the FSL identifier and can range from 0 to 7. Since
the FSL access is non-blocking, interrupts will be serviced by the processor.

cgetfsl_interruptible(val, id)

This macro performs repeated non-blocking control get operations on an input FSL of
MicroBlaze until valid data is actually fetched; id is the FSL identifier and can range from 0 to
7. Since the FSL access is non-blocking, interrupts are serviced by the processor.

cputfsl_interruptible(val, id)

This macro performs repeated non-blocking control put operations on an output FSL of
MicroBlaze until valid data is sent out; id is the FSL identifier and can range from 0 to 7. Since
the FSL access is non-blocking, interrupts are serviced by the processor.
EDK 9.1i January 8, 2007 www.xilinx.com 7

http://www.xilinx.com

MicroBlaze BSP
R

fsl_isinvalid(invalid)

This macro is used to check if the last FSL operation returned valid data or not. This macro is
applicable after invoking a non-blocking FSL put or get instruction. If there was no data on the
FSL channel on a get, or if the FSL channel was full on a put, then invalid is set to 1.
Otherwise, invalid is set to 0.

fsl_iserror(error)

This macro is used to check if the last FSL operation set an error flag. This macro is applicable
after invoking a control FSL put or get instruction. If the control bit was set error is set to 1.
Otherwise, error is set to 0.

Deprecated FSL Macros

The following FSL macros are deprecated. They have been replaced by the ones described
above.

microblaze_nbread_cntlfsl(val, id)

This macro performs a non-blocking control get function on an input FSL of MicroBlaze; id is
the FSL identifier and can range from 0 to 7.

microblaze_nbwrite_cntlfsl(val, id)

This macro performs a non-blocking data control function on an output FSL of MicroBlaze; id
is the FSL identifier and can range from 0 to 7.

microblaze_bread_datafsl(val, id)

This macro performs a blocking data get function on an input FSL of MicroBlaze; id is the FSL
identifier and can range from 0 to 7.

microblaze_bwrite_datafsl(val, id)

This macro performs a blocking data put function on an output FSL of MicroBlaze; id is the
FSL identifier and can range from 0 to 7.

microblaze_nbread_datafsl(val, id)

This macro performs a non-blocking data get function on an input FSL of MicroBlaze; id is the
FSL identifier and can range from 0 to 7.
8 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

MicroBlaze BSP
R

microblaze_nbwrite_datafsl(val, id)

This macro performs a non-blocking data put function on an output FSL of MicroBlaze; id is the
FSL identifier and can range from 0 to 7.

microblaze_bread_cntlfsl(val, id)

This macro performs a blocking control get function on an input FSL of MicroBlaze; id is the
FSL identifier and can range from 0 to 7.

microblaze_bwrite_cntlfsl(val, id)

This macro performs a blocking control put function on an output FSL of MicroBlaze; id is the
FSL identifier and can range from 0 to 7.

microblaze_nbread_cntlfsl(val, id)

This macro performs a non-blocking control get function on an input FSL of MicroBlaze; id is
the FSL identifier and can range from 0 to 7.

microblaze_nbwrite_cntlfsl(val, id)

This macro performs a non-blocking data control function on an output FSL of MicroBlaze; id
is the FSL identifier and can range from 0 to 7.

Pseudo-asm Macros

The BSP includes macros to provide convenient access to various registers in MicroBlaze.
Some of these macros are very useful within exception handlers for retrieving information about
the exception. You must include the header file mb_interface.h in your source code to use
these APIs.

mfgpr(rn)

Return value from the general purpose register (GPR) rn.

mfmsr()

Return the current value of the MSR.

mfesr()

Return the current value of the equivalent series resistance (ESR).
EDK 9.1i January 8, 2007 www.xilinx.com 9

http://www.xilinx.com

MicroBlaze BSP
R

mfear()

Return the current value of the exception address register (EAR).

mffsr()

Return the current value of the feedback shift register (FSR).

mtmsr(v)

Move the value v to MSR.

mtgpr(rn,v)

Move the value v to GPR rn.

microblaze_getfpex_operand_a()

Return the saved value of operand A of the last faulting floating point instruction.

microblaze_getfpex_operand_b()

Return the saved value of operand B of the last faulting floating point instruction.

Note: Because of the way some of these macros have been written, they cannot be used as parameters
to function calls and other such constructs.

Processor Version Register Access Routines

MicroBlaze v5.00.a and later versions have configurable Processor Version Registers (PVRs).
The contents of the PVR are captured using the pvr_t data structure. It is defined to be an
array of 32-bit words, with each word corresponding to a PVR register on hardware. The
number of PVR words is determined by the number of PVRs configured in the hardware. You
should not attempt to access PVR registers that are not present in hardware, as the pvr_t data
structure is resized to hold only as many PVRs as are present in hardware. The following
routines and pre-processor macros are used to access the PVR. You must include pvr.h to
make these routines and macros available.
10 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

MicroBlaze BSP
R

int microblaze_get_pvr(pvr_t *pvr)

Populate the PVR data structure pointed to by pvr with the values of the hardware PVR
registers. This routine populates only as many PVRs as are present in hardware and the rest
are zeroed. This routine is not available if C_PVR is set to NONE in hardware.

Table 3: PVR Access Macros

Macro Description

MICROBLAZE_PVR_IS_FULL(pvr) Return non-zero integer if PVR is of type
FULL, 0 if basic.

MICROBLAZE_PVR_USE_BARREL(pvr) Return non-zero integer if hardware barrel
shifter present.

MICROBLAZE_PVR_USE_DIV(pvr) Return non-zero integer if hardware divider
present.

MICROBLAZE_PVR_USE_HW_MUL(pvr) Return non-zero integer if hardware multiplier
present.

MICROBLAZE_PVR_USE_FPU(pvr) Return non-zero integer if hardware floating
point unit (FPU) present.

MICROBLAZE_PVR_USE_ICACHE(pvr) Return non-zero integer if I-cache present.

MICROBLAZE_PVR_USE_DCACHE(pvr) Return non-zero integer if D-cache present

MICROBLAZE_PVR_MICROBLAZE_VERSI
ON (pvr)

Return MicroBlaze version encoding. Refer
to the MicroBlaze Hardware Reference
Manual for mappings from encodings to
actual hardware versions.

MICROBLAZE_PVR_USER1(pvr) Return the USER1 field stored in the PVR.

MICROBLAZE_PVR_USER2(pvr) Return the USER2 field stored in the PVR.

MICROBLAZE_PVR_D_OPB(pvr) Return non-zero integer if Data side on-chip
peripheral bus (OPB) interface present.

MICROBLAZE_PVR_DLMB(pvr) Return non-zero integer if Data side local
memory bus (LMB) interface present.

MICROBLAZE_PVR_I_OPB(pvr) Return non-zero integer if Instruction side
OPB interface present.

MICROBLAZE_PVR_I_LMB(pvr) Return non-zero integer if Instruction side
LMB interface present.

MICROBLAZE_PVR_INTERRUPT_IS_EDG
E(pvr)

Return non-zero integer if interrupts are
configured as edge-triggered.

MICROBLAZE_PVR_EDGE_IS_POSITIVE(
pvr)

Return non-zero integer if interrupts are
configured as positive edge triggered.

MICROBLAZE_PVR_USE_MUL64(pvr) Return non-zero integer if MicroBlaze
supports 64-bit products for multiplies.

MICROBLAZE_PVR_OPCODE_OxO_ILLE
GAL(pvr)

Return non-zero integer if opcode 0x0 is
treated as an illegal opcode.

MICROBLAZE_PVR_UNALIGNED_EXCEP
TION(pvr)

Return non-zero integer if unaligned
exceptions are supported.
EDK 9.1i January 8, 2007 www.xilinx.com 11

http://www.xilinx.com

MicroBlaze BSP
R

MICROBLAZE_PVR_ILL_OPCODE_EXCE
PTION(pvr)

Return non-zero integer if illegal opcode
exceptions are supported.

MICROBLAZE_PVR_IOPB_EXCEPTION(p
vr)

Return non-zero integer if I-OPB exceptions
are supported.

MICROBLAZE_PVR_DOPB_EXCEPTION(p
vr)

Return non-zero integer if D-OPB exceptions
are supported.

MICROBLAZE_PVR_DIV_ZERO_EXCEPTI
ON(pvr)

Return non-zero integer if divide by zero
exceptions are supported

MICROBLAZE_PVR_FPU_EXCEPTION(pvr
)

Return non-zero integer if FPU exceptions
are supported.

MICROBLAZE_PVR_DEBUG_ENABLED(p
vr)

Return non-zero integer if debug is enabled.

MICROBLAZE_PVR_NUM_PC_BRK(pvr) Return the number of hardware PC
breakpoints available.

MICROBLAZE_PVR_NUM_RD_ADDR_BR
K(pvr)

Return the number of read address hardware
watchpoints supported.

MICROBLAZE_PVR_NUM_WR_ADDR_BR
K(pvr)

Return the number of write address
hardware watchpoints supported.

MICROBLAZE_PVR_FSL_LINKS(pvr) Return the number of FSL links present.

MICROBLAZE_PVR_ICACHE_BASEADDR
(pvr)

Return the base address of the I-cache.

MICROBLAZE_PVR_ICACHE_HIGHADDR(
pvr)

Return the high address of the I-cache.

MICROBLAZE_PVR_ICACHE_ADDR_TAG
_BITS(pvr)

Return the number of address tag bits for the
I-cache.

MICROBLAZE_PVR_ICACHE_USE_FSL(p
vr)

Return non-zero if I-cache uses FSL links.

MICROBLAZE_PVR_ICACHE_ALLOW_WR
(pvr)

Return non-zero if writes to I-caches are
allowed.

MICROBLAZE_PVR_ICACHE_LINE_LEN(p
vr)

Return the length of each I-cache line in
bytes.

MICROBLAZE_PVR_ICACHE_BYTE_SIZE(
pvr)

Return the size of the D-cache in bytes.

MICROBLAZE_PVR_DCACHE_BASEADD
R(pvr)

Return the base address of the D-cache.

MICROBLAZE_PVR_DCACHE_HIGHADD
R(pvr)

Return the high address of the D-cache.

MICROBLAZE_PVR_DCACHE_ADDR_TAG
_BITS(pvr)

Return the number of address tag bits for the
D-cache.

MICROBLAZE_PVR_DCACHE_USE_FSL(
pvr)

Return non-zero if the D-cache uses FSL
links.

Table 3: PVR Access Macros

Macro Description
12 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

PowerPC BSP
R

Accessing the information in the PVRs is done through a two-step process. In the first step, you
must use the microblaze_get_pvr () function to populate the PVR data into a pvr_t data
structure. In subsequent steps, you may use anyone of the PVR access macros listed in to get
individual data stored in the PVR.

Note: The PVR access macros take a parameter, which must be of type pvr_t.

File Handling

int fcntl(int fd, int cmd, long arg);

A dummy implementation of fcntl, which always returns 0, is provided. fcntl is intended to
manipulate file descriptors according to the command specified by cmd. Since the standalone
BSP does not provide a file system, this function does not do anything.

Errno

int errno();

Return the global value of errno as set by the last C library call.

PowerPC BSP When the user system contains a PowerPC™ processor, and no Operating System, the Library
Generator automatically builds the BSP in the project library libxil.a.

The BSP contains boot code, cache, file and memory management, configuration, exception
handling, time and processor specific include functions.

MICROBLAZE_PVR_DCACHE_ALLOW_W
R(pvr)

Return non-zero if writes to D-cache are
allowed.

MICROBLAZE_PVR_DCACHE_LINE_LEN(
pvr)

Return the length of each line in the D-cache
in bytes.

MICROBLAZE_PVR_DCACHE_BYTE_SIZ
E(pvr)

Return the size of the D-cache in bytes.

MICROBLAZE_PVR_TARGET_FAMILY Return the encoded target family identifier.

MICROBLAZE_PVR_MSR_RESET_VALUE Refer to the MicroBlaze Hardware Reference
Manual for mappings from encodings to
target family name strings.

Table 3: PVR Access Macros

Macro Description
EDK 9.1i January 8, 2007 www.xilinx.com 13

http://www.xilinx.com

PowerPC BSP
R

Function Summary

The following table contains a list of all PowerPC BSP functions.

Table 4: Function Summary

Functions

void XCache_WriteCCR0(unsigned int val);

void XCache_EnableDCache(unsigned int regions);

void XCache_DisableDCache(void);

void XCache_FlushDCacheLine(unsigned int adr);

void XCache_InvalidateDCacheLine(unsigned int adr);

void XCache_StoreDCacheLine(unsigned int adr);

void XCache_EnableICache(unsigned int regions);

void XCache_DisableICache(void);

void XCache_InvalidateICache(void);

void XCache_InvalidateICacheLine(unsigned int adr);

void XExc_Init(void);

void XExc_RegisterHandler(Xuint8 ExceptionId, XExceptionHandler
Handler, void *DataPtr);

void XExc_RemoveHandler(Xuint8 ExceptionId)

void XExc_mEnableExceptions (EnableMask)

void XExc_mDisableExceptions (DisableMask);

int read(int fd, char *buf, int nbytes);

int write(int fd, char *buf, int nbytes);

int isatty(int fd);

int fcntl(int fd, int cmd, long arg);

int errno();

char *sbrk(int nbytes);

void XTime_SetTime(XTime xtime);

void XTime_GetTime(XTime *xtime);

void XTime_TSRClearStatusBits(unsigned long Bitmask);

void XTime_PITSetInterval(unsigned long interval);

void XTime_PITEnableInterrupt(void);

void XTime_PITDisableInterrupt(void);

void XTime_PITEnableAutoReload(void);

void XTime_PITDisableAutoReload(void);

void XTime_PITClearInterrupt(void);

unsigned int usleep(unsigned int __useconds);

unsigned int sleep(unsigned int __seconds);

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
14 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

PowerPC BSP
R

Boot Code

The boot.S file contains a minimal set of code for transferring control from the processor’s
reset location to the start of the application. Code in the boot.S consists of the two sections
boot and boot0. The boot section contains only one instruction that is labeled with _boot.
During the link process, this instruction is mapped to the reset vector and the _boot label
marks the application's entry point. The boot instruction is a jump to the _boot0 label. The
_boot0 label must reside within a ±23-bit address space of the _boot label. It is defined in the
boot0 section. The code in the boot0 section calculates the 32-bit address of the _start
label and jumps to it.

Cache

The xcache_l.c file and corresponding xcache_l.h include file provide access to cache
and cache-related operations.

void XCache_WriteCCR0(unsigned int val);

The XCache_WriteCCR0() function writes an integer value to the CCR0 register. Below is a
sample code sequence. Before writing to this register, the instruction cache must be enabled to
prevent a lockup of the processor core. After writing the CCR0, the instruction cache can be
disabled, if not needed.

...
XCache_EnableICache(0x80000000) /* enable instruction cache for first 128
MB memory region */
XCache_WriteCCR0(0x2700E00) /* enable 8 word pre-fetching */
XCache_DisableICache() /* disable instruction cache */
...

void XCache_EnableDCache(unsigned int regions);

The XCache_EnableDCache() function enables the data cache for a specific memory region.
Each bit in the regions parameter represents 128 MB of memory.

A value of 0x80000000 enables the data cache for the first 128 MB of memory
(0 - 0x7FFFFFF). A value of 0x1 enables the data cache for the last 128 MB of memory
(0xF8000000 - 0xFFFFFFFF).

void XCache_DisableDCache(void);

The XCache_DisableDCache() function disables the data cache for all memory regions.

void XCache_FlushDCacheLine(unsigned int adr);

The XCache_FlushDCacheLine() function flushes and invalidates the data cache line that
contains the address specified by the adr parameter. A subsequent data access to this address
results in a cache miss and a cache line refill.
EDK 9.1i January 8, 2007 www.xilinx.com 15

http://www.xilinx.com

PowerPC BSP
R

void XCache_InvalidateDCacheLine(unsigned int
adr);

The XCache_InvalidateDCacheLine() function invalidates the data cache line that contains the
address specified by the adr parameter. If the cache line is currently dirty, the modified contents
are lost and are not written to system memory. A subsequent data access to this address
results in a cache miss and a cache line refill.

void XCache_StoreDCacheLine(unsigned int adr);

The XCache_StoreDCacheLine() function stores in memory the data cache line that contains
the address specified by the adr parameter. A subsequent data access to this address results
in a cache hit if the address was already cached; otherwise, it results in a cache miss and
cache line refill.

void XCache_EnableICache(unsigned int regions);

The XCache_EnableICache() function enables the instruction cache for a specific memory
region. Each bit in the regions parameter represents 128 MB of memory.

A value of 0x80000000 enables the instruction cache for the first 128 MB of memory
(0 - 0x7FFFFFF). A value of 0x1 enables the instruction cache for the last 128 MB of
memory (0xF8000000 - 0xFFFFFFFF).

void XCache_DisableICache(void);

The XCache_DisableICache() function disables the instruction cache for all memory regions.

void XCache_InvalidateICache(void);

The XCache_InvalidateICache() function invalidates the whole instruction cache. Subsequent
instructions produce cache misses and cache line refills.

void XCache_InvalidateICacheLine(unsigned int
adr);

The XCache_InvalidateICacheLine() function invalidates the instruction cache line that
contains the address specified by the adr parameter. A subsequent instruction to this address
produces a cache miss and a cache line refill.

Exception Handling

This section documents the exception handling API that is provided in the Board Support
Package. For an in-depth explanation on how exceptions and interrupts work on the
PowerPC405, refer to the chapter “Exceptions and Interrupts” in the PowerPC Processor
Reference Guide.

Note: Exception handlers do not automatically reset (disable) the wait state enable bit in the MSR when
returning to user code. You can force exception handlers to reset the Wait-Enable bit to zero on return
16 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

PowerPC BSP
R

from all exceptions by compiling the BSP with the preprocessor symbol PPC405_RESET_WE_ON_RFI
defined. You can add this to the compiler flags associated with the libraries. This pre-processor define
turns the behavior on.

The exception handling API consists of a set of the files xvectors.S, xexception_l.c, and
the corresponding header file xexception_l.h.

For additional information on interrupt handing see the XPS Help and the "Interrupt
Management" appendix in the Embedded System Tools Reference Manual (available in the
/doc directory of your EDK installation).

void XExc_Init(void);

This function sets up the interrupt vector table and registers a “do nothing” function for each
exception. This function has no parameters and does not return a value.

This function must be called before registering any exception handlers or enabling any
interrupts. When using the exception handler API, this function should be called at the
beginning of your main() routine.

IMPORTANT: If you are not using the default linker script, you need to reserve memory space
for storing the vector table in your linker script. The memory space must begin on a 64k
boundary. The linker script entry should look like this example:

.vectors :
 {
 . = ALIGN(64k);
 *(.vectors)
 }

For further information on linker scripts, refer to the Linker documentation.
EDK 9.1i January 8, 2007 www.xilinx.com 17

http://www.xilinx.com

PowerPC BSP
R

void XExc_RegisterHandler(Xuint8 ExceptionId,
XExceptionHandler Handler, void *DataPtr);

This function is used to register an exception handler for a specific exception. It does not return
a value. Refer to the table below for a list of parameters.

Table 5: Exception Handler Parameters

Parameter Name Parameter Type Description

ExceptionId Xuint8 Exception to which this handler should
be registered. The type and the values
are defined in the header file
xexception_l.h. Refer to the table
below for possible values.

Handler XExceptionHandler Pointer to the exception handling
function.

DataPtr void * User value to be passed when the
handling function is called.

Table 6: Registered Exception Types and Values

Exception Type Value

XEXC_ID_JUMP_TO_ZERO 0

XEXC_ID_MACHINE_CHECK 1

XEXC_ID_CRITICAL_INT 2

XEXC_ID_DATA_STORAGE_INT 3

XEXC_ID_INSTUCTION_STORAGE_INT 4

XEXC_ID_NON_CRITICAL_INT 5

XEXC_ID_ALIGNMENT_INT 6

XEXC_ID_PROGRAM_INT 7

XEXC_ID_FPU_UNAVAILABLE_INT 8

XEXC_ID_SYSTEM_CALL 9

XEXC_ID_APU_AVAILABLE 10

XEXC_ID_PIT_INT 11

XEXC_ID_FIT_INT 12

XEXC_ID_WATCHDOG_TIMER_INT 13

XEXC_ID_DATA_TLB_MISS_INT 14

XEXC_ID_INSTRUCTION_TLB_MISS_INT 15

XEXC_ID_DEBUG_INT 16
18 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

PowerPC BSP
R

The function provided as the Handler parameter must have the following function prototype:

typedef void (*XExceptionHandler)(void * DataPtr);

This prototype is declared in the xexception_l.h header file.

When this exception handler function is called, the parameter DataPtr contains the same value
as you provided when you registered the handler.

void XExc_RemoveHandler(Xuint8 ExceptionId)

This function is used to deregister a handler function for a given exception. For possible values
of parameter ExceptionId, refer to Table 6.

void XExc_mEnableExceptions (EnableMask)

This macro is used to enable exceptions. It must be called after initializing the vector table with
function exception_Init and registering exception handlers with function
XExc_RegisterHandler. The parameter EnableMask is a bitmask for exceptions to be enabled.
The EnableMask parameter can have the values XEXC_CRITICAL, XEXC_NON_CRITICAL or
XEXC_ALL.

void XExc_mDisableExceptions (DisableMask);

This macro is called to disable exceptions. The parameter DisableMask is a bitmask for
exceptions to be disabled.The DisableMask parameter can have the values XEXC_CRITICAL,
XEXC_NON_CRITICAL or XEXC_ALL.

Files

File support is limited to the stdin and stdout streams. In such an environment, the following
functions do not make much sense:

• open() (in open.c)

• close() (in close.c)

• fstat() (in fstat.c)

• unlink() (in unlink.c)

• lseek() (in lseek.c)

These files are included for completeness and because they are referenced by the C library.

int read(int fd, char *buf, int nbytes);

The read() function in read.c reads nbytes bytes from the standard input by calling inbyte().
It blocks until all characters are available, or the end of line character is read. Read() returns
the number of characters read. The parameter fd is ignored.
EDK 9.1i January 8, 2007 www.xilinx.com 19

http://www.xilinx.com

PowerPC BSP
R

int write(int fd, char *buf, int nbytes);

The write() function in write.c writes nbytes bytes to the standard output by calling outbyte(
). It blocks until all characters have been written. Write() returns the number of characters
written. The parameter fd is ignored.

int isatty(int fd);

The isatty() function in isatty.c reports if a file is connected to a tty. This function always
returns 1, since only the stdin and stdout streams are supported.

int fcntl(int fd, int cmd, long arg);

A dummy implementation of fcntl, which always returns 0, is provided. fcntl is intended to
manipulate file descriptors according to the command specified by cmd. Since the standalone
BSP does not provide a file system, this function does not do anything.

Errno

int errno();

Return the global value of errno as set by the last C library call.

Memory Management

char *sbrk(int nbytes);

The sbrk() function in the sbrk.c file allocates nbytes of heap and returns a pointer to that
piece of memory. This function is called from the memory allocation functions of the C library.

Process

The functions getpid() in getpid.c and kill() in kill.c are included for completeness and
because they are referenced by the C library.

Processor-Specific Include Files

The xreg405.h include file contains the register numbers and the register bits for the PPC
405 processor.

The xpseudo-asm.h include file contains the definitions for the most often used inline
assembler instructions, available as macros. These can be very useful for doing things such as
setting or getting special purpose registers, synchronization, or cache manipulation.

These inline assembler instructions can be used from drivers and user applications written in C.
20 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

PowerPC BSP
R

Time

The xtime_l.c file and corresponding xtime_l.h include file provide access to the 64-bit
time base counter inside the PowerPC core. The counter increases by one at every processor
cycle.

The sleep.c file and corresponding sleep.h include file implement functions for tired
programs. All sleep functions are implemented as busy loops.

typedef unsigned long long XTime;

The XTime type in xtime_l.h represents the Time Base register. This struct consists of the
Time Base Low (TBL) and Time Base High (TBH) registers, each of which is a 32-bit wide
register. The definition of XTime is as follows:

typedef unsigned long long XTime;

void XTime_SetTime(XTime xtime);

The XTime_SetTime() function in xtime_l.c sets the time base register to the value in xtime.

void XTime_GetTime(XTime *xtime);

The XTime_GetTime() function in xtime_l.c writes the current value of the time base
register to variable xtime.

void XTime_TSRClearStatusBits(unsigned long
Bitmask);

The XTime_TSRClearStatusBits() function in xtime_l.c is used to clear bits in the Timer
Status Register (TSR). The parameter Bitmask designates the bits to be cleared. A value of 1
in any position of the Bitmask parameter clears the corresponding bit in the TSR. This function
does not return a value. The header file xreg405.h defines the following values for the
Bitmask parameter.
EDK 9.1i January 8, 2007 www.xilinx.com 21

http://www.xilinx.com

PowerPC BSP
R

Example:

XTime_TSRClearStatusBits(TSR_CLEAR_ALL);

void XTime_PITSetInterval(unsigned long
interval);

The XTime_PITSetInterval() function in xtime_l.c is used to load a new value into the
Programmable-Interval Timer Register. This register is a 32-bit decrementing counter clocked
at the same frequency as the time-base register. Depending on the AutoReload setting the PIT
is automatically reloaded with the last written value or has to be reloaded manually. This
function does not return a value.

Example:

XTime_PITSetInterval(0x00ffffff);

void XTime_PITEnableInterrupt(void);

The XTime_PITEnableInterrupt() function in xtime_l.c enables the generation of PIT
interrupts. An interrupt occurs when the PIT register contains a value of 1, and is then
decremented. This function does not return a value. XExc_Init() must be called, the PIT
interrupt handler must be registered, and exceptions must be enabled before calling this
function.

Example:

XTime_PITEnableInterrupt();

Table 7: Bitmask Parameter Values

Name Value Description

XREG_TSR_WDT_ENABLE_NEXT_WATCHDOG 0x80000000 Clearing this bit disables the watchdog timer
event.

XREG_TSR_WDT_INTERRUPT_STATUS 0x40000000 Clears the Watchdog Timer Interrupt Status
bit. This bit is set after a watchdog interrupt
occurred, or could have occurred had it been
enabled.

XREG_TSR_WDT_RESET_STATUS_11 0x30000000 Clears the Watchdog Timer Reset Status bits.
These bits Specify the kind of reset that
occurred as a result of a watchdog timer
event.

XREG_TSR_PIT_INTERRUPT_STATUS 0x08000000 Clears the Programmable Interval Timer (PIT)
Status bit. This bit is set after a PIT interrupt
has occurred.

XREG_TSR_FIT_INTERRUPT_STATUS 0x04000000 Clears the Fixed Interval Timer Status (FIT)
bit. This bit is set after a FIT interrupt has
occurred.

XREG_TSR_CLEAR_ALL 0xFFFFFFFF Clears all bits in the TSR. After a Reset, the
content of the TSR is not specified. Use this
Bitmask to clear all bits in the TSR.
22 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

PowerPC BSP
R

void XTime_PITDisableInterrupt(void);

The XTime_PITDisableInterrupt() function in xtime_l.c disables the generation of PIT
interrupts. It does not return a value.

Example:

XTime_PITDisableInterrupt();

void XTime_PITEnableAutoReload(void);

The XTime_PITEnableAutoReload() function in xtime_l.c enables the auto-reload function
of the PIT Register. When auto-reload is enabled the PIT Register is automatically reloaded
with the last value loaded by calling the XTime_PITSetInterval function when the PIT
Register contains a value of 1 and is decremented. When auto-reload is enabled, the PIT
Register never contains a value of 0. This function does not return a value.

Example:

XTime_PITEnableAutoReload();

void XTime_PITDisableAutoReload(void);

The XTime_PITDisableAutoReload() function in xtime_l.c disables the auto-reload feature
of the PIT Register. When auto-reload is disabled the PIT decrements from 1 to 0. If it contains
a value of 0 it stops decrementing until it is loaded with a non-zero value. This function does not
return a value.

Example:

XTime_PITDisableAutoReload();

void XTime_PITClearInterrupt(void);

The XTime_PITClearInterrupt() function in xtime_l.c is used to clear PIT-Interrupt-
Status bit in the Timer-Status Register. This bit specifies whether a PIT interrupt occurred. You
must call this function in your interrupt-handler to clear the Status bit, otherwise another PIT
interrupt occurs immediately after exiting the interrupt handler function. This function does not
return a value. Calling this function is equivalent to calling
XTime_TSRClearStatusBits(XREG_TSR_PIT_INTERRUPT_STATUS.

Example:

XTime_PITClearInterrupt();
EDK 9.1i January 8, 2007 www.xilinx.com 23

http://www.xilinx.com

PowerPC BSP
R

unsigned int usleep(unsigned int __useconds);

The usleep() function in sleep.c delays the execution of a program by __useconds
microseconds. It always returns zero. This function requires that the processor frequency (in
Hz) is defined. The default value of this variable is 400MHz. This value can be overwritten in the
MSS file as follows:

BEGIN PROCESSOR
PARAMETER HW_INSTANCE = PPC405_i
PARAMETER DRIVER_NAME = cpu_ppc405
PARAMETER DRIVER_VER = 1.00.a
PARAMETER CORE_CLOCK_FREQ_HZ = 20000000
END

The file xparameters.h can also be modified with the correct value, as follows:

#define XPAR_CPU_PPC405_CORE_CLOCK_FREQ_HZ 20000000

unsigned int sleep(unsigned int __seconds);

The sleep() function in sleep.c delays the execution of a program by __seconds seconds. It
always returns zero.This function requires that the processor frequency (in Hz) is defined. The
default value of this variable is 400MHz. This value can be overwritten in the Microprocessor
Software Specification (MSS) file as follows:

BEGIN PROCESSOR
PARAMETER HW_INSTANCE = PPC405_i
PARAMETER DRIVER_NAME = cpu_ppc405
PARAMETER DRIVER_VER = 1.00.a
PARAMETER CORE_CLOCK_FREQ_HZ = 20000000
END

The file xparameters.h can also be modified with the correct value, as follows:

#define XPAR_CPU_PPC405_CORE_CLOCK_FREQ_HZ 20000000

int nanosleep(const struct timespec *rqtp, struct
timespec *rmtp);

The nanosleep() function in sleep.c is currently not implemented. It is a placeholder for
linking applications against the C library. It always returns zero.

Fast Simplex Link Interface Macros

The BSP includes macros to provide convenient access to accelerators connected to the
PowerPC Auxiliary Processing Unit over the FSL Interfaces. The macros are listed below. In the
macros, val refers to a variable in your program which can be the source or sink of the FSL
operation. You must include the header file fsl.h in your source files to make these macros
available.

getfsl(val, id)

This macro performs a blocking data get function on an input FSL interface; id is the FSL
identifier and can range from 0 to 31. This macro is interruptible.
24 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

PowerPC BSP
R

putfsl(val, id)

This macro performs a blocking data put function on an output FSL interface; id is the FSL
identifier and can range from 0 to 31. This macro is interruptible.

ngetfsl(val, id)

This macro performs a non-blocking data get function on an input FSL interface; id is the FSL
identifier and can range from 0 to 31.

nputfsl(val, id)

This macro performs a non-blocking data put function on an output FSL interface; id is the FSL
identifier and can range from 0 to 31.

cgetfsl(val, id)

This macro performs a blocking control get function on an input FSL interface; id is the FSL
identifier and can range from 0 to 31. This macro is interruptible.

cputfsl(val, id)

This macro performs a blocking control put function on an output FSL interface; id is the FSL
identifier and can range from 0 to 31. This macro is interruptible.

ncgetfsl(val, id)

This macro performs a non-blocking control get function on an input FSL interface; id is the
FSL identifier and can range from 0 to 31.

ncputfsl(val, id)

This macro performs a non-blocking data control function on an output FSL interface; id is the
FSL identifier and can range from 0 to 31.

getfsl_interruptible(val, id)

This macro is aliased to getfsl(val,id).

putfsl_interruptible(val, id)

This macro is aliased to putfsl(val,id).
EDK 9.1i January 8, 2007 www.xilinx.com 25

http://www.xilinx.com

PowerPC BSP
R

cgetfsl_interruptible(val, id)

This macro is aliased to cgetfsl(val,id).

cputfsl_interruptible(val, id)

This macro is aliased to cputfsl(val,id).

fsl_isinvalid(invalid)

This macro is used to check the if the last FSL operation returned valid data or not. This macro
is applicable after invoking a non-blocking FSL put or get instruction. If there was no data on the
FSL channel on a get, or if the FSL channel was full on a put, then invalid is set to 1. Else,
invalid is set to 0.

fsl_iserror(error)

This macro is used to check the if the last FSL operation set an error flag. This macro is
applicable after invoking a control FSL put or get instruction. If the control bit was set error is
set to 1. Else, error is set to 0.

Pseudo-asm Macros

The BSP includes macros to provide convenient access to various registers on the PPC405.
You must include the header file xpseudo_asm.h in your source code to use these APIs.

mfgpr(rn)

Return value from GPR rn.

mfspr(rn)

Return the current value of the special purpose register (SPR) rn.

mfmsr()

Return value from MSR.

mfdcr(rn)

Return value from the device control register (DCR) rn.

mtdcr(rn,v)

Move the value v to DCR rn.
26 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

PowerPC BSP
R

mtevpr(addr)

Move the value addr to the exception vector prefix register (EVPR).

mtspr(rn,v)

Move the value v to SPR rn.

mtgpr(rn,v)

Move the value v to GPR rn.

iccci

Invalidate the instruction cache congruence class (entire cache).

icbi(adr)

Invalidate the instruction cache block at effective address adr.

icbt(adr)

Touch the instruction cache block at effective address adr.

isync

Execute the isync instruction.

dccci(adr)

Invalidate the data cache congruence class represented by effective address adr.

dcbi(adr)

Invalidate the data cache block at effective address adr.

dcbst(adr)

Store the data cache block at effective address adr.
EDK 9.1i January 8, 2007 www.xilinx.com 27

http://www.xilinx.com

PowerPC BSP
R

dcbf(adr)

Flush the data cache block at effective address adr.

dcread(adr)

Read from data cache address adr.

eieio

Execute the eieio instruction.

sync

Execute the sync instruction.

lbz(adr)

Execute a load and return the byte value from address adr.

lhz(adr)

Execute a load and return the word half-word value from address adr.

lwz(adr)

Execute a load and return the word value from address adr.

stb(adr,val)

Store the byte value in val into address adr.

sth(adr,val)

Store the half-word value in val into address adr.

stw(adr,val)

Store the word value in val into address adr.
28 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

PowerPC BSP
R

lhbrx(adr)

Execute a Load Halfword Byte-Reversed Indexed instruction on effective address adr and
return the value.

lwbrx(adr)

Execute a Load Word Byte-Reversed Indexed instruction on effective address adr and return
the value.

sthbrx(adr,val)

Execute a Store Halfword Byte-Reversed Indexed instruction on effective address adr, on value
val.

stwbrx(adr,val)

Execute a Store Word Byte-Reversed Indexed instruction on effective address adr, on value
val.

Macros for APU FCM User-Defined Instructions

Macros are provided for using the user-defined instructions supported by the PowerPC APU
Fabric Coprocessor Module (FCM). There are a total of 16 user-defined instruction mnemonics
provided — 8 for instructions that modify the Condition Register (CR) and 8 for the instructions
that do not modify the CR. Since the meaning of the operands that these instructions take can
be dynamically redefined, macros are provided for all combinations of operands. The user
program must use the macros appropriately, in conjunction with higher level program flow.

UDI<n>FCM(a, b, c, fmt)

This macro inserts the mnemonic for user defined fcm instruction n (that does not modify CR)
into the user’s program. The user defined instruction, has a, b, c as operands to it in that order.
The way the operands are interpreted by the compiler, is determined by the format specifier
given by fmt. The format specifier is explained further below. n can range from 0 to 7. The
mnemonic inserted is, udi<n>fcm.
EDK 9.1i January 8, 2007 www.xilinx.com 29

http://www.xilinx.com

Program Profiling
R

UDI<n>FCMCR(a, b, c, fmt)

This macro inserts the mnemonic for user defined fcm instruction (that modifies CR) n into the
user’s program. The user defined instruction, has a, b, c as operands to it in that order. The way
the operands are interpreted by the compiler, is determined by the format specifier given by
fmt. The format specifier is explained further below. n can range from 0 to 7. The mnemonic
inserted is, udi<n>fcm. (note the period at the end).

The format specifier can have the values described in the table below.

Program
Profiling

The Standalone BSP supports program profiling in conjunction with the GNU compiler tools
and the Xilinx Microprocessor Debugger (XMD). Profiling a program running on hardware
(board), provides insight into program execution and identifies where it spends most time. The
interaction of the program with memory and other peripherals can be more accurately
captured.

Program running on hardware target is profiled using software intrusive method. In this method,
the profiling software code is instrumented in the user program. The profiling software code is
a part of the libxil.a library and is generated when software intrusive profiling is enabled in
Standalone-BSP. For more details on the Profiling flow, refer to the “Profiling Embedded
Designs” section of the XPS Help.

When the profile option "-pg" is specified to the compiler (mb-gcc and powerpc-eabi-gcc), the
profiling functions are automatically linked with the application to profile. The generated
executable file contains code to generate profile information.

On program execution, this instrumented profiling function stores information on the hardware.
Xilinx® Microprocessor Debugger (XMD) collects the profile information and generates the
output file, which can be read by the GNU gprof tool. The program functionality remains
unchanged but it slows down the execution.

Note: The profiling functions do not have any explicit application API. The library is linked due to profile
calls (_mcount) introduced by gcc for profiling.

Table 8: Format Specifier for UDI Instructions

Identifier Meaning

FMT_GPR_GPR_GPR Operands a, b and c are general purpose registers.

FMT_GPR_GPR_IMM Operands a and b are general purpose registers, while
operand c is an immediate value representing an immediate
constant or an FCM register.

FMT_GPR_IMM_IMM Operand a is a general purpose registers, while operands b
and c are immediate values representing an immediate
constant or an FCM register.

FMT_IMM_GPR_GPR Operands b and c are general purpose registers, while
operand a is an immediate value representing an immediate
constant or an FCM register.

FMT_IMM_IMM_GPR Operand c is a general purpose registers, while operands a
and b are immediate values representing an immediate
constant or an FCM register.

FMT_IMM_IMM_IMM All three operands are immediate values, representing an
immediate constant or an FCM register.
30 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

Configuring the Standalone BSP
R

Profiling Requirements
• Software intrusive profiling requires memory for storing profile information. You can use

any memory in the system for profiling.

• A timer is required for sampling instruction address. opb_timer is the supported profile
timer. For PowerPC™ systems, Programmable Interrupt Timer (PIT) can also be used as
profile timer.

Profiling Function Source Code Description

Some of the important functions are:

• _profile_init — This function is called before function main of an application. This function
initializes the profile timer routine, registers timer handler accordingly based on timer used
and connection to processor and starts the timer. The TCL routine of standalone library
figures the timer type and connection to processor and generates the #defines in
profile_config.h file. Refer to the “Microprocessor Library Definition (MLD)” chapter
in the Embedded System Tools Reference Manual.

• mcount — This function is called by _mcount function, which is inserted at every function
start by gcc. This function records the caller and callee information (Instruction address),
which is used to generate call graph information.

• profile_intr_handler — This is the interrupt handler for the profiling timer. The timer is set
to sample the executing application for PC values at fixed intervals and increment the Bin
count. This is used to generate the histogram information.

Configuring the
Standalone BSP

The Standalone-BSP is configured through XPS. From the tree view of XPS, right-click on any
peripheral and select Software Platform Settings. This launches the Software Platform
Settings dialog box. The bottom half of the Software Platform panel displays the Kernel and
Operating Systems available in EDK. Select standalone as the OS. Click on the Library/OS
Parameters tab to configure. The table below lists the configurable parameters for standalone
BSP.

Table 9: Configuration Parameters

Parameter Type Default Value Description

enable_sw_intrusive_profiling Bool false Enable software intrusive
profiling functionality. Select
true to enable.

profile_timer Peripheral
Instance

none Specify the timer to use for
profiling. Select a opb_timer
from the list of instance
displayed. For a PowerPC
system select “none” to use
in-built PIT timer.

stdin Peripheral
Instance

none Specify the STDIN peripheral
from the drop down list

stdout Peripheral
Instance

none Specify the STDOUT
peripheral from the drop down
list
EDK 9.1i January 8, 2007 www.xilinx.com 31

http://www.xilinx.com

Configuring the Standalone BSP
R

microblaze_exception_vectors Array For the handler parameter, a
’default’ built-in handler is

assigned for unaligned
exceptions and XNullHandler is

assigned for the other exceptions.
The callback parameter is

assigned the corresponding
exception ID values, by default.

This parameter is valid only
for MicroBlaze. Specify the
exception handling routines
for each hardware exception
that is available on
MicroBlaze.

predecode_fpu_exception Bool false This parameter is valid only
for MicroBlaze when FPU
exceptions are enabled in the
hardware. Setting this to true
will include extra code to be
included, that decodes and
stores the faulting FP
instruction’s operands in
global variables.

Table 9: Configuration Parameters (Continued)

Parameter Type Default Value Description
32 www.xilinx.com EDK 9.1i January 8, 2007

http://www.xilinx.com

	Standalone Board Support Package
	Summary
	MicroBlaze BSP
	Function Summary
	Interrupt Handling
	Exception Handling
	Instruction Cache Handling
	Data Cache Handling
	Software Initialization Sequence for Instruction and Data Caches
	Fast Simplex Link Interface Macros
	Deprecated FSL Macros
	Pseudo-asm Macros
	Processor Version Register Access Routines
	File Handling
	Errno

	PowerPC BSP
	Function Summary
	Boot Code
	Cache
	Exception Handling
	Files
	Errno
	Memory Management
	Process
	Processor-Specific Include Files
	Time
	Fast Simplex Link Interface Macros
	Pseudo-asm Macros
	Macros for APU FCM User-Defined Instructions

	Program Profiling
	Profiling Requirements
	Profiling Function Source Code Description

	Configuring the Standalone BSP

